TSINGHUA SCIENCE AND TECHNOLOGY
ISSNI1I1007-0214 02/10 pp520-534
DOI: 10.26599/TST.2018.9010129
Volume 24, Number 5, October 2019

Cloud Virtual Machine Lifecycle Security Framework Based on
Trusted Computing

Xin Jin, Qixu Wang*, Xiang Li, Xingshu Chen, and Wei Wang

Abstract: As a foundation component of cloud computing platforms, Virtual Machines (VMs) are confronted with
numerous security threats. However, existing solutions tend to focus on solving threats in a specific state of the
VM. In this paper, we propose a novel VM lifecycle security protection framework based on trusted computing
to solve the security threats to VMs throughout their entire lifecycle. Specifically, a concept of the VM lifecycle
is presented divided up by the different active conditions of the VM. Then, a trusted computing based security
protection framework is developed, which can extend the trusted relationship from trusted platform module to the
VM and protect the security and reliability of the VM throughout its lifecycle. The theoretical analysis shows that our
proposed framework can provide comprehensive safety to VM in all of its states. Furthermore, experiment results

demonstrate that the proposed framework is feasible and achieves a higher level of security compared with some

state-of-the-art schemes.

Key words: virtual trusted computing; virtual machine lifecycle; trusted chain; security measurement; state

monitoring

1 Introduction

Due to their strengths of flexibility and scalability,
Virtual Machines (VMs) have become the main mode
of tenant service deployment in cloud computing
environments. As an independent computing entity,
besides facing traditional security threats, VMs
also confront some security threats
cloud computing; namely,
that specifically target different states of the virtual
environment (e.g., the co-resident attack!!!, the data
security threats’>>!, the attack to VM storage!®,
and the attack to VM migration!”-3). Intuitively, in

specific to
those security threats

eXin Jin, Xiang Li, and Wei Wang are with the
College of Computer Science, Sichuan University,
Chengdu 610065, China. E-mail: xinjin.cn@163.com;
2016323040026 @stu.scu.edu.cn; 15762254497 @139.com.

e Qixu Wang and Xingshu Chen are with the College of
Cybersecurity, Sichuan University, Chengdu 610065, China.
E- mail: gixuwang@scu.edu.cn; chenxsh@scu.edu.cn.

* To whom correspondence should be addressed.

Manuscript received: 2018-10-10; accepted: 2018-11-10

order to achieve a secure environment, comprehensive
protection is required for each state of the VM; i.e.,
what this paper refers to as lifecycle security protection.
[9-12] have been

proposed to solve the security problems facing VMs at

Recently, some promising approaches

different stages of the lifecycle. These approaches work
by employing specific methods during the lifecycle of a
VM, including (a) authentication and data encryption,
utilizing isolation technology to protect the CPU
and memory context of a VM; (b) implementing an
agent, installing an agent in a VM to implement
security features such as access control, encryption,
and integrity verification; (c) protecting the integrity of
the image, providing security for a VM by protecting
the integrity of the image file; and (d) scanning and
updating, the fine-grained scanning and updating of
a VM leveraging the technique of optimized storage
deployment.

However, the aforementioned approaches suffer
from some major limitations. First, cryptography
mechanisms can mitigate the security threats faced

Xin Jin et al.: Cloud Virtual Machine Lifecycle Security Framework Based on Trusted Computing 521

by the VM, but guaranteeing the confidentiality and
security of the keys that are used in storage and
authorization is still an open problem. Second, these
methods focus on protecting the security of a particular
state of the VM but do not protect the VM across its full
lifecycle. Third, some subtle but important states of the
lifecycle (e.g., the states of migration and snapshot) are
often ignored by existing schemes. Finally, the trusted
state of the VM cannot be checked and verified, which
means that a security assessment of the operating status
of the VM cannot be realized.

Fortunately, trusted computing technology can
overcome these problems by creating a trusted
environment for VMs. Secure storage of keys is
realized by storing them in the Trusted Platform
Module (TPM). Moreover, the environment of trusted
computing provides a basis for protecting a VM
throughout its entire lifecycle. Furthermore, the
security of the operating status for a VM can be checked
and validated via trusted computing, thus achieving a
proper security assessment.

In this paper, we study security threats to VMs, and
aim to propose a comprehensive lifecycle protection
scheme using trusted computing to achieve perfect
security within a trusted chain from the hardware
TPM to the VM. This builds on the fact that trusted
computing principles have been adopted in many cloud
platforms with high security requirements.

We first present a novel model of the VM lifecycle,
in which different lifecycle states are divided up in
accordance with the different states of the VM. We
then discuss the conditions and requirements for the
proposed lifecycle model to achieve soundness and
security, showing that in order to meet these goals each
state of the VM needs to concern itself with and to
satisfy certain requirements.

Based on this model, we further study the security
protection method for VMs and propose a novel
solution using trusted computing. The main idea is to
establish the VM as a trusted computing environment
by extending the trusted chain from the hardware TPM
to the VM initial launcher and then to the applications of
the VM. At the same time, the security and legitimacy
of the virtual Trusted Platform Module (vTPM) instance
are ensured by establishing a physical trusted basis and
implementing trusted associations with VM instances.

In a nutshell, the main contributions of this paper are
as follows.

e We present a novel security protection framework

for the lifecycle of a VM based on trusted computing,
in which the states of the lifecycle are divided up by the
different states of the VM. The proposed framework can
provide a dependable level of security and reliability for
each state. Simultaneously, a deep attestation method
for the VM'’s running state is implemented.

e A comprehensive complexity and security analysis
of the proposed framework in terms of the trusted VM
lifecycle and security protection framework is provided.
The analysis results show that the proposed framework
can build a trusted environment and ensure the security
and dependability of a VM throughout the lifecycle.

e Toillustrate feasibility and availability, we conduct
the experiments on a real OpenStack-based cloud
computing environment. The results demonstrate that
the proposed framework realizes the ability for
centralized management of the trusted information
of VMs, and provides complete security protection
throughout the VM lifecycle.

The remainder of this paper is organized as follows.
In Section 2, we review related work. We revisit the
preliminaries in Section 3 and define the system model,
security threats, and security goals in Section 4. Section
5 follows with a description of our proposed framework.
We discuss and prove the security proposals in Section
6, and provide the implementation and analysis of our
proposed framework in Section 7. Finally, we conclude
our paper in Section 8.

2 Related Work

In recent years, many studies have been conducted
on the protection of VMs against security threats in
different operation states. We trace the related works
organized into the different VM states that they are
concerned with.

In the storage state, the main security threat is the
leakage of the VM image file. Although encryption is a
common method to protect the VM image files!®, in the
case of a large VM instance it consumes a high level of
resources. Moreover, before running the encrypted VM
instance it must be decrypted, which equates to even
more severe resource consumption. Meanwhile, data
leakage can still be a problem if the decrypted image
file is stolen. To solve this drawback, Schwarzkopf!!?!
provided an optimized storage method to improve the
efficiency of VM image file updating and vulnerability
detection. Nonetheless, this method does not consider
the secure storage of private data in the running time of
the VM.

522

In the running state, data leakage!'®! is the
major threat to the VM. Existing solutions (e.g.,
encryption!'¥, authentication and access control'"!,
and infrastructure protection'®l) cannot solve the
fundamental problem behind the data leakage problem,
which is the confidentiality and security of encryption
keys. The methods proposed in Refs. [17, 18] can
be used to guarantee the security of the VM’s data
transmission process. Intel Software Guard Extensions
(Intel SGX) can provide a trusted environment within
an untrusted cloud platform to protect private data in
2 VMI19:201
Technique (Intel TXT) can dynamically protect the
security of the Virtual Machine Monitor (VMM),
i.e., the hypervisor’?!l. Unfortunately, both of these
techniques require the support of security hardware
(e.g., CPU and Basic Input Output System (BIOS)),
which makes them difficult to make use of in a
virtualization environment. Meanwhile, the state of the

In addition, the Intel Trusted Execution

application in the VM is also worth studying. Existing
research proposes methods that focus on improving VM
performance??! or detecting VM behavior from outside
of a VM?* and rarely looks at protecting applications
in VMs. Reference [24] proposed an attestation method
for applications in a VM, but this requires deploying an
agent, the security of which is difficult to guarantee.

In the migration state, the most common attacks
are migration target deception and man-in-the-middle.
To overcome these threats, Wan et al.[>> proposed
a protocol to assure the security requirements of
VM migration using the methods of property-based
attestation and trusted channel. Sun et al.?®! presented
a mechanism to protect the dynamic data migration
of a VM by utilizing the centralized management
platform, virtual security gateway, hypervisor access
engine, and VM security agent. Besides, in some studies
(e.g., Refs. [7, 8]), host optimization algorithms were
proposed to settle the problems of energy consumption,
communication delays, and migration cost. The premise
of the implementation of these algorithms should be that
the target host is secure.

In the of deployment and deletion,
practical solutions have yet to emerge for the
security of VMs. Existing studies either focus on
improving performancel>”-?! or delegate the security
responsibilities to the Cloud Service Provider (CSP)!4.

It is feasible to use trusted computing to provide
comprehensive security protection for each operation
state of a VM. Mao!®! proposed a trusted and secure

states

Tsinghua Science and Technology, October 2019, 24(5): 520-534

computing environment to the user, employing a
proxy VM and a trusted computing base to prevent
unauthorized access. Barak et al.l'% presented an
approach to implement policy extraction, user control,
encryption, local integrity verification, and access
control in the VM. Forrester et al.['" proposed a method
that can verify the integrity of a VM. However, all
of these research solutions require deploying agents in
the VM; even though first-hand data can be obtained,
the security of the agent still cannot be effectively
guaranteed.

In order to solve these aforementioned problems, we
propose a security framework using trusted computing
to provide comprehensive security protection for a
VM throughout its lifecycle. Instead of deploying
agents, the proposed framework uses Virtual Machine
Introspection (VMI) technology to collect information
in VMs, builds a trusted environment for VMs, and
provides a trusted guarantee for each state of the VM
lifecycle.

3 Preliminaries

In this section, we briefly revisit the preliminaries
used to construct our framework, including trusted
computing, virtual trusted computing, and trusted
attestation.

3.1 Trusted computing

In the context of Trusted Computing Group (TCG)
specifications, trust is meant to convey an expectation
of behavior*®l, With the TPM technology of TCG,
we can protect systems by the means of secure
key storage, cryptographic protection, and integrity
measurement3!l. The trusted computing platform has
the functions of ensuring data integrity, data security
storage, and platform remote attestation'3?!,

TPM ensures the integrity of the system data through
a Root of Trust for Measurement (RTM) and trusted
chain, protects data security using -cryptographic
technology, and stores trusted measurement
information through Platform Configuration Registers
(PCR). In order to prevent the PCR value from being
tampered with, the TPM restricts the behaviors of
the user operating the PCR, allowing only reset and
extension operations. The reset operation clears the
PCR value automatically when the machine is powered
off or restarted, while the extension operation is done
in the following way.

NewPCR; = Hash(OldPCR;_; ||[NewHashValue) (1)

where the symbol || indicates the conjunction, the

Xin Jin et al.: Cloud Virtual Machine Lifecycle Security Framework Based on Trusted Computing 523

OIldPCR;_; indicates the value of the PCR before i
extension, the NewHashValue indicates the hash value
to be extended, and the NewPCR; indicates the PCR
value after the extension.

Since the extension operation is irreversible, the PCR
value obtained by first extending the measurement value
A and then extending the measurement value B is
different from the value of extending B first and then
extending A.

In the system startup process of a trusted computing
platform, the module to be loaded is measured and
the measurement value is extended to PCR. In theory,
the PCR can record an infinitely long measurement
sequence in the manner of Function (1). Due to
the iterative nature of the extension process, if the
measurement value of a component is changed, the PCR
values of the subsequent measurement will be affected.

The measurement components and the sequence are
stored in the Stored Measurement Log (SML). The
SML is saved in low-security file systems, while
the PCRs are protected by the high-security TPM.
However, since the two are interrelated, even if the
SML is tampered with, the tampering behavior can be
detected by the PCR. Through the extending operation
of the PCR, the trusted relationship scope extends from
the RTM to the BIOS, system hardware, boot loader,
and operating system. The trusted relationship upward
transfer process has been labeled as a “chain of trust”,
or trusted chain'**!, Through the above analysis, we can
see that this trusted chain can be described through the
SML and PCR extension process.

3.2 Virtual trusted computing

With the development of cloud computing, there is a
need to use trusted computing technology to protect
the data in VMs. A vTPM is required to provide TPM
services to a VM running on top of a hypervisor.
In 2006, Perez et al.**! proposed the first vIPM
architecture. Since it is implemented using a software
simulation, the following conditions need to be satisfied
in the vIPM implementation:

o A vTPM must provide the same usage model and
TPM command set to an operating system running
inside a VM as a hardware TPM provides to an
operating system running directly on a hardware
platform;

e A strong association between the VM and vIPM
must be maintained across the lifecycle of the VM,
which includes the migration of the VM (together with
its associated vTPM) from one physical machine to

another;

e A strong association between the vIPM and its
underlying Trusted Computing Base (TCB) must be
maintained; and

o A virtual TPM must be clearly distinguished from
a hardware TPM because of the different security
properties of these two types of TPM.

The vITPM architecture was first implemented in
Xen. As the KVM architecture has become mainstream,
vITPM implementation solutions based on KVMP
architecture have emerged and are now widely
used!?+361,

3.3 Trusted attestation

The goal of trusted attestation is to prove to a remote
party that the operating system and application software
are intact and trustworthy!®”]. Trusted attestation usually
includes three roles: a challenger, a target system,
and an authoritative third party, e.g., a Certificate
Authority (CA). First, the target system is equipped
with a TPM and a trusted computing environment has
been established by trusted chain. Then the challenger
sends an attestation request to the target system, and the
attestation information signed by the TPM is collected
and sent back to the challenger. Since the signed key
was generated from the TPM and certified by the
CA, the challenger trusts the source of the attestation
information. Finally, with the attestation information of
the latest PCR value and the SML files, the challenger
reproduces the PCR extension process to verify the
trustworthiness of the target system. Trusted attestation
technology can be used to testify the integrity of the
target platform®®!, checking each component of the
trusted chain. The integrity of the trusted chain then
characterizes the trusted status of the target system.

4 Problem Statement

In this section, we state the problem by formalizing the
lifecycle model and system model, and by identifying
the security threats and security goals.

4.1 Lifecycle model

As depicted in Fig. 1, the lifecycle model of a trusted
VM consists of 6 main states: creation, storage,
deployment, execution, exit, and deletion, and 3
additional states: suspending, snapshot, and migration.

(1) Creation state. The VM is created and the
Operating System (OS) is installed in this state. A
template can be used to speed up the creation process
instead of creating everything from scratch. Once the

524

Tsinghua Science and Technology, October 2019, 24(5): 520-534

Suspending

; (3)
>ﬂ Creation _>| Storage ‘—>| Deployment

7y

: |

! v

|

R
|

|

Fig. 1 Lifecycle of trusted VM.

VM is created, the associated vIPM instance is created
as well.

(2) Storage state. The VM and vTPM instances are
being kept in a dormant state on an appropriate storage
system. In order to maintain confidentiality, the private
data of the VM instance and vIPM instance are stored
in encrypted form.

(3) Deployment state. Before loading the VM, the
vTPM instance is decrypted and relationships of the
VM to the vITPM and of the TPM to the vIPM are
examined to verify the trustworthiness of the vTPM.

(4) Execution state. The trusted VM is executed
to achieve its intended purpose. The guest operating
system uses the vVIPM as if it was a hardware TPM, and
the persistent data of the vIPM is saved to the vIPM
instance file continuously.

(5) Exit state. The trusted VM saves the persistent
data generated by the execution state to the instance file
and then the VM is shut down.

(6) Deletion state. In this state, all the contents of the
trusted VM are deleted, including VM instances, vIPM

f

Security service

Trusted chain

()

Trusted association

o

Privacy protection

instances, and VM security measures.

(7) Suspending state. The trusted VM gives up its
CPU and memory resources after saving persistent data
to the instance file. When needed, the trusted VM will
regain the CPU and memory resources and resume
execution.

(8) Smapshot state. The trusted VM first saves its
operational state to a snapshot template (including the
VM and associated vITPM). Then, when needed, the
new trusted VM is created directly from the template
files to quickly recover the state of the snapshotted
trusted VM.

(9) Migration state. The operating environment of a
trusted VM is transferred from one physical machine to
another, along with its associated vIPM instance.

4.2 System model
The architecture of the VM lifecycle security
framework consists of compute nodes and a cloud

management center, as shown in Fig. 2. The compute
nodes consist of the hardware infrastructure, trusted

Analysis

A - an -
37 % i
Collection 99 Database
Management
A4
4
VM lifecycle

Trusted VM lifecycle protection

Fig. 2 Architecture of virtual machine lifecycle security framework.

Xin Jin et al.: Cloud Virtual Machine Lifecycle Security Framework Based on Trusted Computing 525

security measures, and VMs. The cloud management
center consists of the security and attestation services.

e Compute nodes. The compute nodes implement
the basic functions of cloud computing through the
VMs that are deployed on them. The TPM chip is
deployed to each physical compute node, while vTPMs
are deployed to each VM. The security measures
based on trusted computing (i.e., a trusted chain from
hardware TPM to VM, association between TPM and
vTPM, association between VIPM and VM, and VM
private data protection) are implemented to protect the
security of the VM throughout the lifecycle.

o Cloud management center. The cloud management
center is responsible for monitoring and managing
cloud computing platforms. The platform administrator
can issue a security strategy to manage the VMs.
Meanwhile, the attestation service collects and analyzes
the trusted information for each VM and the host
OS. Comparing the analysis results with the trusted
information database, the status of the VM and host
OS can be verified and the results can be shown in the
operation interface of the cloud platform administrator.
This enables the administrator to monitor and manage
VMs responsively.

4.3 Security threats

Security threats to the VM of the cloud may come
from both external and internal attackers. External
attacks include identity attacks, non-authorized logins,
trojans and viruses, and channel attacks. Internal attacks
include VM bypass attacks, vulnerability detection,
and VMM privilege attacks. Attackers can inject
trojans to control the VM to implement the attacks
of vulnerability detection and VM escape to launch
bypass attacks on other VMs. Attackers can use
sniffers and implement channel attacks when the VM
is communicating with external machines. If the VMM
is compromised?, an attacker can use VMM privilege
attacks on VMSs on the same host; in this condition, all
protections in the VM are invalidated. Moreover, the
VM can be stolen and reused in another environment,
which can lead to a leakage of private data.

Since the cloud management center and physical
compute nodes are maintained by a CSP, and normal
users do not have access to the physical infrastructure
of the cloud, we can assume that the cloud management
center and physical cloud infrastructure are secure.
Further, we can assume that CSP security management
measures are relatively complete, and capable of

preventing identity attacks, physical attacks, and
internal attacks.

4.4 Security goals

To enable VM lifecycle protection under the
aforementioned system model and resist the security
threats, our framework should achieve the following
security goals.

e Full lifecycle protection. Every state of the VM
needs to be protected. We aim to provide methods for
full lifecycle protection to ensure that the VM is always
in a safe and trustworthy state. Therefore, an attacker
cannot use any state of the VM to carry out an attack.

e Trusted environment. A trusted computing
environment for VMs will be established. In these
circumstances, any hostile action by an adversary can
be detected in a short enough time to ensure the safety
and credibility of the VM.

e Verifiability. The trusted status of the VM and host
OS should be verifiable to ensure the correctness and
trustworthiness.

5 Proposed Framework

In this section, we propose the framework of
VM lifecycle security protection, which includes
three main procedures: hardware security support,
strong association establishment, and trusted status
monitoring. The procedure of strong association
establishment can continue to be subdivided into
(1) association between TPM and vIPM, and (2)
association between vIPM and VM.

5.1 Hardware security support

VMs are implemented by software simulation, which
can leave them lacking in a security foundation.
Authentication and cryptographic mechanisms can
alleviate the security threat through access control and
data encryption, but they can neither give a security
foundation to the guest OS, nor can they verify the
security status of the VM. Therefore, it is necessary to
provide a hardware security foundation for VMs.

In order to provide security support for VMs, a
trusted chain is built from the hardware TPM to the
VM. The trusted chain consists of the core components
of the host OS, the hypervisor, and the VM initial
launcher. The collection and verification of trusted
information in the trusted chain ensure the security and
trust of the core components, thus ensuring the safety
and trustworthiness of the environment under the VM.

526

The trusted chain can also be established in the VM,
but if the root of the chain, i.e., the virtual Core Root of
Trust Measurement (vVCRTM) was to be destroyed, the
trusted chain of the VM would become untrusted. To
ensure the security of the vVCRTM, we propose a method
of extending the trusted chain of the host OS from the
hardware TPM to the VM initial launcher. First, the
hypervisor is measured to ensure its security, then the
VM initial launcher is measured by the hypervisor. The
measurement values are extended to the PCR and SML,
which provide hardware security support to VMs.

The hypervisor and the VM initial launcher
measurement method is shown in Fig. 3. The BIOS
and vTPM simulators are measured by the hypervisor to
ensure their integrity. The BIOS simulator corresponds
to the vCRTM and vBIOS in the VM, and the vTPM
emulation program corresponds to the vIPM device and
the vTPM instance; this method protects the integrity
of the VM initial launcher and provides base hardware
security support to VMs.

When the trusted chain of the host OS is proved to
be trustworthy, the initial launcher of the VM is also
trustworthy, which is the foundation for establishing the
VM’s own trusted computing environment.

5.2 Strong association establishment

5.2.1 Association between TPM and vIPM

Since the vTPM is simulated with software, with no
hardware TPM to serve as underlying trusted support,
the vTPM will fall into the vicious circle of one piece
of software being used to verify another, and thus lose
legitimacy as the secure root of the VM. Therefore, it is
necessary to establish a trusted association between the

7! b vCRTM =
\ / = |

\
BIOS ~_ a .

A\ ’ 4 74
- o VBIOS !
- VTPM 8¢~ |
m

/ : Y

/ \

|
: \
|

/ | I 5 3
|

-

)
N
OS loader ~~—~
.
7

7

os [

. A—
[VIPM | -
| driver|| . .

/
/ 0S
#/

. , VM initial |
Hypervisor g

launcher

—] —-.

Legend Compute

Host 0S
node

Guest OS | Extend

Mapping | Measure

Fig. 3 Extend the host trust chain to the VM initial
launcher.

Tsinghua Science and Technology, October 2019, 24(5): 520-534

hardware TPM and the vIPM.

The TPM-vTPM trusted association method is shown
in Fig. 4. It introduces an intermediate level, namely
the VTPM measurement list, between the vITPM and
TPM. The information of vIPMs (including name and
baseline measurement value) is saved in the vIPM
measurement list. When a trusted VM is deployed, the
vTPM loading operation can be implemented only if
the vTPM measurement is equal to the baseline in the
vITPM measurement list. The vITPM measurement list
is usually in an encrypted state, and the encryption key
is sealed by the TPM with multiple PCR state values
as the seal condition. When the vITPM measurement
list needs to be decrypted, the encryption key can only
be unsealed when the corresponding PCR values are
consistent with the seal operation.

The vTPM measurement list guarantees the integrity
of the vTPM instance; the TPM guarantees the secure
storage of the vIPM measurement list. In this way, the
TPM to vTPM association is established.

5.2.2 Association between vIPM and VM

If the vTPM instance is not strongly associated with
the VM instance and can be mounted by another
VM instance, information leakage. Moreover, persistent
information of the vIPM instance is stored in plaintext,
which may lead to the disclosure of confidential
information (e.g., the TPM owner password). The
vTPM instance therefore should be stored confidentially
and a strong association between the VM and vTPM
should be established.

The VM-vIPM association and private data
protection method is shown in Fig. 5. This method
makes use of the capacity of the VM instance file
(such as the QCOW?2 storage format) to store custom
information in the header label structure. The header
label structure was designed to store the mapping
information of the Universally Unique IDentifier

TPM vTPM;
Measure
PCR vTPM measurement list

vIPM,

PCR, T vTPM, baseline ‘/

PCR:

2 J Sealt VTPM, baseline ~ Af Measure

PCRy VIPM, baseline < Measure
vIPM,

Fig. 4 Trusted association between hardware TPM and
vIPM.

Xin Jin et al.: Cloud Virtual Machine Lifecycle Security Framework Based on Trusted Computing 527

Label structure

~ Head of file
VM UUID mapping ‘ [Data area of file

vIPM file name mapping ’

VM instance

|
|
| Encrypt algorithm ‘
|

Encrypt key ‘

3 Storage

Privacy data

G

vTPM instance

> CA

Fig. 5 VM-vTPM association and private data protection
method.

M 2 Encrypt 4
RSA pubuhswf'
1S

ymmetric encrypt

RSA privacy key 40-2 issued certificate
0

TPM

-1 enrolled public key

(UUID) of the VM, the mapping information of the
vIPM instance file name, the encryption algorithm of
the vIPM instance, the encryption key of the vIPM
instance, etc. With the information from the label, a
strong association can be established between the VM
and the vTPM instances.

The procedure for VM-vTPM association is as
follows:

e The TPM generates non-migratable Rivest-
Shamir-Adleman (RSA) key pairs, with the private
part saved to the non-volatile area of the TPM, and
the public key enrolled to CA to attain a certificate to
represent the TPM;

e A symmetric key is used to encrypt the vIPM
instance file, and this key can also be used to encrypt
the private information of the vIPM instance in the
execution state;

e The symmetric key is encrypted with the RSA
public key, which establishes the relationship between
the TPM and the VM; and

e The ciphertext is saved to a field in the label
structure, and the label structure is saved in the header
of the VM instance.

When starting the trusted VM, if the vTPM is not
associated with the VM, the loading process would be
halted.

5.3 Trusted status monitoring

In its execution state, the VM’s trusted status can
be affected by the underlying environment (e.g.,
hypervisor) and by active security breaches (e.g., a
compromised kernel in the guest OS). Therefore,
the trusted status of the running VM needs to be
checked and verified at execution time. The TCG’s

deep attestation method verifies the host OS after
the attestation of the guest OS, and the host OS
Uniform Resource Identifier (URI) is provided by the
guest OS, which can lead to spoofing attacks on the
hypervisor'®). The method for deep attestation based
on Virtual Machine Introspection (VMI) is proposed
in this paper.
information of VMs and the host OS at once, and ensure
the authenticity of the information via the hardware
TPM.

The VM trusted status monitoring method is shown
as Fig. 6. First, the trusted chains are established in the
VM and the host OS. Then, an agent is deployed in the
hypervisor to collect the trusted information from the
running VMs using VMI technology. Since the VMI
technology can obtain VM trusted information without
deploying agents, it is not subject to attacks on agents
and is able to collect data from the VM without the
perception of the user, which ensures the accuracy and
reliability of the collected data.

Once the collected information of the VMs and host
OS has been packaged and sent to attestation service,
the trusted information is analyzed and compared with
the baseline data in the database, thus verifying the
integrity of the trusted chain and resulting in the trusted
status of the VM (or host OS).

The verification results are shown on the cloud

This method can collect the trusted

manager platform; the platform administrators can then
safely manage VMs based on these results.

6 Framework Discussion

In this section, the framework is thoroughly analyzed in
its advancements, security, and trustworthiness.

Compute node 1

VM, VM,
_ Trusted vIPM, | [VIPM,
information [&— L
collection

Agent A/Hypervisor
| Agent| Yisor

Compute node 2

Result) TmSteq
< information | |
verification
TPM

Platform
adminstrator

Trusted
information
database

Compute node n

——{TPM }

Compute node cluster

Attestation service

Fig. 6 VM trusted status monitoring method.

528

6.1 Advancements

The advancements made by the framework are as
follows:

e Hardware security support. This method
establishes a trusted chain from the hardware TPM to
the initial launcher of the VM. It connects the internal
trust chain of the VM to the host trust chain, and
provides a physical foundation for the trusted chain of
the VM.

e TPM-vTPM association. The vTPM measurement
list method establishes the relationship between the
TPM and the vTPM. It maintains a loose coupling
between them, which is suitable for rapid restoration of
the trusted chain after VM migration.

e VIPM-VM association. By making use of the
characteristics of the custom label structure stored
in the VM instance header, the correspondence
between the compute node, VM instance, and vIPM
instance is established. Moreover, the integrity of,
confidentiality of, and private information within
the vITPM instance are protected by encryption and
decryption mechanisms.

e Trusted status monitoring. The VMI technology
can collect the trusted status of all VMs on the same
compute node in a single acquisition, which improves
collection efficiency and ensures a correspondence
between the VM and the host OS. This method can
effectively prevent hypervisor spoofing attacks during
deep remote authentication.

6.2 Security

The security analysis of the framework is as follows:

e Hardware security support. The main idea of this
method is the TCG trusted chain extension mechanism.
The extending operation of the TPM measuring the OS,
the OS measuring the hypervisor, and the hypervisor
measuring the VM initial launcher operation are in
accordance with the TCG’s trusted chain extension
concept. Since the calculation and extension of
measurements conform to the specifications of trusted
computing, this method can be considered safe.

e TPM-vTPM association. This method applies the
TCG’s ideas on storage security. The vITPM instances
are measured and the values stored in the vIPM
measurement list, then the vIPM measurement list is
encrypted by a symmetric key and the key is sealed
by the hardware TPM with the PCR. Only where the
PCR value is the same as it was at sealing time can the
symmetric key be unsealed and the vIPM measurement

Tsinghua Science and Technology, October 2019, 24(5): 520-534

list be decrypted. Since the measurement and sealing
are basic trusted computing operations and the security
of these operations has been validated, this method can
be considered safe.

e VIPM-VM association. The main idea behind
this method is the cryptography mechanism. Using
the capacity to store a custom label structure in the
VM instance file header, the vIPM instance can be
encrypted by a symmetric key, the symmetric key can
be encrypted by the RSA public key of the node, and the
ciphertext cloud can be saved to the label structure. The
label structure does not have any impact on the normal
operation of the VM instance, and the confidentiality
and integrity of the data in the label structure are
protected by the hardware TPM; therefore, this measure
can be considered safe.

e Trusted status monitoring. This method using
the TCG’s principle of remote attestation. Since the
trusted information collection and verification process
conforms to the trusted computing remote verification
specification, this method can also be considered safe.

6.3 Trustworthiness

The trustworthiness of the framework can be proved by
the integrity and confidentiality of the VM throughout
its lifecycle.

e Creation state. The newly created vIPM instance
is registered in the vIPM measurement list, the vITPM
instance is encrypted by a symmetric key that was
encrypted by the RSA public key of the node, and the
vTPM measurement list is encrypted by a symmetric
key that is sealed by the node’s TPM. These methods
protect the integrity and confidentiality of the VM and
vIPM on creation.

e Storage state. When the trusted VM instance is
being kept in a dormant state, the associated vIPM
is encrypted with the key in the label structure of
the VM instance. Since the relationship of the VM,
vTPM, and compute node are maintained and cannot
be changed without the privilege of the TPM, integrity
and confidentiality are maintained in the storage state.

e Deployment state. The process of decrypting the
vIPM instance proves the relationship between the
VM, vTPM, and compute node. Only once the integrity
of the vIPM instance is proved can the VM be
loaded for execution, which ensures integrity and
confidentiality on deployment.

e Execution state. A trusted computing environment
is established to keep the VM in a safe and trusted

Xin Jin et al.: Cloud Virtual Machine Lifecycle Security Framework Based on Trusted Computing 529

state, and the trusted information of the VM and host
OS are collected and verified in real time by trusted
status monitoring measures. These methods protect the
integrity and confidentiality of the VM when it is in an
execution state.

e Suspend state. The private information of the
VM is encrypted and saved to the instance file,
so confidentiality is maintained while the VM is
suspended.

e Snapshot state. The vIPM template is encrypted
by the key stored in the header label of the VM
snapshot template. When a trusted VM instance needs
to be created from a snapshot template, the new vIPM
instance is copied from the vIPM template and the
measured value is enrolled to the vIPM measurement
list. A symmetric key is then used to encrypt the vIPM
instance file and the node RSA public key is used to
encrypt the symmetric key. Finally the ciphertext is
saved to the label structure in the header structure of
the VM that is copied from the VM snapshot template.
These methods protect the integrity and confidentiality
of newly created trusted VMs.

e Migration state. When the vITPM instance is
encrypted and transmitted to the destination node,
the migration process proves the authentication of the
destination node and the integrity of the vITPM instance.
The method of moving the encryption key from the
source node to the destination node and resuming the
trusted chain in the destination node maintains the
integrity and confidentiality of the post-migration VM.

o Exit state. The baseline of the vIPM instance is
updated to the vIPM measurement list and the vIPM
instance is encrypted by the symmetric key in the
label structure of the VM instance, then the vIPM
measurement list is encrypted by a symmetric key that is
sealed by the TPM. These methods protect the integrity
and confidentiality of the VM on exit.

e Deletion state. Because the private information
of the VM is protected by the vIPM, even if the
VM persists after deletion no private information could
be decrypted without the vIPM instance and the
TPM. This protects the confidentiality of the VM after
deletion.

In summary, the framework can ensure the trusted
status of a trusted VM throughout its lifecycle.

7 Implementation and Evaluation

In this section, the framework is implemented in
an OpenStack+KVM+QEMU environment, and its

efficacy and performance impact are evaluated. For
convenience of implementation, the objects are defined
in Table 1. The prototype system was built using five
servers, of which one is used as a control and network
node and the other four act as compute nodes. The basic
configuration of the servers is Xeon CPU E5-2623 v3
3.00 GHz/DDR4 16 Gx8/10T/TPM1.2/ubuntu 14.04.

7.1 Main states of the lifecycle

The main security measures used during the lifecycle of
a trusted VM are shown in Fig. 7.

To implement the security measures in the trusted
VM lifecycle, some preparation work is required. First,
the trusted chain of the host OS is created when the host
OS is running. Then, the RSA key pairs are generated
by the TPM, the RSA private key is stored in the TPM,
and the RSA public key is used to identify the node.
Finally, the vTPM measurement list is generated and
encrypted by the hardware TPM.

In the creation state, a VM instance and the
associated VvTPM instance are created. Then, the
measurement value of the vIPM instance is registered
Finally, the vTPM
instance is encrypted by a symmetric key, the symmetric
key is encrypted by the RSA public key, and the
ciphertext is saved to the label structure in the VM

to the vTPM measurement list.

Table 1 Object name and description of the framework.

Object name Description
X Object (VM, vTPM, etc.)
TrustedChain Trusted chain
PrivaceData Private data (e.g., TPM_Owner)
vTPM_M _List vTPM measurement list
Labelyx Label structure of X object
Key, key’ Symmetric encryption keys

[W

1 _Create (TrustedChaingoge) |
I

Preparation{ | RSA key to identify the node, :
I

1
I
I
|
7: : Create(VIPM_M_List) }
1
I
1

1 I
| 1] Create(VM); Create(vTPM)
| <

Creation :
\ ! Encrypt(vIPM ,TPM)

1 1
I
L Verify (TrustedChainag.)
|

: i RegMeasure (VIPM, vIPM_M_List)

1

L

(1

Decrypt (VIPM ,TPM) }
Deployment:

|

Load VM

::‘ If (Measure(vVIPM):(ie\Measure:Base(v TPM, vIPM_M_List))
I
T

Encrypt (PriyaceData, TPM)
T

i
= T
i

‘ »!
Lol |

Execution ‘]

:\Verify (TrustedChainyyg)

I.

1< Close VM
I

E:| UpdateMeasure (vVIPM, vTPM_M_List)
;

¥ 1

<] DelMeasure (vIPM, vIPM M Lis)

1< Delete(VM); Delete(vIPM) |

I |

::J Verify (TrustedChaingoge)
|

|
1
I
1
Exit Encrypt (vIPM, TPM)

——————

I
1

1

1

1

T

1

ol

1

1

1

1

Lo

1

i

1

1

1

1

l

i

ul
Deletion 1 |
S

Fig.7 Main security measures for a trusted VM lifecycle.

530

instance file header.

In the deployment state, the security conditions of the
VM and vTPM instances are examined before loading.
First, the trusted status of the host is verified, then the
vTPM instance is decrypted by the TPM. Finally, the
vTPM instance is measured and the measurement value
is compared to the baseline of the vIPM in the vIPM
measurement list; if the value matches, the follow-up
operation can be performed, otherwise the follow-up
operation is blocked.

In the execution state, a series of security measures
are used to protect the safe operation of the VM. First,
the VM’s trusted computing environment is established,
then the private information of the vIPM instance is
encrypted. Finally, the trusted status of the VM and
host OS is collected and validated in real time.

In the exit state, the VIPM instance is measured
and the value is updated as a baseline to the vIPM
measurement list, then the vIPM instance is encrypted
by the TPM.

In the deletion state, the baseline of the vTPM, the
VM instance, and the associated vIPM instance are
deleted.

7.2 Snapshot state

The main work of snapshotting includes the creating
trusted snapshot template and creating trusted VM
from snapshot template steps. The method is shown as
Algorithm 1.

In the snapshot_template function, when the VM is
suspended and the persistent data of the VM has been
saved to the instance file, the VM snapshot template file
(VMgr) is copied from the VM instance file and the
vTPM snapshot template file (VTPMgr) is copied from
the vTPM instance. The vITPM snapshot template file
is then encrypted with the symmetric key saved to the
label structure of the VM snapshot template file header.
Since the node for subsequent snapshot recovery is not
determined, the key does not contain node information.
After the vIPM snapshot is encrypted, the VM is
resumed.

In the VM _from_template function, once the target
node trusted status is verified, the vIPM snapshot
template is decrypted by the symmetric key from
the label structure of the VM snapshot template file
header. The VM instance is then copied from the
VM snapshot template and the vITPM instance is
copied from the vITPM snapshot template. The vITPM
instance is measured and the value is registered to the
vITPM measurement list. Finally, the vTPM instance is

Tsinghua Science and Technology, October 2019, 24(5): 520-534

Algorithm 1 Snapshot
1: procedure Trusted Snapshot
2: function Snapshot_template (VM, vTPM)
if VM is suspended & data saved finish
VMgt = VM
vITPMgr = vTPM
VIPMgrt.en = Encrypt (VTPMgr, key)
Labelym.st : VTPMKey = key
resume VM
end if
10 return VMgt, vIPMgr;
11: end function

Y o R Rw

13: function VM_from_template (VMgr, VTPMgr)
14: if Verify (TrustedChaingege) = True then

15: key = Labelyy.st : VTPMKey

16: vTPMgt = Decrypt (VTPMgren, key)
17: VM < VMgr

18: VvIPM < vIPMgr

19: RegMeasure (VTPM, vTPM_M _List)
20: Encrypt (VIPM, key’)

21: Labelyy : vVTPMKey =

2: Encrypt (key’, RSAEgge)

23: else

24: stop creation, return error information
25: end if

26: return VM, vIPM;
27. end function
28: end procedure

encrypted by a symmetric key, the symmetric key is
encrypted by the RSA public key of the target node, and
the ciphertext is saved to the label structure in the VM
instance file header.

7.3 Migration state

The case of dynamic migration on shared storage is
taken as an example to describe the VM migration
process, the method for which is shown as Algorithm 2.

Once the trusted status of the destination node is
verified and the RSA public key of the destination node
is sent to the source node, the source node verifies
destination RSA key with the CA, and encrypts the
symmetric key of the label structure with the destination
RSA public key, which is used to encrypt the vIPM
instance that is to be migrated.

Upon the vTPM instance being migrated and
decrypted in the destination node, a blank VM and
vIPM structure is created in the memory of the
destination node. The in-memory data of the VM
and vIPM are then transferred iteratively. When the
remaining dirty in-memory data is lower than the
iteration threshold, the VM is suspended in the source

Xin Jin et al.:

Algorithm 2 Trusted VM dynamic migration

1: procedure Ddynamic_migration (VM)

2: function Dynamic_migration (VM)

3 if Verify(TrustedChainges)=True then
4 SOUICepode < RSAS‘:
5: sourcenoge encrypt the vIPM with a key
6 SOUrCenode encrypt the key with RSAR
7 transmit and decrypt the vIPM instance
8 Iteratively transferring dirty data

9

if dirty data < threshold then

10: suspend the VM in source

11 resume the VM in destination

12: Transfer the rest memory data

13: end if

14: RegMeasure (VTPM, vTPM_M _Listges)
15: DelMeasure (VTPM, vTPM_M _List,q,)
16: delete (VTPMyoy)

17: end if

18: end function
19: end procedure

node and resumed in the destination node. The rest
of the in-memory data of the migration VM is then
transferred to the destination node.

After completion of the above procedure, the
measurement value of the vIPM instance is registered
to the vITPM measurement list of the destination node.
The measurement value of the vIPM instance is then
deleted from the vTPM measurement list in the source
node, and the vIPM instance of the source node is
deleted.

VM Deployment

VM Snapshot

Cloud Virtual Machine Lifecycle Security Framework Based on Trusted Computing 531

7.4 Framework evaluation

After implemented the proposed framework,
experiments were done to analyze the performance.
Through the experimental data, the performance impact
from deploying the proposed framework was obtained
and is shown in Fig. 8. Comparing the data for VM
deployment, VM snapshotting, and VM migration, it
can be seen that the performance impact of the proposed
framework is within an acceptable range. Since the
framework adds very little code to existing platforms
and does not touch the core code of the operating
system, the stability of the system can be guaranteed
without a major impact on system performance.

A comparison was also made between the TCG’s
deep attestation method and the proposed trusted status
monitoring method of the framework, with the results
shown in Fig. 9. Compared to the TCG’s verification
process, which needs to verify the VM and the
host OS at each attestation, our proposed method
can simultaneously collect the trusted information of
multiple VMs and the host OS on a single occasion.
Therefore, as the number of virtual machines increases,
the performance of this method is higher than that of the
TCG.

The proposed framework was also compared with
the existing VM lifecycle security framework, with
the results shown in Table 2. The proposed framework
analyzes the protection needs of each state of

VM Migration
800000

. 140000 i T T - 70000 = —O—Tradilﬁonal clou;i p\at‘formL
z —e—Traditional cloud platform / E —e—Traditional cloud platform 2 700000 _g Proposed framwork /
b= 120000 —#—Proposed framwork E 60000| - Proposed framwork E 600000
€ G
2 100000 g 50000 £ 500000 /
5. c e
3 &
a. 80000 40000
3] E 400000 /'/
2 60000 / £ 30000 / £ 300000 /./
% 40000 ./ .Qé 20000 ./ E 200000 ./
=
‘g 20000} 10000 E 100000
=
0 0 0
1 2 3 4 5 1 2 4 5 1 2 3 4 5

Number of VMs

3
Number of VMs

Number of VMs

Fig. 8 Performance impact of deployment, snapshot, and migration.

& 14000

£ o0 | @ TCG method

51 Proposed framwork |
5

3 10 000

Q

=

@© 8000

° 6208.6

g 5% 43411
S o 3099.2 2964 1

£

= 2000 ‘[-—"

5466

15340.8

12298

8063.7

6739.2

3
Number of VMs

Fig. 9 Comparison of the TCG deep attestation and our attestation method.

532

Table 2 Comparison of the proposed framework with the
existing VM lifecycle security framework.

Protection
Model
PI CF II HP VIL VTV HTV
Maol”! v v v
Barak et al.[1%] v v v
Forrester et al.'!l v
Schwarzkopf!!?! v v

Proposed framework v v v vV v v

Note: Private Information (PI); Critical Files (CF); Instance Integrity (II);
Hypervisor Protect (HP); VM Initit Launcher (VIL); VM Trusted Verify
(VTV); and Host Trusted Verify (HTV).

the VM lifecycle and provides targeted protection.
Compared with existing protection schemes, therefore,
the proposed framework offers a more comprehensive
range of protections.

The framework has the following advantages over
existing VM lifecycle solutions.

e Hardware independence. Compared with Intel’s
SGX and TXT technologies, which require CPU
or BIOS support, the framework can be completely
implemented based on open source software, which
makes it more broadly usable.

e System security protection. The framework builds
a trusted computing environment for VMs and provides
comprehensive security protection for the entire
lifecycle of the trusted VM, ensuring that the trusted
VM is in a safe and trusted status throughout the
lifecycle.

e High compatibility. The framework can protect
the integrity of the core components of the VM. It
can be integrated with existing cloud platform security
measures (e.g., access control, intrusion detection,
virus detection, vulnerability recovery, hidden process
detection, fine-grained logic isolation, hypervisor
security, and cloud continuous assessment!*’l) to
achieve the best VM security protection.

e Real-time monitoring. This framework can be used
to monitor the real-time trusted status of VMs in
batches, which makes it possible to manage the trust
status of a large number of VMs in the cloud.

8 Conclusion

This article proposes a VM lifecycle security protection
framework based on trusted computing. The proposed
framework can protect the integrity and security of
VMs through their lifecycle using trusted computing
technology. First, the trusted computing environment
of the VM is established. Then, throughout the

Tsinghua Science and Technology, October 2019, 24(5): 520-534

entire lifecycle of the VM, the security protection
method is executed to maintain the integrity and
security of the VM. Meanwhile, a status monitoring
component is designed to confirm the trusted status
by collecting and verifying the trusted information
of the VM and host OS. Theoretical analysis shows
the proposed framework’s security advancements and
trustworthiness. In order to verify the correctness and
feasibility, a series of experiments were conducted, the
results of which show that our proposed framework
realizes full lifecycle security protection for VMs
with scarcely any extra performance overhead. One
interesting line of future work is to focus on analyzing,
detecting, and describing abnormal behaviors in the
execution state of a VM.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (Nos. 61802270 and 61802271),
and the Fundamental Research Funds for the Central
Universities (Nos. SCU2018D018 and SCU2018D022).

References

[1] Y. Han, J. Chan, T. Alpcan, and C. Leckie, Using virtual
machine allocation policies to defend against co-resident
attacks in cloud computing, IEEE Trans. Depend. Secure
Comput., vol. 14, no. 1, pp. 95-108, 2017.

[2] M. S. Dildar, N. Khan, J. B. Abdullah, and A. S. Khan,
Effective way to defend the hypervisor attacks in cloud
computing, in Proc. 2017 2"¢ Int. Conf. Anti-Cyber
Crimes, Abha, Saudi Arabia, 2017, pp. 154-159.

[3] K. S. Tep, B. Martini, R. Hunt, and K. K. R.
Choo, A taxonomy of cloud attack consequences and
mitigation strategies: The role of access control and
privileged access management, in Proc. 2015 IEEE
Trustcom/BigDataSE/ISPA, Helsinki, Finland, 2015, pp.
1073-1080.

[4] K. Scarfone, M. Souppaya, and P. Hoffman, Guide
to Security for Full Virtualization Technologies.
Gaithersburg, MD, USA: National Institute of Standards
& Technology, 2011.

[51 Y. Yu, M. H. Au, G. Ateniese, X. Y. Huang, W. Susilo, Y.
S. Dai, and G. Y. Min, Identity-based remote data integrity
checking with perfect data privacy preserving for cloud
storage, IEEE Trans. Inf. Foren. Secur., vol. 12, no. 4, pp.
767-778, 2017.

[6] S. M. N. Islam and M. M. Rahman, Securing virtual
machine images of cloud by encryption through Kerberos,
in Proc. 2017 24 Int. Conf. Convergence in Technology,
Mumbai, India, 2017, pp. 1074-1079.

[71 M. Masdari, S. S. Nabavi, and V. Ahmadi, An overview
of virtual machine placement schemes in cloud computing,
J. Network Comput. Appl., vol. 66, pp. 106-127, 2016.

Xin Jin et al.:

(8]

(9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

F. Tao, C. Li, T. W. Liao, and Y. J. Laili, BGM-BLA: A
new algorithm for dynamic migration of virtual machines
in cloud computing, IEEE Trans. Serv. Comput., vol. 9, no.
6, pp- 910-925, 2016.

W. B. Mao, Method and apparatus for securing the full
lifecycle of a virtual machine, US Patent 20130061293,
March 7, 2013.

N. Barak, A. Jerbi, E. Hadar, and M. Kletskin, System
and method for enforcement of security controls on virtual
machines throughout life cycle state changes, US Patent
9389898, July 12, 2016.

R. J. Forrester, W. W. Starnes, and F. A. Jr. Tycksen,
Method and apparatus for lifecycle integrity verification of
virtual machines, US Patent 9450966, September 20, 2016.
R. Schwarzkopf, Virtual machine lifecycle management
in grid and cloud computing, http://archiv.ub.uni-marburg.
de/diss/z2015/0407/pdf/drs.pdf, 2015.

Top Threats Working Group, The Treacherous 12: Cloud
Computing Top Threats in 2016, http://www.storm-clouds.
eu/services/2017/04/the-treacherous-12-cloud-computing-
top-threats-in-2016, 2016.

M. Henson and S. Taylor, Memory encryption: A survey
of existing techniques, ACM Comput. Surveys, vol. 46, no.
4, p. 53,2014.

I. O. Nunes and G. Tsudik, KRB-CCN: Lightweight
authentication & access control for private content-centric
networks, arXiv preprint arXiv: 1804.03820, 2018.

C. Alcaraz and S. Zeadally, Critical infrastructure
protection: Requirements and challenges for the 21st
century, Int.J. Crit. Infrastruct. Prot., vol. 8, pp. 53-66,
2015.

D. J. Chen, N. Zhang, R. X. Lu, N. Cheng, K.
Zhang, and Z. G. Qin, Channel precoding based message
authentication in wireless networks: Challenges and
solutions, IEEE Network, vol. 33, no. 1, pp. 99—-105, 2018.
N. Zhang, N. Cheng, N. Lu, X. Zhang, J. W. Mark, and
X. M. Shen, Partner selection and incentive mechanism for
physical layer security, IEEE Trans. Wirel. Commun., vol.
14, no. 8, pp. 4265-4276, 2015.

X. P. Liang, S. Shetty, L. C. Zhang, C. Kamhoua, and K.
Kwiat, Man In The Cloud (MITC) defender: SGX-based
user credential protection for synchronization applications
in cloud computing platform, in Proc. 2017 IEEE 10'" Int.
Conf. Cloud Computing, Honolulu, HI, USA, 2017, pp.
302-309.

M. Plauth, F. Teschke, D. Richter, and A. Polze, Hardening
Application Security using Intel SGX, in Proc. 2018 IEEE
Int. Conf. Software Quality, Reliability and Security (QRS),
Lisbon, Portugal, 2018, pp. 375-380.

W. Arthur, D. Challener, and K. Goldman, Platform
security technologies that use TPM 2.0, in Proc. A
Practical Guide to TPM 2.0, Berkeley, CA, USA, 2015,
pp- 331-348.

J. X. Li, D. S. Li, Y. M. Ye, and X. C. Lu, Efficient multi-
tenant virtual machine allocation in cloud data centers,
Tsinghua Sci. Technol., vol. 20, no.1, pp. 81-89, 2015.
X.M. Ye, X. S. Chen, H. Z. Wang, X. M. Zeng, G. L. Shao,

Cloud Virtual Machine Lifecycle Security Framework Based on Trusted Computing

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

533

X. Y. Yin, and C. Xu, An anomalous behavior detection
model in cloud computing, Tsinghua Sci. Technol., vol. 21,
no. 3, pp. 322-332, 2016.

X. Jin, X. S. Chen, C. Zhao, and D. D. Zhao, Trusted
attestation architecture on an infrastructure-as-a-service,
Tsinghua Sci. Technol., vol. 22, no. 5, pp. 469—477, 2017.

X. Wan, X. F. Zhang, L. Chen, and J. X. Zhu, An improved
vTPM migration protocol based trusted channel, in Proc.
2012 Int. Conf. Systems and Informatics, Yantai, China,
2012, pp. 870-875.

D. G. Sun, J. Zhang, W. Fan, T. T. Wang, C. Liu, and
W. Q. Huang, SPLM: Security protection of live virtual
machine migration in cloud computing, in Proc. 4'" ACM
Int. Workshop on Security in Cloud Computing, New York,
NY, USA, 2016, pp. 2-9.

N. T. Hieu, M. Di Francesco, and A. Y. Jdiski, A
virtual machine placement algorithm for balanced resource
utilization in cloud data centers, in Proc. 2014 IEEE 7' h
Int. Conf. Cloud Computing, Anchorage, AK, USA, 2014,
pp. 474-481.

F. L. Pires and B. Baran, A virtual machine placement
taxonomy, in Proc. 2015 15! " [EEE/ACM Int. Symp. Cloud
and Grid Computing, Shenzhen, China, 2015, pp. 159—
168.

Z.Zhou, Z. G. Hu, T. Song, and J. Y. Yu, A novel virtual
machine deployment algorithm with energy efficiency in
cloud computing, J. Cent. South Univ., vol. 22, no. 3, pp.
974-983, 2015.

ISO/IEC, ISO/IEC 11889-1: 2015 Information technology
—Trusted platform module library—Part 1: Architecture,
Geneva, Switzerland, 2015.

Trusted computing group, Trusted Computing: An Effective
Approach to Cybersecurity Defense. Beaverton, OR, USA:
TCG, 2013.

Trusted computing group, TPM Main Part 1 Design
Principles, Specification Version 1.2, Revision 116.
Beaverton, OR, USA, TCG, 2011.

D. Challener, K. Yoder, and R. Catherman, A Practical
Guide to Trusted Computing. London, UK: Pearson
Education, 2007.

R. Perez, R. Sailer, and L. Doorn, vTPM: Virtualizing
the trusted platform module, in Proc. 1 5th Conf. USENIX
Security Symp., San Diego, CA, USA, 2006, pp. 305-320.
C. H. Devassy, M. Prasad, and V. Anil, Mastering KVM
Virtualization. Birmingham, UK: Packt Publishing Ltd.,
2016, pp. 155-156.

Y. Shi, B. Zhao, Z. Yu, and H. G. Zhang, A security-
improved scheme for virtual TPM based on KVM, Wuhan
Univ. J. Nat. Sci., vol. 20, no. 6, pp. 505-511, 2015.

S. Berger, K. Goldman, D. Pendarakis, D. Safford, E.
Valdez, and M. Zohar, Scalable attestation: A step toward
secure and trusted clouds, in Proc. 2015 IEEE Int. Conf.
Cloud Engineering, Tempe, AZ, USA, 2015, pp. 185-194.
W. Arthur and D. Challener, A Practical Guide to TPM 2.0:
Using the New Trusted Platform Module in the New Age of
Security. Springer, 2015, pp. 156-161.

Trusted computing group, Virtualized Trusted Platform

534

Architecture Specification, Specification Version 1.0,
Revision 0.26. Beaverton, OR, USA, TCG, 2011.
[40] X. Li, X. Jin, Q. X. Wang, M. S. Cao, and X. S. Chen,

Xin Jin is a PhD candidate at Sichuan
University. He received the BEng degree
from Liaoning Shihua University in 1999
and the MS degree from Chongqing
University in 2006. His research interests
include trusted computing, virtuaization
secutity, and cloud computing security.

Qixu Wang is currently an assistant
researcher in the College of Cybersecurity
at Sichuan University. He received the
BS degree from Southwest University of
Science and Technology in 2009, and the
PhD degree from University of Electronic
Science and Technology of China in
2017. His current research interests include

cloud computing security, wireless network security, data privacy
protection, and trusted computing.

Xiang Li is a PhD candidate at Sichuan
University. He received the BS degree
from Hainan University in 2009 and the
MS degree from Chongging University
of Posts and Telecommunications in
2012. His research interests include
information security, cloud computing
security, and cloud service assessment.

Tsinghua Science and Technology, October 2019, 24(5): 520-534

SCCAF: A secure and compliant continuous assessment
framework in cloud-based IoT context, Wirel. Commun.
Mob. Comput., vol. 2018, p. 3078272, 2018.

Xingshu Chen received the PhD degree
from Sichuan University in 2004. She
is now a professor of the College of
Computer Science and Cybersecurity
Research Institute at Sichuan University.
She is the member of China Information
Security Standardization Technical
Committee. Her research interests include

cloud computing, cloud security, distributed file system, big
data processing, network protocol analysis, and new media

Wei Wang is currently a master student
in the College of Computer Science
of Sichuan University. He received the
bachelor degree from Sichuan University
in 2016. His current research focuses
on trusted computing virtualization
technology in cloud computing.

