TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 10/11 pp468-483
DOI: 10.26599/TST.2018.9020104
Volume 24, Number 4, August 2019

A Holistic Energy-Efficient Approach for a Processor-Memory System

Feihao Wu, Juan Chen*, Yong Dong, Wenxu Zheng, Xiaodong Pan,
Yuan Yuan, Zhixin Ou, and Yuyang Sun

Abstract: Component overclocking is an effective approach to speed up the components of a system to realize a
higher program performance; it includes processor overclocking or memory overclocking. However, overclocking
will unavoidably result in increase in power consumption. Our goal is to optimally improve the performance
of scientific computing applications without increasing the total power consumption for a processor-memory
system. We built a processor-memory energy efficiency model for multicore-based systems, which coordinates
the performance and power of processor and memory. Our model exploits performance boost opportunities for a
processor-memory system by adopting processor overclocking, processor Dynamic Voltage and Frequency Scaling
(DVFS), memory active ratio adjustment, and memory overclocking, according to different scientific applications.
This model also provides a total power control method by considering the same four factors mentioned above. We
propose a processor and memory Coordination-based holistic Energy-Efficient (CEE) algorithm, which achieves
performance improvement without increasing the total power consumption. The experimental results show that
an average of 9.3% performance improvement was obtained for all 14 benchmarks. Meanwhile the total power

consumption does not increase. The maximal performance improvement was up to 13.1% from dedup benchmark.

Our experiments validate the effectiveness of our holistic energy-efficient model and technology.
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1 Introduction

Processor overclocking can greatly speed up processors
and consequently reduce the execution times of
programs; however, it results in huge increase
in power consumption. Developing an approach to

keep the total power consumption from increasing
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when components are overclocked will favor both
performance and energy, which will improve energy
efficiency. An adaptive overclocking controller that
dynamically applies the overclocking technique based
on the application characteristics was proposed in
Ref. [1]. From the results, the authors concluded
that processor overclocking can better reduce energy
consumption and energy delay product compared with
Dynamic Voltage and Frequency Scaling (DVFS) and
lower voltage techniques. According to their viewpoint,
although the DVFS scheme consumes much less power
than the baseline scheme, it severely degrades the
performance due to the lowest clock frequency. Thus,
it in turn increases the energy consumption of the
microprocessor and the overall system. This means the
energy efficiency can be improved from the angle of
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component overclocking. Moreover, Ref. [1] focuses
on the overall system energy, which motivates us to
consider coordinating processor and memory, rather
than merely processor, to improve the energy efficiency
of the processor-memory system. This way, memory
overclocking can be considered as another method for
performance boost.

Our goal is to improve performance through
component overclocking while controlling total power
consumption from increasing. We consider combining
these two aspects as our goal because of the
following: First, nowadays, high power consumption
is one of the major challenges in developing
next-generation exascale supercomputer systems[?],
which are associated with problems of system
reliability or stability. Therefore, reducing or limiting
power consumption is necessary. Second, component
overclocking technique can improve performance, but
will result in huge increase in power consumption,
negatively affecting system reliability. Considering that
power consumption has been a big problem and
overclocking will increase the power consumption of
the corresponding components, it is important to control
the total power to reduce such risk. Third, energy saving
is inevitable once our goal is achieved, as we will
improve performance and reduce power consumption at
the same time.

Several studies have been conducted to obtain a better
performance-power tradeoff for the processort™#, but
they do not consider the memory aspect. However,
it is more beneficial to propose a holistic approach
for energy-efficient computing than address -either
processor or memory in an isolated manner. This is
because an isolated approach sometimes cannot achieve
maximal energy efficiency. Considering a system
with multiple adaptive components, maximizing the
performance of a given component may not maximize
the performance of the system. To maximize the
system performance, the parameter space needs to be
hand-tuned. Moreover, existing algorithms cannot be
mechanically combined for multiple components. It
is complex to keep total power consumption from
increasing for performance-optimal algorithms across
different components.

Many studies aim to develop a balanced energy-
efficient system. In such studies, energy efficiency,
which is measured by workload/Joule, with the unit
of FLoating-pointing OPerations per Joule (FLOP/J),
is improved by maximizing component utilization so

that no component in the system is a bottleneck. This
approach has been applied to data-intensive systems
that balance processor utilization and storage I/OP~71,
This approach is also appropriate for process-memory
systems. In Refs. [8-12], researchers reasonably
allocated power to processor and memory to improve
performance within the power limits. Although these
methods can realize good effects, none of them use
overclocking techniques. It is important to note that
overclocking can be used after other energy efficiency
methods have been adopted. That is, we can further
improve performance through processor or memory
overclocking irrespective of how much other methods
have improved performance; meanwhile, total power
is not increased; therefore, energy can be reduced
and energy efficiency can be improved. Thus, although
our approach improves performance by only 9.3% on
average, it is still better than the current approaches for
improving energy efficiency.

Our method can improve the energy efficiency
of the whole system, including processor and
memory, by boosting performance and controlling the
average power consumption. We achieve a sustaining
performance boost by processor overclocking!"*!*! and
memory overclocking'¥l. Meanwhile, we sustain an
invariable total power by transferring power between
memory side and processor side, where power transfer
from memory to processor is realized by scaling down
memory active ratio, and that from processor to memory
is realized by scaling down the voltage/frequency
of processor. We build a processor-memory energy
efficiency model to describe the above performance-
power tradeoff. Furthermore, we propose a processor
and memory Coordination-based holistic Energy-
Efficient (CEE) algorithm to implement the energy
efficiency of the whole system.

The contributions of our article include the following:

(1) Categorization of component overclocking
scenarios. We discover that two categories exist:
processor overclocking and memory overclocking.
Each of them can distinctly improve performance by
overclocking, depending on the applications: CPU-
intensive or memory-intensive applications. However,
not all memory-intensive applications can benefit from
memory overclocking, as performance improvement is
mainly determined by how serious memory traffic is.
Furthermore, we provide underlying processor-memory
power transfer methods by a processor-memory energy
efficiency model.
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(2) Critical overclocking boundary for processor
and memory. We find a clear linkage between
processors’ and memory modules’ overclocking levels
and categories of component overclocking scenarios.
This linkage indicates the proper range in which
memory overclocking works, by carefully checking
the actual memory traffic level, for overclocking
to desirably boost performance without any power
consumption increase.

(3) Processor and memory coordination-based
holistic energy-efficient algorithm. We show the
overclocking boundary for a given application and
its actual tested memory bandwidth. Based on this
category, we determine the overclocking component
(processor or memory) and a corresponding power-
saving method (scaling down memory active ratio or
processor DVES). This algorithm can greatly improve
performance and can accurately control the total power
from increasing for all 14 benchmarks.

The rest of this paper is organized as follows:
Section 2 introduces the basic idea; Section 3 illustrates
the proposed processor-memory energy efficiency
model and CEE algorithm; Section 4 describes
our experimental methodologies and the experimental
results; Section 5 shows related work; and Section 6
concludes the paper.

2 Basic Idea

Most scientific applications can be divided into CPU-
intensive or memory-intensive. For CPU-intensive
applications, we can overclock processors to achieve
higher performance. To transfer the consequent power
increase from the processor to memory, we can
reduce memory power consumption by carefully

Weakly memory-intensive
(in-between)
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scaling down memory active ratio with no performance
degradation. For memory-intensive applications, we
can overclock memory frequency to reduce execution
time. To transfer the consequent power increase from
memory to the processor, we can reduce the processor
power consumption by carefully scaling down the
processor frequency without any performance loss. As
a result, we improve performance without increasing
total power consumption for the two types of scientific
applications.

There are three issues in the above method that we
need to solve.

(1) First, memory overclocking cannot improve
performance in some memory-intensive applications
with very low memory traffic. Therefore, we cannot
appropriately categorize component overclocking
scenarios according to CPU-intensive or memory-
intensive types. Here memory traffic represents
the actual memory bandwidth measured during an
application run. Our solution to this problem is that
we extract those memory-intensive applications with
lower memory traffic as an independent part, called
weakly memory-intensive, also referred to as the
“in-between”. This means that memory-intensive
application is divided into strongly memory-intensive
and weakly memory-intensive for correct categorization
of component overclocking scenarios. As Fig. 1
illustrates, scientific applications are divided into two
types. The first type includes CPU-intensive and weakly
memory-intensive applications, which is marked as
a dotted box, and the other type refers to strongly
memory-intensive applications.

(2) The second issue is lack of a clear metric to find
the overclocking boundary for the above categorization.
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We need to determine a proper range in which memory
overclocking really works. Our solution to this problem
is to find a metric to measure whether memory
overclocking is beneficial or not. This metric is based
on the actual memory traffic and memory bandwidth for
a given program.

Memory traffic has a great influence on memory
latency, which will affect performance. When the
memory traffic is far below memory bandwidth,
memory latency increases slowly as memory traffic
increases. However, memory latency increases sharply
when memory traffic is higher than a certain value.

For high memory traffic applications, i.e., strongly
memory-intensive applications, memory overclocking
greatly reduces memory latency, as shown in Fig. 2.
We observe the memory latency change when memory
traffic is 100 GB/s. Memory latency reduces from 140
ns to 120 ns when memory frequency increases from
1866 MHz to 2133 MHz. Figure 3 explains this case
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Fig. 2 Change of memory access delay with memory traffic.
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Fig.3 Memory bandwidth increase with memory frequency
under different memory active ratios.

via a plot of memory bandwidth change. When memory
frequency increases from 1866 MHz to 2133 MHz with
memory active ratio fixed to one, memory bandwidth
will increase from 111 GB/s to 124 GB/s. Memory
bandwidth increase also results in memory latency
reduction. Meanwhile, for CPU-intensive applications,
processor overclocking also reduces memory latency.
Figure 4 shows how memory latency is influenced by
processor frequency in various memory active ratios.

(3) The third issue is how to keep total power
from increasing based on the above two overclocking
categories. Our solution is illustrated in Fig. 1.
For CPU-intensive and weakly memory-intensive
applications, we overclock processor for higher
performance and reduce memory power consumption
by scaling down memory active ratio. For strongly
memory-intensive applications, we overclock memory
frequency for performance boost and reduce processor
power consumption by processor DVFS.

We define the memory active ratio as the number
of memory ranks in the active state normalized to
the total number of ranks in the memory system. For
example, if we keep four out of eight ranks in the active
state, the active ratio is 0.5. The memory active ratio
is kept constant when a program is running. Figure
1 shows the memory scheduler, which controls the
memory to perform a program under a given memory
active ratio. Memory overclocking is also set by the
memory scheduler. Multiple memory channels can
sustain multiple memory requests at a given time. In
our real platform, one memory rank corresponds to one
memory channel.
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Fig. 4 Relationship between memory access delay and
processor frequency. (Normal processor frequency is
2.4GHz. Processor overclocking frequencies are 2.5 GHz
and 2.6 GHz. Current memory frequency is 1866 MHz.
Memory traffic is nearly 0 GB/s.)
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Because CPU-intensive and weakly memory-
intensive applications have low memory traffic, scaling
down memory active ratio hardly influences memory
latency. Figure 2 shows the relationship between
memory latency and memory active ratio in various
memory traffic situations.

When memory traffic is high, enough idle time is
usually available for processor to reduce its frequency
with little performance loss.

Next, we present some examples to validate the
effectiveness of the above solutions.

For CPU-intensive applications, adopt
processor overclocking to boost performance and
scale down memory active ratio to save memory
power consumption. Eight of our benchmarks can
be considered to be CPU-intensive. For example,

we

fluidanimate uses 8.3% processor overclocking to
reduce the time by 5.9%. Meanwhile, we scale down
50% memory active ratio to save a large amount of
memory power consumption by 42.1%, because of the
huge increase in power by processor overclocking, we
save 1.5% of the total power consumption. The fewer
the memory ranks in the active state, the less memory
power consumption. Figure 5 shows the distribution
of memory power consumption on different memory
active ratios. We notice that scaling down memory
active ratio has nearly no impact on these applications’
performance in this situation.

For weakly memory-intensive applications (also
called in-between), memory traffic is not high enough
so that memory overclocking cannot significantly boost
their performance. Instead, processor overclocking can
improve the performance in this situation. For this in-
between category, we have four benchmarks (canneal,
facesim, ferret, and streamcluster). For example,
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Fig. 5 Relationship between memory power and memory
active ratio.
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streamcluster performance cannot be improved by

memory overclocking, and more power will yet be
consumed. We use processor overclocking to boost

performance and scale down memory active ratio to

reduce memory power consumption. Streamcluster uses

8.3% processor overclocking to reduce the time by 5%.

Meanwhile, we scale down 50% of memory active ratio

to save 38.2% memory power consumption. Overall,
1.8% of the total power consumption is reduced.
For strongly memory-intensive applications, we use

memory overclocking for performance improvement
and scale down processor clock frequency for processor
power reduction. We have six benchmarks which

belong to memory-intensive category. For example,

randomAccess uses 14.2% memory overclocking to
reduce the time by 8.4%. Meanwhile, we reduce
processor power consumption by 10.5%. Because of
power increase by memory overclocking, the total

power consumption is reduced by 1.4%.

3 Model and Algorithm

In this section, we present the processor-memory
energy efficiency model and processor and memory
coordination-based holistic energy-efficient algorithm.

3.1 Processor-memory energy efficiency model

Table 1 lists all the parameters and their meanings
in our model. Execution time 7" and total power P
both depend on fcpu.overs fDVESs Tmems and fmem_over-
For a given application, memory traffic ratio represents
the ratio of memory traffic to memory bandwidth. We
define « as the threshold for the memory traffic ratio.
The objective of our model is shown in Eq. (1).

min T = T(fcpu_over> /DVESs Fmem» Smem_over)
st. APT + AP <0,

APt >0,

AP~ <0

Here, AP™ represents the power increase in the
total power consumption compared to the baseline,
where the baseline situation represents the condition

where both processor and memory frequencies are at

normal level and memory active ratio is 1. Similarly,

AP~ represents the power decrease in the total power

consumption compared to the baseline.

When memory bandwidth determined by the real
hardware is reduced by scaling down memory active
ratio, memory traffic ratio will increase. According
to the actual memory traffic ratio, we divide the

ey
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Table 1 Parameters and corresponding meanings in our
model.

Parameter Meaning
Scpu_over Processor overclocking frequency
[Fepu_over.is - - - » Fopu.over.x] Processor overclocking frequency
range
Jovrs Processor DVFS frequency
[FpvEs.ts - - - » FDVEs_u] Processor DVFS frequency range
Simem_over Memory overclocking frequency

[Fnem_over_1s - - - » Fmem.overvy] Memory overclocking frequency

range

T'mem Memory active ratio

b Memory traffic

BW = (bwy, bwa, ..., m-level memory bandwidth

bw )

o The threshold for the ratio
of memory traffic to memory
bandwidth

T The application execution time

P The total power consumption for
the processor and main memory

APT AP~ The total power difference
between current power and the
baseline

Bg, BTV, PP The baseline for the total

power consumption, processor
power, and memory power,
where processor and memory
frequencies are both normal level,
and memory active ratio is 1.

applications into two categories: those whose actual
memory traffic ratio is less than « and those with actual
memory traffic ratio not less than «.

When actual memory traffic ratio is less than o,
such as in CPU-intensive and weakly memory-intensive
applications, the reduction of 7 comes from the
increase of fcpuovers as shown in Eq. (2a). The
constraint condition in Eq. (1) guarantees that total
power consumption P does not increase. APT 4+
AP~ < 0can be substituted by Eq. (2b).

When actual memory traffic ratio is not less than «,
such as in strongly memory-intensive applications, the
reduction of 7" arises from the increase of fmem_over, s
shown in Eq. (3a). The constraint condition in Eq. (1)
guarantees that the total power consumption P does not
increase. AP 4+ AP~ < 0 can be substituted by Eq.
(3b).

T |=T(fcpu.over T+ /DVFS: "mem 4+ fmem_over) (22)

AP +AP™ =

P(fcpu_over T fOVES» Fmem s fmem_over) — Po  (2b)

T »L: T(fCPU_over, fDVFS »lm "mem ﬁnem-over T) (3a)
APY 4L AP™ =
P(.fCPU_oveh fDVFS \1/7 "mem> fmem_over T) — Py (3b)

3.2 Algorithm

We propose a processor and memory coordination-
based holistic  energy-efficient  algorithm in
Algorithm 1. For a given application, this algorithm
obtains nearly optimal fcpu_over, /DVES, Fmems fmem_over
for performance boost without power consumption
increase.

Input parameters consist of m-level memory
bandwidth BW = (bw,bws,...,bw,,), processor
and memory frequency scaling ranges, and memory

Algorithm 1  Processor and memory coordination-based
holistic energy-efficient algorithm

Require:
m-level memory bandwidth
BW = (bwy,bwa, ..., bw;); memory traffic ratio
threshold o; [Fepu_overts - - - » FepUoverk]3
[FDVFS_I yeeey FDVFS_M]’ [Fmem_over_l PICEY Fmem_overJV];
Ensure:

Processor overclocking frequency fcpu_over, OF processor
DVES frequency fpyrs, memory overclocking frequency
fmem_over> MEMOTY active ratio rmem,
1: Obtain parameters memory traffic b, PSPV, P
2. if b/bwy, < « then
3. /* CPU-intensive and weakly memory-intensive */
< (o ey <o
4 Fmem = k/m;
5: Scale down memory active ratio to Fmem;
6. Update memory power
Pmem(.fCPU_overv fDVFS > 'mem, fmem_over);
7. Calculate power savings
AP™ = P™™( fcpu overs fDVESs Fmems fmem_over) — P(l)nem,’
8:  Find the maximum Fepy_overx(1 < k& < K), which
satisfies APT + AP~ <0;
9: Output fcpu_over and F'mem;
10: end if
11: if b/bw;, > o then
12:  /* Strongly memory-intensive */ Determine fmem_overs
fmem_over € {Fmem_over_l ) Fmem_over_N};
13:  Set memory overclocking frequency to fimem_over;
14:  Update memory power
Pmem(fCPU_overv fDVFSa I'mem fmem_over);
15:  Calculate power increase
APt = P™M( fepu_overs SDVESs Tmem» fmem_over) — P(l)nem;
16:  Find the maximum Fpypsx(1 < k < M), which satisfies
APT + AP~ L 0;
17 Output fpyrs and fmem_over;
18: end if
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traffic ratio threshold. Here, bw,, represents the
default memory bandwidth in the baseline situation;
bw; represents the minimal memory bandwidth
when scaling down as much memory active ratio
as possible; and m is the number of memory
channels. In our experiment, the number of memory
channels equals the number of memory ranks. The
element bwg (k = 1,2, ..., m) represents the memory
bandwidth when memory active ratio is k /m.

The outputs for this algorithm include processor and
memory frequency scaling values and memory active
ratio. Processor frequency is either overclocked or
scaled down. Memory frequency is either overclocked
or kept unchanged. According to the memory traffic
ratio threshold provided by our algorithm, our algorithm
achieves near-optimal memory active ratio, which
determines an appropriate level from m-level memory
bandwidth.

The algorithm is divided into two parts. First, we
need to obtain three parameters, memory traffic b,
P§PY, PP™ by running an application and conducting
some performance profile and power measurements.
The initial processor power and memory power are
separately measured. Characterizing the applications
via profiling will not cause a limitation for our
approach, because in a supercomputing center, most
scientific computing applications often run multiple
times. Even if a profile-based approach consumes a
large amount of time on profiling data, we can still
benefit from the later process, which is running this
program repeatedly.

Second, according to the relationship between
b/bw,, and «, the algorithm is divided into two
branches: Steps 2-9 and Steps 11-17. In the former
branch, for CPU-intensive applications, Step 3 obtains
the optimal memory bandwidth bwy, and Step 4 obtains
the corresponding memory active ratio ryem. Power
saving comes from memory side because memory
active ratio is scaled down (Step 7). To satisfy the power
constraint condition APt + AP~ < 0, the maximal
processor overclocking frequency is calculated in Step
8. Finally, our algorithm outputs the data fcpy_over and
Tmem-

The other branch for the second part is for
memory-intensive applications. In Step 12, we
find a memory overclocking frequency from
[Finem_over_1» - - - » Fmem_overy]. Step 14 updates the
memory power after adopting memory overclocking.

Tsinghua Science and Technology, August 2019, 24(4): 468-483

Power increase comes from the memory side (Step
15). To satisfy the power constraint condition
APT + AP~ <0, the maximal processor DVFS
frequency is calculated in Step 16. Finally, our
algorithm outputs the data fpygs and fmem_over-

In the following section, we validate the effectiveness
of our algorithm via experiments.

4 Experiments

In this section, we introduce our experimental platform
and results.

4.1 Experimental platform

We used some parallel benchmarks from two
benchmark suites, which included all the benchmarks
in PARSEC!!®! and part of benchmarks in HPCCU6l,
All these benchmarks are listed in Table 2. They
are the representatives for many important scientific
applications and are divided into two types: CPU-
intensive and memory-intensive. Among memory-
intensive types, there are four benchmarks that belong
to weakly memory-intensive, and the other two belong
to strongly memory-intensive.

All benchmarks were executed with up to 20 threads.
In our experimental environment, the maximum number
of processor cores was 20. However, two benchmarks,
fluidanimate and facesim, cannot be executed with 20
threads because it requires the number of threads to
be the power of two. Therefore, the scale for these
two benchmarks was 16. For all the multi-threaded
benchmarks, each thread was mapped to one processor
core.

We used a dual-socket Intel/Linux system with a

Table 2 Benchmarks used in this study.

Benchmark Benchmark Scale Type

suite
PARSEC  Blackscholes 20 CPU-intensive
PARSEC  Bodytrack 20 CPU-intensive
PARSEC  Dedup 20 CPU-intensive
PARSEC  Fluidanimate 16 CPU-intensive
PARSEC  Freqmine 20 CPU-intensive
PARSEC  Swaptions 20 CPU-intensive
PARSEC  x264 20 CPU-intensive
PARSEC  Vips 20 CPU-intensive
PARSEC Canneal 20 Weakly memory-intensive
PARSEC  Facesim 16 Weakly memory-intensive
PARSEC  Ferren 20 Weakly memory-intensive
PARSEC  Streamcluster 20 Weakly memory-intensive
HPCC Stream 20  Strongly memory-intensive
HPCC RandomAccess 20 Strongly memory-intensive
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PR3016GS2 motherboard, two Intel Xeon E5-2660V3
processors, and 128 GB, 2133 MHz, and DDR4
memory. This motherboard supports RAPLI7! for
power measurement. The cores support DVES among
15 status, from 1.2 GHz to 2.6 GHz, with a step of
0.1 GHz. The thermal design power for these processors
is 105 W. To accurately measure the power results, we
disabled the processor hyperthreading.

Overclocking technology is
most current processors. Processor overclocking
can effectively provide much greater speedup for

widely used in

processors, which boosts application performance.
Similarly, memory overclocking can boost performance
for memory access. In our CEE algorithm, processor
overclocking and memory overclocking are adopted to
improve performance. More importantly, the system
reliability will not be greatly influenced through
overclocking. The reasons are as follows: (1) There
are several works in which overclocking technology
was used!’!314 In Ref. [1], system reliability was
evaluated by measuring the normalized failures in
time. The experimental results show that failure ratio
is not greatly influenced by processor overclocking.
(2) Currently, many researches!!®!? adopt processor
overclocking, memory overclocking, or both to improve
system performance. Their actual test observations
show that the system is reliable during overclocking.
(3) Compared with previous research works, our CEE
algorithm adopts processor overclocking with only
two levels and memory overclocking with only one
level. Therefore, processor overclocking and memory
overclocking are strictly limited within a certain range,
which furthermore guarantees system reliability when
we use the CEE algorithm.

Nowadays, there are many studies on overclocking,
and the main methods used in these studies to
overclock processors are Turbo Boost technology!?l,
overclocking by increasing multiple frequencies!!l, and
simulated overclocking!"®!. (1) Lo and Kozyrakis?"!
used Turbo technology for processors
overclocking. Turbo technology improves performance
through processor overclocking.  Its
overclocking value is transparent to users, and
users cannot set the desired overclocking value.
Our method needs to set a specific overclocking
frequency calculated by the CEE algorithm; thus,
Turbo Boost technology cannot be used to implement
our experiment. (2) Jang et all'l overclocked a

Boost

automatic

processor by setting BIOS and increasing multiple

frequencies. They used an Intel desktop processor
and gigabyte motherboard. Intel desktop processors
support processor overclocking by increasing multiple
frequencies, which provides hardware support for
dramatic/static  processor frequency adjustments.
Although this method can be used to set the desired
overclocking value, to date, there is no suitable API
for software-controlled dynamical overclocking of
processors. Therefore, the processor can only be
overclocked by a static method, like the BIOS, but
cannot be dynamically adjusted. However, Intel’s server
series chips, which are used in our experiment, do not
support multiple frequencies adjustment, as shown in
Table 3. Therefore, we cannot use the BIOS to achieve
static processor overclocking as in Ref. [1]. (3) Rubio et
al.l3! used DVFS technology to simulate overclocking,
using a Pentium M processor. The normal frequency
range of this processor is 600 MHz to 2 GHz, while
in the simulated overclocking, 1.8 GHz and 2.0 GHz
were used as the normal frequency and overclocking
frequency, respectively. Our experiments also included
simulated overclocking. For the processor we use,
the processor overclocking range was 2.6-3.1 GHz.
In our simulated overclocking, we assumed that 2.4
GHz was the nominal frequency while 2.5 GHz and
2.6 GHz were overclocking frequencies. At present,
simulated overclocking is a reliable method to use in
our platform. Table 4 lists the processor overclocking
frequency range used in our experiment.

We used a 128 GB DDR4 memory in our experiment.
The normal memory frequency was 2133 MHz. The
actual memory overclocking frequency range was
[2133 MHz, ..., 3000 MHz]. As for Intel Xeon E5-
2600V3, we used 1866 MHz as the normal memory

Table 3 Different processes and corresponding overclocking

technologies.
CPU Model Turbo Overclocking
maker support by BIOS
Intel Server (E5 2660V 3) Yes No
Desktop (i7-6700HQ) Yes Yes
AMD Server (Opteron X3000) Yes N\A
Desktop (Ryzen 7 1700) Yes Yes

Table 4 The parameter values in our experiment.

Parameter name Parameter value

[FCPU_over_l 5 % B39 FCPU_Over_K] [25 GHZ, 2.6 GHZ], K=2
[FDVFS_la ceng FDVFS_M] [1.2 GHZ, ey 2.4 GHZ], M =13
[Fmem_over_] s Fmem_over_N] [2133 MHZ], N =1
o 0.5
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frequency, rather than 2133 MHz, because Intel Xeon
E5-2600V3 does not support memory frequency higher
than 2133 MHz. The memory overclocking frequency
range was 1866-2133 MHz, which is also given in
Table 4.

To get some insight on the distribution of different
levels of memory traffic for each benchmark, we used
vtunel?! to count the information about memory traffic
every 1 ms. Then, we made a histogram of the memory
traffic, which divided the ranges of memory traffic
into bins. For example, for blackscholer benchmark,
there were five memory traffic bins, 2 GB/s, 5 GB/s,
8 GB/s, 11 GB/s, and 14 GB/s, as shown in Fig. 6.
The number of bins and the size of each bin depended
on benchmarks. Vtune counts the total elapsed time
in each bin. Then, we plotted a bar graph to show
the relative sizes of the bins. For example, Fig. 6
shows the histogram of memory traffic for blackscholer
benchmark. For all the memory traffic bins, we ignored
bins that had 0.5 s or less elapsed time. Then, we chose
the maximal one from the rest of memory traffic bins as
the memory traffic of this benchmark. For blackscholer
benchmark, 8 GB/s, 11 GB/s, and 14 GB/s bins were
ignored. Finally, we took 5 GB/s as the memory traffic
for blackscholer benchmark. We used powergov??! to
measure processor power consumption and memory
power consumption. The powergov uses the Intel
RAPL technology!”! to profile processor and memory
power consumptions. We used Intel® Memory Latency
Checker (MLC)?* to measure memory bandwidth and
memory access delay under the various memory traffic
conditions.

We needed to achieve processor frequency under

a given power. Lefurgy et al.’4

and Raghavendra
et al.l®! pointed out that the processor power is
approximately linear to the processor clock frequency:

Pp = a x fp + b.For different benchmarks, there were

30

250 23.81
Yool
Q
£
=15t
3
s10f 8.32
w
5 -
0.09 0.02 0.01
0 5 8 11 14

Memory traffic (GB/s)

Fig. 6 The blackscholer memory traffic.
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some changes in parameters a and bh. To obtain
more accurate parameters ¢ and b, one benchmark
was executed twice. Then, two groups of processor
frequency and processor power values could determine
the values of parameters a and b. According to this
processor power model and the determined parameters,
we could obtain processor frequency under a given
power consumption.

After processor frequency was adjusted, memory
power was nearly unchanged. In our experiment, we
measured the memory power on a real hardware under
several processor frequencies and found memory power
hardly changed by processor frequency scaling, as
shown in Fig. 7. We assumed memory power was
constant.

4.2 Experiment results

In this section, we introduce our experimental results
and analyses. All the experimental data were obtained
via measurements conducted at least three times. We
took the average of these three values as the final result
for each experimental data. Some slight fluctuations
existed because of system factors, such as cache.
To eliminate such interference, we needed to more
measurement runs.

4.2.1 Overall results

Our CEE algorithm can greatly improve performance.
As Fig. 8 shows, the average performance improvement
was up to 9.3% for all the 14 benchmarks, and the
maximal performance improvement was up to 13.1%
for dedup benchmark.

Our CEE algorithm can guarantee no increase in
total power consumption, as shown in Fig. 9. For
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Fig. 7 Plot showing the changes in memory power
consumption for all the benchmarks; the changes were
insignificant, irrespective of if processor DVFS or processor
overclocking was used.
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Fig. 9 Total power consumption before and after applying
CEE algorithm.

some benchmarks, it greatly reduced the total power
consumption. This is because scaling down memory
active ratio by closing memory ranks can save a large
amount of memory power consumption. We noticed
that limited processor overclocking frequency stopped
the power increase from reaching the upper bound
of our model. The higher the processor overclocking
frequency, the more the performance boosts.

As Fig. 1 shows, we considered four kinds of energy
efficiency methods, as well as our CEE algorithm, in our
model. For three types of applications, different energy
efficiency methods were adopted to improve their
performance and control power consumption. Table 5
lists the corresponding energy efficiency methods for
each benchmark.

Our approach did not increase the total power
consumed, as shown in Fig. 9. For some applications,
it reduced power prominently. This is because closing
memory rank can save a lot of power and we cannot
increase processor frequency unlimitedly. If we can
raise the processor overclocking frequency, we can get
more performance boost.

Table 5 Energy efficiency methods adopted for each
benchmark according to CEE algorithm.

Energy efficiency
method for

Energy efficiency
Benchmark method for
improving performance power control
Blackscholes Processor overclocking Active ratio adjustment
Bodytrack  Processor overclocking Active ratio adjustment
Dedup Processor overclocking Active ratio adjustment

Fluidanimate Processor overclocking Active ratio adjustment

Freqmine  Processor overclocking Active ratio adjustment
Swaptions  Processor overclocking Active ratio adjustment
x264 Processor overclocking Active ratio adjustment
Vips Processor overclocking Active ratio adjustment
Canneal Processor overclocking Active ratio adjustment
Facesim  Processor overclocking Active ratio adjustment
Ferret Processor overclocking Active ratio adjustment
Streamcluster Processor overclocking Active ratio adjustment
Stream Memory overclocking DVEFS
RandomAccess Memory overclocking DVFS

we used different
technologies. The technologies adopted for each
benchmark are listed in Table 5.

For different applications,

4.2.2 Performance results

This subsection shows the performance results of our
CEE algorithm. The performance results are divided
into three parts according to application type.

(1) CPU-intensive applications

For CPU-intensive benchmarks, such dedup, canneal,
processor overclocking frequency can reduce CPU time
and memory latency.

Figure 10 shows the memory bandwidth of the real
hardware and memory traffic for each benchmark.

[ Memory traffic [ Memory bandwidth (baseline) Il Memory bandwidth (CEE)

Memory traffic or memory bandwidth (GB/s)

Benchmark

Fig. 10 Memory bandwidth reduction via CEE algorithm;
memory bandwidth was greatly reduced, and the reduced
memory bandwidth was still much higher than memory
traffic.
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The memory bandwidth (baseline), indicated by the
darker column bar, is fixed and does not depend on
applications. The column bar marked as memory traffic
is much lower than memory bandwidth.

According to the memory active ratio threshold «, the
CEE algorithm obtained the greater reduced memory
bandwidth. As Fig. 10 shows, the rightmost column
bar is much lower than the middle column bar for each
group of bars. Moreover, reducing memory active ratio
will cause little performance loss, as shown in Fig. 2.
Furthermore, we tested only scaling down memory
active ratio according to the CEE algorithm, and found
that only scaling down memory active ratio will hardly
influence the execution time, as shown in Fig. 11.
We took two benchmarks, dedup and canneal, as an
example. According to our CEE algorithm, the memory
active ratios for these two benchmarks were scaled
down to 0.25. When we only considered scaling down
memory active ratio, without scaling down processor
overclocking frequency, the execution times for this
situation were not higher than those of the baseline and
were even less, as shown in Fig. 11. Meanwhile, for
the dedup and canneal benchmarks, power was saved
by 31.3% and 23.9%, respectively, as shown in Fig. 12.

(2) Strongly memory-intensive applications

For strongly memory-intensive benchmarks, such as
RandomAccess and Stream, the processor overclocking
frequencies could not improve performance. According
to the memory active ratio threshold o = 0.5, the
memory traffic values of RandomAccess and Stream
were higher than the threshold by 14.2% and 7.0%,
respectively. According to Fig. 13, the processor
overclocking frequencies (2.5 GHz and 2.6 GHz) could

N Baseline B Only memory active ratio adjustment according to CEE

e
o
T

o
»

0.2

Normalized execution time

Benchmark

Fig. 11 Effect of scaling down memory active ratio without
processor overclocking frequency on the execution time
of CPU-intensive applications; execution time was hardly
affected.
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EEl Baseline M Only memory active ratio adjustment according to CEE

Normalized total power consumption

Benchmark

Fig. 12 Effect of scaling down memory active ratio
without processor overclocking frequency on the total power
consumption for CPU-intensive applications; total power
consumption was greatly reduced.
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Fig. 13 Effect of processor overclocking on performance.
For strongly memory-intensive applications, processor
overclocking (2.5 GHz and 2.6 GHz) could not improve
performance. In the entire processor DVFS range, there was
nearly no change in the execution time, which means a lot of
processor idle time was available in this case.

not improve performance. Meanwhile, from Fig. 13,
we can conclude that there was a lot of CPU idle time.
When the processor clock frequency was scaled down
from 2.4 GHz to a lower level, even to 1.2 GHz, there
was almost no loss in performance.

In this situation, memory overclocking frequency
increased memory bandwidth and reduced memory
access delay.

(3) Weakly memory-intensive
applications

Among all the memory-intensive applications, some
applications will not benefit from memory overclocking
and processor DVFS. In Fig. 14, the four leftmost
benchmarks are weakly memory-intensive. As the
figure shows, when we adopted memory overclocking

(in-between)
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Fig. 14 Effect of memory overclocking and processor DVFS
on performance. For weakly and strongly memory-intensive
applications, memory overclocking and processor DVFS did
not guarantee improving performance without increasing
total power consumption. (The four leftmost benchmarks
belong to weakly memory-intensive, and the two rightmost
belong to strongly memory-intensive.)

and processor DVFS, the average performance loss for
these four benchmarks, i.e., canneal, facesim, ferret,
and streamcluster, was up to 2.9%, and the maximum
performance loss was up to 5.6%, which was for
facesim benchmark. Therefore, memory overclocking
and processor DVFS were not certain to improve
performance and control the total power consumption
from increasing for all memory-intensive applications
(including weakly and strongly).

In our CEE algorithm, for weakly memory-intensive
applications, we adopted processor overclocking
and memory active ratio scaling down instead of
memory overclocking and processor DVFS. As Fig. 15
illustrates, when we adopted processor overclocking
and memory active ratio scaling down, the average
performance improvement for these four benchmarks
(canneal, facesim, ferret, and streamcluster) was 9.9%,
and the maximal performance improvement was up to
13.2%, which was for canneal benchmark.

4.2.3 Total power results

To distinguish the power increase part and power
decrease part in the total power consumption, we
present a plot in Fig. 16. It can be clearly seen that
the power consumption decrease column is sometimes
much larger than the power consumption increase
column. Overall, the CEE algorithm can ensure that
AP~ + AP 0.

For CPU-intensive and weakly memory-intensive
applications, first, we calculated AP~ according to

[ Execution time [ The total power consumption
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Fig. 15 Effects of processor and memory overclocking
techniques on performance. For weakly memory-intensive
applications, memory overclocking and processor DVFS
were replaced by processor overclocking and memory active
ratio scaling down techniques; performance was improved
without increasing total power consumption. For strongly
memory-intensive applications, memory overclocking
and processor DVFS were adopted. (The four leftmost
benchmarks belong to weakly memory-intensive, and the
two rightmost belong to strongly memory-intensive.)
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Fig. 16 Power increase part and power decrease part in the
total power consumption.

the reduced memory active ratio. Then, we obtained
AP according to AP~ + APT < 0. This means we
can use processor overclocking to improve performance
without total power increase.

For strongly memory-intensive applications, first, we
obtained AP ™ according to the memory overclocking.
Because there was only one level for memory
overclocking frequency in our experiment as Table 4
shows, the power consumption increase AP from
memory overclocking frequency was not very high.
Thus, we can use processor DVES to save power and
ensure AP~ + APT <0.
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5 Related Work

High power and high energy consumption has
become one of most important concerns in computer
systems studies, particularly in high-performance
computing?®2”l. A large number of approaches are
focused on this issue. Most low-power techniques save
power consumption by scaling down processor clock
frequency!?®2%1, Although these low-power techniques
can reduce energy consumption, they will usually result
in the performance loss. Another type of low-power
approach®” is not only scaling down processor clock
frequency but also changing the number of active cores
for power savings. In Refs. [31, 32], near-threshold
computing technology was used to explore power-
efficiency under performance constraints by a 128-
core chip operating at the near-threshold region. In
addition to reducing processor power consumption,
Refs. [33-36] focused on how to reduce memory energy
consumption.

Besides low-power techniques, researchers have also
focused on power-constrained problems for computing
nodes. In Refs. [8—12], power was reasonably allocated
to CPU and memory for performance improvement
within the power limits. The main idea was that for
different applications, the power demands of processor
and memory are different. According to applications’
characteristics, the researchers allocated power to CPU
and memory to satisfy their demand for performance
and power. Furthermore, Refs. [37-40] focused on a
cluster. When the power of a cluster is limited, first, the
researchers needed to set the number of active nodes
according to an application’s scalability. Second, they
needed to allocate the power to compute nodes, and also
allocated the power to processor and memory in one
node ultimately. Finally, they improved application’s
performance within the power constraints.

The work most related to ours is on developing
balanced energy-efficient systems, which equally
maximize the utilization of all components such
that no component in the system is a bottleneck.
Since components, e.g., processors and memory,
are not power-proportional, they can achieve their
highest energy efficiency when operated at maximum
utilization. As a result, balanced systems also maximize
performance for a given amount of energy because
they eliminate bottlenecks and allocate the energy most
efficiently. There are several works having a similar

[5-7

idea with the abovel>1, However, they are focused on
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data-intensive systems that balance processor utilization
and storage I/O. In these works, the platform to be
balanced is designed; that is, few processors are paired
with lots of disks, or a flash is used.

Our work applies a similar concept to
computationally or  memory-intensive  High
Performance Computing (HPC) applications. Basically,
our algorithm recognizes when the power allocated
to the processor is not being fully utilized (and thus
is not at peak energy efficiency and is a bottleneck)
and shifts that power to the memory system, which
increases the utilization of the processor and the
memory system, and also increases the performance
for a given amount of energy. We use various existing
dynamic power management mechanisms for CPUs
and memory to shift the power. In addition, we use
processor and memory overclocking techniques to
realize performance improvement, which are seldom
used. Lo and Kozyrakis™®! found that overclocking
technology can result in higher energy efficiency in
some situations.

Our research work focuses on how to coordinate
the processor and memory in a multicore-based system
for performance improvement while keeping total
power consumption from increasing. Our research
work is different from the previous works in the
literature®'?!. Ge et al.l'” focused on the problem of
coordinated power allocation between processors and
memory modules on power-bounded systems. They
found that cross-component power coordination had
great influence on application performance. We are
also concerned about the coordination of processor
and memory when overclocking and power-saving
techniques are used. The difference between our work
and the previous works is that those works are focused
on power-bounded computing, while we study how
to improve performance while ensuring no increase
in total power consumption. We use overclocking for
performance boost, but the previous researchers did not
use overclocking technique. Lo and Kozyrakis®” found
that overclocking technology can result in higher energy
efficiency in some situations.

6 Conclusion

Improving the energy efficiency of a processor-memory
system is significant. This is because higher energy
and power consumption has become one of biggest
challenges for computer systems, particularly high-
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performance computing systems. For better energy
efficiency, our objective is to boost performance
while guaranteeing no increase in the total power
consumption. This is quite different from reducing
power consumption as much as possible with a
little performance loss. We built a processor-memory
energy efficiency model for multicore-based systems to
coordinate processor and memory power distribution.
Using four kinds of energy efficiency techniques—
processor overclocking, processor DVFS, memory
active ratio adjustment, and memory overclocking—
our model explores performance boost opportunities
and satisfies power control demand. We also propose
a processor and memory coordination-based holistic
energy-efficient algorithm to implement performance
boost while the total power consumption does not
increase. We provide detailed experimental results that
validate the effectiveness of our model and algorithm.

Acknowledgment

The authors would like to thank to the funding from
the National Key Research and Development Program of
China (No. 2018YFB1003203), the Advanced Research
Project of China (No. 31511010203), Open Fund from
State Key Laboratory of High Performance Computing
(No. 201503-02), and Research Program of NUDT (No.
ZK18-03-10).

References

[1] H. B. Jang, J. Lee, J. Kong, T. Suh, and S. W. Chung,
Leveraging process variation for performance and energy:
In the perspective of overclocking, IEEE Transactions on

Computers, vol. 63, no. 5, pp. 1316-1322, 2014.
[2] A. Subcommittee, Top ten exascale research challenges,

Report, US Department Of Energy, USA, 2014.
[3] W. Wang, A. Porterfield, J. Cavazos, and S. Bhalachandra,

Using per-loop CPU clock modulation for energy
efficiency in openmp applications, in Proc. 44th Int.
International Conference Parallel Processing, Beijing,

China, 2015, pp. 629-638.
[4] L. Tan, S. L. Song, P. Wu, Z. Chen, R. Ge, and

D. J. Kerbyson, Investigating the interplay between energy
efficiency and resilience in high performance computing,
in Proc. 29th Int. Parallel and Distributed Processing

Symposium, Hyderabad, India, 2015, pp. 786-796.
[5] S.Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis,

Joulesort: A balanced energy-efficiency benchmark, in
Proc. 26th Int. Special Interest Group On Management of
Data, Beijing, China, 2007, pp. 365-376.

[6] A. Rasmussen, G. Porter, M. Conley, H. V. Madhyastha,
R. N. Mysore, A. Pucher, and A. Vahdat, Tritonsort:
A balanced large-scale sorting system, in Proc. 8th Int.
Usenix Conference on Networked Systems Design &
Implementation, Boston, MA, USA, 2011, pp. 1-28.

(7]

[8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

A Holistic Energy-Efficient Approach for a Processor-Memory System 481

D. G. Andersen, J. Franklin, M. Kaminsky, A.
Phanishayee, L. Tan, and V. Vasudevan, Fawn: A fast array
of wimpy nodes, in Proc. 22nd Int. Acm Symposium on
Operating Systems Principles, Montana, MT, USA, 2009,

pp. 1-14.
A. Tiwari, M. Schulz, and L. Carrington, Predicting

optimal power allocation for cpu and dram domains,
in Proc. 29th Int. Parallel and Distributed Processing
Symposium Workshop (IPDPSW), Hyderabad, India, 2015,

pp- 951-959.
H. Zhang and H. Hoffmann, Maximizing performance

under a power cap: A comparison of hardware, software,
and hybrid techniques, ACM SIGPLAN Notices, vol. 51,

no. 4, pp. 545-559, 2016.
R. Ge, X. Feng, Y. He, and P. Zou, The case for

cross-component power coordination on power bounded
systems, in Proc. 45th Int. International Conference on
Parallel Processing (ICPP), Philadelphia, PA, USA, 2016,

pp. 516-525.

M. Chen, X. Wang, and X. Li, Coordinating processor and
main memory for efficientserver power control, in Proc.
25th Int. International Conference on Supercomputing
(ICS), Arizona, AZ, USA, pp. 130-140.

Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and
R. Bianchini, CoScale: Coordinating CPU and memory
system DVFS in server systems, in Proc. 45th Int.
International Symposium on Microarchitecture (MICRO),
Canada, 2012, pp. 143-154.

J. Rubio, K. Rajamani, F. Rawson, H. Hanson, S. Ghiasi,
and T. Keller, Dynamic processor overclocking for
improving performance of power-constrained systems,
Report, IBM, 2005.

A. D. M. Akhshabil, Overclocking of CPU and graphics
cards cooling refrigerator models offer the xtreme
(permanent use) in order to increase efficiency, Bulletin of
Applied and Research Science, vol. 3, no. 3, pp. 44-50,
2013.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, The
parsec benchmark suite: Characterization and architectural
implications, in Proc. 17th Int. International Conference
on Parallel Architectures and Compilation Techniques,
Raleigh, NC, USA, 2008, pp. 72-81.

P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner,
R. F. Lucas, R. Rabenseifner, and D. Takahashi, The HPC
challenge (HPCC) benchmark suite, in Proc. 19th Int.
ACM/IEEE Conference on Supercomputing, Tampa, SF,

USA, 2006, pp. 213-213.
Intel 64 and IA-32 Architectures Software Developers

Manual, Intel Corporation, 2014.
D. James, How to overclock: It’s easier than you think,

https://www.pcgamesn.com/hardware-guides/overclocking-

guide-how-to-overclock, 2017.
S. Moment, DDR4 RAM overclocking 101 guide, http://

www.overclockers.com/forums/showthread.php/785102-

DDR4-RAM-overclocking-101-guide, 2017.
D. Lo and C. Kozyrakis, Dynamic management of

turbomode in modern multi-core chips, in Proc. 20th
Int. High Performance Computer Architecture (HPCA),
Florida, FL, USA, 2014, pp. 603-613.



482

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Intel vtune amplifier, https://software.intel.com/en-us/
intel-vtune-amplifier-xe, 2017.

M. Dimitrov, Intel power governor, https://software.intel.
com/en-us/articles/intel-power-governor, 2012.

V. Viswanathan, Intel Memory Latency Checker v3.4,
https://software.intel.com/en-us/articles/intelr-memory-
latency-checker, 2017.

C. Lefurgy, X. Wang, and M. Ware, Power capping: A
prelude to power shifting, Cluster Computing, vol. 11, no.
2, pp- 183-195, 2008.

R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang,
and X. Zhu, No power struggles: Coordinated multi-
level power management for the data center, in Proc. 13rd
Int. International Conference on Architectural Support for
Programming Languages and Operating Systems, Seattle,
WA, USA, 2008, pp. 48-59.

X. Yang, Y. Zhang, X. Lu, J. Xue, I. Rogers, G. Li,
G. Wang, and X. Fang, Exploiting the reuse supplied by
loop-dependent stream references for stream processors,
ACM Transactions on Architecture and Code Optimization,
vol. 7, no. 2, pp. 1-35, 2010.

X. Yang, Z. Wang, J. Xue, and Y. Zhou, The reliability
wall for exascale supercomputing, IEEE Transactions on
Computers, vol. 61, no. 6, pp. 767-779, 2012.

B. Rountree, D. K. Lownenthal, B. R. de Supinski,
M. Schulz, V. W. Freeh, and T. Bletsch, Adagio: Making
DVS practical for complex HPC applications, in Proc.
23rd Int. International Conference on Supercomputing,
Yorktown Heights, NY, USA, 2009, pp. 460-469.

S. Bhalachandra, A. Porterfield, S. L. Olivier, and
J. F. Prins, An adaptive core-specific runtime for energy
efficiency, in Proc. 31s Int. IEEE International Parallel
and Distributed Processing Symposium, Florida, FL, USA,
2017, pp. 947-956.

A. Marathe, P. E. Bailey, D. K. Lowenthal, B. Rountree,
M. Schulz, and B. R. de Supinski, A run-time system
for power-constrained hpc applications, in Proc. 31s Int.
High Performance Computing, Bengaluru, Indian, 2015,
pp- 394-408.

I. Stamelakos, S. Xydis, G. Palermo, and C. Silvano,
Variation-aware voltage island formation for power

Feihao Wu received the BS degree from
Harbin Institute of Technology, China,
and now is a master student at National
University of Defense Technology. His
research interests include the large scale
parallel numerical simulation and energy
efficiency computing.

Juan Chen received the PhD degree
from National University of Defense
Technology, China. She is
associate professor at National University
of Defense Technology, China. Her
research interests include supercomputer
systems and energy-aware interconnection
network design.

now an

Tsinghua Science and Technology, August 2019, 24(4): 468483

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

efficient near-threshold manycore architectures, in
Proc. 19th Int. Asia and South Pacific Design Automation
Conference, Singapore, 2014, pp. 304-310.

U. R. Karpuzcu, A. Sinkar, N. S. Kim, and J. Torrellas,
Energysmart: Toward energy-efficient manycores for near-
threshold computing, in Proc. 19th Int. High Performance
Computer Architecture, Shenzhen, China, 2013, pp. 542—
553.

R. Begum, D. Werner, M. Hempstead, G. Prasad, and
G. Challen, Energy-performance trade-offs on energy-
constrained devices with multi-component DVES, in
Proc. 10th Int. International Symposium on Workload
Characterization, Georgia, GA, USA, 2015, pp. 34-43.

S. Mittal, A survey of architectural techniques for
DRAM power management, International Journal of High
Performance Systems Architecture, vol. 4, no. 2, pp. 110—
119, 2012.

Q. Liu, M. Moreto, J. Abella, F. J. Cazorla, and M. Valero,
Dream: Per-task DRAM energy metering in multicore
systems, in Proc. 20th Int. European Conference on
Parallel Processing, Porto, Portugal, 2014, pp. 111-123.
Q. Deng, Active low-power modes for main memory with
memscale, IEEE Micro, vol. 32, no. 3, pp. 62-69, 2012.

P. Zou, T. Allen, C. H. Davis IV, X. Feng, and R. Ge, Clip:
Cluster-level intelligent power coordination for power-
bounded systems, in Proc. 20th Int. Cluster Computing,
Hawaii, HI, USA, 2017, pp. 541-551.

R. Ge, P. Zou, and X. Feng, Application-aware power
coordination on power bounded NUMA multicore systems,
in Proc. 46th Int. International Conference on Parallel
Processing, Briston, UK, 2017, pp. 591-600.

B. Acun and L. V. Kale, Mitigating processor variation
through dynamic load balancings, in Proc. 30th Int.
International  Parallel and  Distributed  Processing
Symposium Workshops, Chicago, IL, USA, 2016, pp.
1073-1076.

T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and
B. R. de Supinski, Exploring hardware overprovisioning in
power-constrained, high performance computing, in Proc.
27th Int. International Conference on Supercomputing,
Eugene, OR, USA, 2013, pp. 173-182.

Yong Dong received the PhD degree
from National University of Defense
Technology, China. He is now an associate
professor at National University of Defense
Technology, China. His main research
interests include supercomputer systems
and storage systems.

Wenxu Zheng received the BS degree
from National University of Defense
Technology, China, and now is a master
student at National University of Defense
Technology. His main research interest is
the communication in large scale parallel
computing.



Feihao Wu et al.:

A Holistic Energy-Efficient Approach for a Processor-Memory System 483

Xiaodong Pan received the BS degree
from Wuhan University of Technology,
China, and now is a master student
at National University of Defense
Technology. His main research interest is
the communication in large scale parallel
computing.

Yuan Yuan received the PhD degree
from National University of Defense
Technology, China. He is now an associate
professor at National University of Defense
Technology, China. His research interests
include supercomputer systems and HPC
monitoring and diagnosis.

Zhixin Ou now is an undergraduate
student at National University of Defense
Technology. Her main research interest is
the energy efficiency of super computer.

Yuyang Sun now is an undergraduate
student at National University of Defense
Technology. His main research interest is
the power assumption in super computer.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


