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A Novel Method of Gene Regulatory Network Structure Inference from
Gene Knock-Out Expression Data
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Abstract: Inferring Gene Regulatory Networks (GRNs) structure from gene expression data has been a challenging

problem in systems biology. It is critical to identify complicated regulatory relationships among genes for

understanding regulatory mechanisms in cells. Various methods based on information theory have been developed

to infer GRNs. However, these methods introduce many redundant regulatory relationships in the network inference

process due to external noise in the original data, topology sparseness in the network structure, and non-linear

dependency among genes. Especially as the network size increases, the performance of these methods decreases

dramatically. In this paper, a novel network structure inference method named Loc-PCA-CMI is proposed that first

identifies local overlapped gene clusters, and then infers the local network structure for each cluster by a Path

Consistency Algorithm based on Conditional Mutual Information (PCA-CMI). The final structure of the GRN is

denoted as dependence among genes by an ensemble of the obtained local network structures. Loc-PCA-CMI

was evaluated on DREAM3 knock-out datasets, and its performance was compared to other information theory-

based network inference methods including ARACNE, MRNET, PCA-CMI, and PCA-PMI. Experimental results

demonstrate our novel method Loc-PCA-CMI outperforms the other four methods in DREAM3 datasets especially

in size 50 and 100 networks.
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1 Introduction

Inferring and understanding Gene Regulatory Networks
(GRNs) is a critical problem in systems biology, which
can help biomedical scientists to explicitly identify
complicated regulatory relationships among genes
and understand regulatory mechanisms in cells[1, 2]. In
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the past, GRNs were inferred from experimental
interventions in which regulatory interactions among
genes were verified. Obviously, this approach is
infeasible[3] and requires substantial time and
considerable cost. Owing to the development of
microarray technologies, tremendous amounts of
gene expression data have been generated[4], which
makes it feasible for GRNs to be inferred from these
expression data based on computational methods[5].
In recent years, the inference of networks based
on computational methods has become one of the
most crucial goals[1, 6]. Various methods have been
proposed for GRNs inference, such as regression-based
methods[7–12], ordinary differential equation-based
methods[13–15], Bayesian and dynamic Bayesian
networks[16–21], and state-space based methods[22, 23].
Unfortunately, gene expression data are typically of
high dimensions and relatively small sample size that
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suffer from “dimensionality curse”[24]. Furthermore,
gene expression data usually involve large amounts
of external noise and non-linear relationships. All of
these issues make it more complex and challenging
to accurately infer regulatory interactions among
genes, especially when dealing with large-scale gene
expression data in the post-genome era.

GRNs can be viewed as undirected acyclic graphs
if both up-streaming or down-streaming regulatory
relationships among genes are not taken into account
and the self-regulatory mechanism is ignored[25], in
which each node corresponds to a gene and each edge
represents a regulatory relationship between genes.
Various computational methods to construct accurate
structures of GRNs from expression data have been
proposed based on a variety of different assumptions
and different conditions[26, 27]. Current approaches can
be broadly divided into model-based and model-free
approaches. Model-based methods usually formulate
a computational model of the system and further
learn the parameters of such a model. Typical
computational models include Boolean network[28–31],
Bayesian network[17, 32–35], and differential equation
models[15, 36–40]. The Boolean network model is the
simplest network model, which is implemented through
Boolean variables and Boolean logic. Because the
state of gene expression is considered to be only
active or inactive, Boolean network models cannot
entirely capture complex system behavior[41]. The
Bayesian network model is a popular probabilistic
graphical model in which the dependency relationships
among genes are described via a directed acyclic
graph. The Bayesian network model outperforms other
models in dealing with noise and incorporating prior
knowledge, but structure learning in the model is
computationally intensive and has been proven as an
NP-hard problem[42]. The differential equation model
characterizes the expression level of a gene at a
certain time by a function, which involves regulatory
interactions with other genes. Differential equation
models quantify the change rate (derivative) of the
expression of one gene in the system as a function
of expression levels of other related genes. A major
challenge to using differential equation models for
reconstructing GRNs is how to identify the model
structure and estimate parameters efficiently in high-
dimensional models. Excellent reviews on diverse data-
driven modeling schemes and related topics can be

found in Refs. [43–47].
Other than model-based methods, model-free

approaches identify regulatory interactions mainly
by measuring dependences among genes. Typical
algorithms include correlation-based and information
theory-based methods. In the correlation-based method,
a regulatory interaction is determined by the degree
of co-expression between two genes such as Pearson
correlation, rank correlation, Euclidean distance,
and the angle between a pair of observed expression
vectors[48]. However, the correlation-based methods
cannot identify complex dependencies between genes,
such as non-linear dependencies[49]. Furthermore,
quite a few functionally related genes might not be
co-expressed, which makes it difficult to accurately
infer regulatory interactions. The information theory-
based method is also a representative model-free
method, in which Mutual Information (MI) is favored
to measure potential dependency among genes as it
can capture non-linear dependencies effectively[50, 51].
In recent years, various network inference methods
based on information theory have been proposed,
which focus on distinguishing direct regulatory
interactions from indirect associations[52]. To eliminate
indirect interactions, Margolin et al.[53] proposed
the ARACNE method based on Data Processing
Inequality with interaction triangles considered. The
Minimum-Redundancy NETwork (MRNET) by Meyer
et al.[54] uses a minimum redundancy feature selection
method[55], wherein for each candidate gene in a
network, it selects a subset of its highly relevant
genes while minimizing the MI-based criteria between
the selected genes. Zhang et al.[51] introduced a Path
Consistency Algorithm based on Conditional MI (PCA-
CMI); Zhao et al.[56] introduced a PCA based on Part
MI (PCA-PMI). The PCA is an exhaustive algorithm
that is widely used in inferring GRNs[51]. A trade-off
is usually made between running time and accuracy
in both PCA-CMI and PCA-PMI. As the network size
increases, more uncontrollable external noise within the
instinctive complex network structure makes prediction
accuracy of GRNs decrease dramatically. To improve
this situation, motivated by the divide-and-conquer
strategy, we first used top-ranked, highly co-expressed
genes as centroids of local clusters; each cluster’s
accurate structure was then refined with PCA-CMI.
The final structure of the GRN was then inferred with
an ensemble of all the local network structures together.
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We have named this novel approach as Loc-PCA-CMI.
Hereafter and intuitively, the Loc-PCA-CMI method
can deal with relatively larger datasets and benefit from
the relatively accurate structure inference for small size
gene subnetworks with PCA-CMI.

2 Methods

In this section, we introduce related work in information
theory including entropy, MI, and CMI, as well as
the proposed algorithm, Loc-PCA-CMI, for inferring
GRNs.

2.1 Related work

With the advantages of measuring non-linear
dependence association between two variables and
relatively high efficiency, information theory is
increasingly used to measure the regulatory strength of
genes. The MI is defined as follows:

MI.X; Y / D
“

p.x; y/ log
p.x; y/

p.x/p.y/
dxdy (1)

where p.x; y/ denotes the joint probability density
function of two variables X and Y . X is a vector
in gene expression data, in which the elements denote
the corresponding gene’s expression values in different
conditions (samples). p.x/ (resp. p.y/) represents the
marginal probability density distribution ofX (resp. Y ).

The CMI can be expressed in terms of entropies as
CMI.X; Y jZ/ DH.X;Z/CH.Y;Z/�

H.Z/ �H.X; Y;Z/ (2)
where H.X;Z/, H.Y;Z/, and H.X; Y;Z/ are joint
entropies. High CMI indicates that there may be a
close relationship between the variables X and Y given
variable(s) Z.

The entropy is estimated with a Gaussian kernel
probability density estimator[2] and we can get the
entropy of variable X as follows, where jC j is the
determinant of covariance matrix of variable X [51]:

H.X/ D log.2 e/
n
2 jC j�

1
2 (3)

Furthermore, we can obtain the following equation:

MI.X; Y / D
1

2
log
jC.X/j � jC.Y /j

jC.X; Y /j
(4)

2.2 Loc-PCA-CMI

It is well-known that biological systems are seldom
fully connected and most nodes are only directly
connected to a small number of other nodes[57],
rendering the GRN as a sparse network. A key step
in identifying the sparse structure of the network is
to identify the significant edges that may have a
comparatively high co-expression value. Specifically
our proposed method Loc-PCA-CMI first selects the
top n highly co-expressed edges by Pearson correlation
analysis with a False Discovery Rate (FDR) correction
in the p-value, and, secondly, in the reduced-edges
space, computes local overlapped clusters with genes
connected by edges. Then for each local cluster, we
apply the PCA-CMI algorithm, which can construct a
high-confidence undirected network[58] by removing the
most likely uncorrelated edges repeatedly from low to
high-order dependence correlation until no edges can be
removed, to obtain each local network structure. Final
edge weight of the complete regulatory network is
obtained by averaging edge weight with each inferred
network structure. The entire framework is provided in
Fig. 1 and the implementation details are shown below
in Algorithm 1. As PCA-CMI is extremely competent
for relatively small GRN structure inference, we ran a

Candidate genes 
g1, g2,..., gp

(a) Extract top co-expressed
edges 

…

G1
(b) PCA-CMI

(b) PCA-CMI

(b) PCA-CMI

Gene 
expression

data M

LOCM1: X1, X2,..., Xp

LOCM2: X2, X1,..., Xp

LOCMp: Xp, X1,..., Xp--1

…

G2

Gp

(c) Ensemble of G1, G2,..., Gp

G

Fig. 1 Loc-PCA-CMI framework. (a) Top n co-expressed edges are extracted from gene expression data matrix M, and obtain
the candidate genes g1; g2; : : :: : :: : :; gp. The candidate genes are then grouped into different local clusters LOCM1 ;LOCM2 ; : : :: : :: : :;LOCMp

with each gene g1; g2; : : :: : :: : :; gp as the centroid. (b) For each local overlapped cluster, PCA-CMI is applied to get its accurate
structure. (c) Ensemble of diverse cluster structure G1, G2, . . . , Gp obtains the final structure of the GRN as G.
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Algorithm 1 Loc-PCA-CMI
Input: M (the gene expression data matrix), m (the number of
genes), n (the number of top ranked edges), c (constant number);
k (CMI order number), and ˇ (order threshold) in subroutine
PCA-CMI.
Output: Graph weight matrix G

1: if m 6 c then
2: G PCA-CMI.M; k; ˇ/;
3: return G
4: else
5: Construct pair-wise gene-gene Pearson correlation

matrix ˝ D �.Mi ;Mj /;
6: Select top n edges as E with highest Pearson correlation

value in˝ with FDR correction in p-value, and according to
which to get p candidate genes as g1; g2; : : : ; gp ;

7: for each gene in g1; g2; : : : ; gp do
8: Retrieve its directly connected genes that in edges list
E as local cluster LOCMi

;

9: for each cluster LOCMi
in LOC do

10: Gi  PCA-CMI.LOCMi
; k; ˇ/;

11: G mean.G1; G2; : : : ; Gp/;
12: return G

preprocessing to check the number of input genes; if it
was less than or equal to a constant c, then PCA-CMI
was directly applied for the GRN structure inference.

The computational complexity of Algorithm 1 is
generally determined by two factors: the first is the
number of local overlapped clusters p, which is usually
lower than the number of genes m; the second is the
complexity of the PCA-CMI subroutine. All of the
PCA-CMI subroutines can be executed in parallel to
make the proposed algorithm Loc-PCA-CMI perform
more efficiently.

3 Materials

We benchmarked the performance of our approach,
Loc-PCA-CMI, using six simulation data from well-
known DREAM3 challenges[59]. DREAM3 features in-
silico networks and expression data simulated using
GeneNetWeaver software. Benchmark networks were
derived as subnetworks of a system of regulatory
interactions from known model organisms: E.coli and
S.cerevisiae. Six gene knock-out expression networks
in DREAM3 were evaluated in our experiments, which
included three different sizes, varying as 10, 50, and
100, with two types of model organisms, E.coli and
S.cerevisiae. Table 1 gives detailed descriptions of the
datasets.

Rows in each input datafile stand for samples
(observations) and columns stand for genes (variables).

Table 1 Descriptions of the datasets in our experiments.

Dataset
Number

of
samples

Average
(Max)
degree

Number
of

edges

Network
density

DREAM3-10 Ecoli 11 2.2 (5) 11 0.244
DREAM3-50 Ecoli 51 2.48 (14) 62 0.051
DREAM3-100 Ecoli 101 2.5 (14) 125 0.025
DREAM3-10 Yeast 11 2 (4) 10 0.222
DREAM3-50 Yeast 51 3.08 (13) 77 0.063
DREAM3-100 Yeast 101 3.32 (10) 166 0.034

The first line is the wild-type expression data; every
gene in this sample stays at a steady state. The n (n > 1)
line stands for that how other gene expression data
changes after the n � 1 gene is knock-out.

4 Results and Discussion

As described in Algorithm 1, three intrinsic parameters
affected the performance of Loc-PCA-CMI in GRN
structure inference. The first parameter was the number
of top-selected edges, n. If n increased, more edges
were considered and the local cluster size would
increase subsequently. The second parameter was ˇ,
which acted as the threshold value of MI and CMI
to decide independence. The third parameter was CMI
order number k. Theoretically, by increasing k, the
structure was more accurate if CMI did not reach the
threshold ˇ in k � 1 order. The latter two parameters
were with PCA-CMI and PCA-PMI. The best value of
n could be obtained by cross-validation and generally,
the larger value of n could contribute to a larger size
cluster and more genes were covered in the network;
in our experiments, we set its value to be n D

�
m
2

�
=5

uniformly. Besides the above three intrinsic parameters,
we set constant c D 10 in Algorithm 1, i.e., if the
number of genes was less than or equal to 10, Loc-
PCA-CMI called PCA-CMI directly, and in this case,
performances of Loc-PCA-CMI and PCA-CMI were
the same.

We assessed the performance of Loc-PCA-CMI by
evaluating the Area Under the Receiver Operating
Characteristic curve (AUROC) and the Area Under the
Precision-Recall curve (AUPR). As in sparse biological
networks, the number of non-existing edges (negatives)
outweighed the number of existing edges (positives)
significantly; AUPR was therefore, in fact, more
informative to AUROC[60]. We tended to use AUPR for
evaluation, but for a conservative comparison with other
methods that adopt AUROC as an evaluation metric, we
also took AUROC as a supplementary metric. Higher
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AUROC and AUPR values indicated more accurate
GRN predictions. For this purpose, we computed the
numbers of True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN) edges by
comparing the regulatory edges in the gold standard
network with the top q edges from the ranked list output
of Loc-PCA-CMI. The ROC curve was constructed by
plotting the True Positive Rates .TPR D TP=.TP C
FN// versus the False Positive Rates .FPR D FP=.FPC
TN// for increasing q .q D 1; 2; : : : ; m2/. Similarly,
the precision .TP=.TP C FP// and recall .TP=.TP C
FN// curve was plotted for increasing q.

It should be noted that in Algorithm 1, after each
local cluster was obtained, both PCA-CMI and PCA-
PMI were alternatives for the subsequent structure
refinement. If PCA-CMI was replaced with PCA-PMI,
a novel method was generated, which we named Loc-
PCA-PMI, analogously. Four PCA based methods were
then derived including PCA-PMI, PCA-CMI, Loc-
PCA-PMI, and Loc-PCA-CMI, all of which, at present,
belong to model-free methods. As shown in Table 1,
among the six benchmark datasets, DREAM3-10 Ecoli
and DREAM3-10 Yeast datasets contained only 10
genes, hence Loc-PCA-CMI and PCA-CMI were
identical in performance, as was the case with Loc-
PCA-PMI and PCA-PMI according to the principle of
Algorithm 1. For a meaningful comparison of these
PCA based methods, we selected four other datasets
whose gene number was greater than 10. Order number
was not explicitly discussed in Refs. [51, 56], wherein
ˇ D 0:03 and k D 2 were set directly. We were curious
as to how order number k affects the performance of
these methods as well. By varying the order number k
from 1 to 10 in these four methods with fixed threshold
ˇ D 0:03, AUROC and AUPR could be calculated,
respectively. Figure 2 illustrates the result, in summary,
of the benchmark datasets, and from which we could
draw the following two conclusions:
� Order number k affects the results of these four

PCA based methods, generally when k reaches 4,
AUPR and AUROC become stable, except those in the
DREAM3-100 Ecoli dataset.
� Loc-PCA-CMI and Loc-PCA-PMI yield higher

AUPR and AUROC than PCA-CMI and PCA-PMI,
respectively, hence the local cluster strategy adopted
in the algorithm helps to improve the performance of
PCA-CMI and PCA-PMI.

We also conducted a comparison experiment
using Loc-PCA-CMI with four previously proposed

methods on all the six of our benchmark datasets,
which included ARACNE, MRNET, PCA-PMI, and
PCA-CMI. We used the R package “minet” with
default parameters for evaluation of ARACNE and
MRNET[61]. The MI matrices of the methods were
approximated using Pearson correlation directly from
continuous gene knock-out expression data[62, 63]. For
the implementation of PCA-PMI and PCA-CMI, we
downloaded the MATLAB codes according to the URL
provided in Refs. [51, 56]. We preferred the default
value of parameters in PCA-PMI and PCA-CMI, where
ˇ D 0:03 and k D 2. For Loc-PCA-CMI, we also
adopted the same values for these two parameters for
comparison. Table 2 gives the AUROC and AUPR
of this experiment. From the table, we can see that
AUPR of all these contending methods decreased
dramatically when the network size increased. Loc-
PCA-CMI was only after PCA-PMI (or Loc-PCA-PMI
in this case) in the DREAM3-10 Yeast dataset, while
in the other five datasets, it outperformed the other
four methods, ARACNE, MRNET, PCA-PMI, and
PCA-CMI, in terms of both AUROC and AUPR.
Additionally, for a more complete demonstration,
we also include the performance of Loc-PCA-PMI
in the table, with ˇ D 0:03 and k D 2. Loc-PCA-
CMI and Loc-PCA-PMI were almost identical in
terms of AUROC. However, in most of the datasets,
Loc-PCA-CMI had a superior AUPR than Loc-PCA-
PMI. We provide the source codes including all the
methods, benchmark datasets, and evaluation scripts at
https://github.com/chenxofhit/Loc-PCA-CMI.git.

5 Conclusion

We have proposed a novel model-free GRN structure
inference method named Loc-PCA-CMI, which was
motivated by the divide-and-conquer strategy. At
present, all the experiments are conducted in the
DREAM3 challenge silico datasets. Experiments on
DREAM3 knock-out datasets show that Loc-PCA-CMI
benefits from the local overlapped cluster strategy.
Furthermore, Loc-PCA-CMI outperforms other
comparing methods including ARACNE, MRNET,
PCA-PMI, and PCA-CMI, especially for networks of
sizes of 50 and 100.

Loc-PCA-CMI was an extended version of PCA-
CMI and its limitations in computational efficiency can
be inherited, especially when dealing with large-size
datasets. The number of local clusters in the case of a
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(a) DREAM3-50 Ecoli (b) DREAM3-100 Ecoli

(c) DREAM3-50 Yeast (d) DREAM3-100 Yeast

Fig. 2 AUPR and AUROC by varying k from 1 to 10 of four PCA based methods on four different datasets: (a) DREAM3-50
Ecoli; (b) DREAM3-100 Ecoli; (c) DREAM3-50 Yeast; (d) DREAM3-100 Yeast.

Table 2 AUROC and AUPR for the six datasets using different methods.

Dataset
ARACNE MRNET PCA-PMI Loc-PCA-PMI PCA-CMI Loc-PCA-CMI

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR
DREAM3-10 Ecoli 0.523 0.255 0.518 0.258 0.816 0.483 0.816 0.483 0.825 0.499 0.825 0.499
DREAM3-50 Ecoli 0.474 0.050 0.529 0.061 0.828 0.385 0.846 0.393 0.825 0.396 0.845 0.422
DREAM3-100 Ecoli 0.505 0.027 0.488 0.025 0.857 0.299 0.865 0.301 0.851 0.311 0.865 0.336
DREAM3-10 Yeast 0.628 0.321 0.644 0.322 0.995 0.933 0.995 0.933 0.993 0.918 0.993 0.918
DREAM3-50 Yeast 0.507 0.074 0.524 0.080 0.844 0.408 0.869 0.417 0.820 0.406 0.871 0.444
DREAM3-100 Yeast 0.547 0.040 0.556 0.042 0.863 0.368 0.871 0.374 0.854 0.389 0.870 0.409

large network can be extremely large. However, if we
can control the size of each local cluster, our method
should be applicable to large size datasets. One of our
future works was to improve the cluster strategy, such
as by integrating protein complexes[64, 65], to be more

efficient and effective in dealing with large-size data.
We mainly focus on inferring GRNs structure and have
not considered the stability of networks in this study. As
a result, our future studies will attempt to infer stable
networks.



452 Tsinghua Science and Technology, August 2019, 24(4): 446–455

Acknowledgment

This work was supported in part by the National
Natural Science Foundation of China (Nos. 61622213
and 61732009), the 111 Project (No. B18059), and
the Hunan Provincial Science and Technology Program
(No. 2018WK4001).

References

[1] G. Altay and F. Emmert-Streib, Inferring the conservative
causal core of gene regulatory networks, BMC Systems
Biology, vol. 4, no. 1, p. 132, 2010.

[2] K. Basso, A. A. Margolin, G. Stolovitzky, U. Klein,
R. Dalla-Favera, and A. Califano, Reverse engineering of
regulatory networks in human b cells, Nature Genetics,
vol. 37, no. 4, p. 382, 2005.

[3] L. Elnitski, V. X. Jin, P. J. Farnham, and S. J. Jones,
Locating mammalian transcription factor binding sites:
A survey of computational and experimental techniques,
Genome Research, vol. 16, no. 12, pp. 1455–1464, 2006.

[4] T. R. Hughes, M. J. Marton, A. R. Jones, C. J. Roberts,
R. Stoughton, C. D. Armour, H. A. Bennett, E. Coffey,
H. Dai, Y. D. He, et al., Functional discovery via a
compendium of expression profiles, Cell, vol. 102, no. 1,
pp. 109–126, 2000.

[5] S. R. Maetschke, P. B. Madhamshettiwar, M. J. Davis,
and M. A. Ragan, Supervised, semi-supervised and
unsupervised inference of gene regulatory networks,
Briefings in Bioinformatics, vol. 15, no. 2, pp. 195–211,
2013.

[6] A. A. Margolin, K. Wang, W. K. Lim, M. Kustagi,
I. Nemenman, and A. Califano, Reverse engineering
cellular networks, Nature Protocols, vol. 1, no. 2, p. 662,
2006.

[7] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts,
Inferring regulatory networks from expression data using
tree-based methods, PLoS One, vol. 5, no. 9, pp. 1–10,
2010.

[8] A.-C. Haury, F. Mordelet, P. Vera-Licona, and J.-P. Vert,
TIGRESS: Trustful Inference of Gene REgulation using
Stability Selection, BMC Syst. Biol., vol. 6, no. 1, p. 145,
2012.

[9] V. A. Huynh-Thu, G. Sanguinetti, A. Huynh-thu, and
T. Jump, Combining tree-based and dynamical systems for
the inference of gene regulatory networks, Bioinformatics,
vol. 31, no. 10, pp. 1614–1622, 2014.

[10] L.-Z. Liu, F.-X. Wu, and W.-J. Zhang, A group lasso-based
method for robustly inferring gene regulatory networks
from multiple time-course datasets, BMC Systems Biology,
vol. 8, no. S3, p. S1, 2014.

[11] M. Li, R. Zheng, Y. Li, F.-X. Wu, and J. Wang,
Mgt-sm: A method for constructing cellular signal
transduction networks, IEEE/ACM Transactions on
Computational Biology and Bioinformatics, doi: 10.1109/
TCBB.2017.2705143.

[12] R. Zheng, M. Li, X. Chen, F.-X. Wu, Y. Pan, and J. Wang,
Bixgboost: A scalable, flexible boosting-based method for

reconstructing gene regulatory networks, Bioinformatics,
doi: 10.1093/bioinformatics/bty908.

[13] E. Sakamoto and H. Iba, Inferring a system of differential
equations for a gene regulatory network by using genetic
programming, in Proceedings of the 2001 Congress on
Evolutionary Computation, 2001, vol. 1, pp. 720–726.

[14] A. R. Chowdhury, M. Chetty, and R. Evans, Stochastic
s-system modeling of gene regulatory network, Cognitive
Neurodynamics, vol. 9, no. 5, pp. 535–547, 2015.

[15] Z. Li, P. Li, A. Krishnan, and J. Liu, Large-scale dynamic
gene regulatory network inference combining differential
equation models with local dynamic bayesian network
analysis, Bioinformatics, vol. 27, no. 19, pp. 2686–2691,
2011.

[16] K. Murphy and S. Mian, Modelling gene expression
data using dynamic Bayesian networks, Technical report,
Computer Science Division, University of California,
Berkeley, CA, USA, 1999.

[17] M. Zou and S. D. Conzen, A new Dynamic Bayesian
Network (DBN) approach for identifying gene
regulatory networks from time course microarray
data, Bioinformatics, vol. 21, no. 1, pp. 71–79, 2004.

[18] N. X. Vinh, M. Chetty, R. Coppel, and P. P. Wangikar,
Globalmit: Learning globally optimal dynamic Bayesian
network with the mutual information test criterion,
Bioinformatics, vol. 27, no. 19, pp. 2765–2766, 2011.

[19] W. C. Young, A. E. Raftery, and K. Y. Yeung, Fast Bayesian
inference for gene regulatory networks using scanbma,
BMC Systems Biology, vol. 8, no. 1, p. 47, 2014.

[20] F. Liu, S.-W. Zhang, W.-F. Guo, Z.-G. Wei, and L. Chen,
Inference of gene regulatory network based on local
Bayesian networks, PLOS Comput. Biol., vol. 12, no. 8,
p. e1005024, 2016.

[21] N. Omranian, J. M. Eloundou-Mbebi, B. Mueller-Roeber,
and Z. Nikoloski, Gene regulatory network inference using
fused lasso on multiple data sets, Scientific Reports, vol. 6,
p. 20533, 2016.

[22] F.-X. Wu, W.-J. Zhang, and A. J. Kusalik, Modeling gene
expression from microarray expression data with state-
space equations, in Biocomputing 2004. World Scientific,
2003, pp. 581–592.

[23] M. Quach, N. Brunel, and F. d’Alché Buc, Estimating
parameters and hidden variables in non-linear state-space
models based on odes for biological networks inference,
Bioinformatics, vol. 23, no. 23, pp. 3209–3216, 2007.

[24] Y. Wang, T. Joshi, X.-S. Zhang, D. Xu, and L. Chen,
Inferring gene regulatory networks from multiple
microarray datasets, Bioinformatics, vol. 22, no. 19,
pp. 2413–2420, 2006.

[25] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts,
Inferring regulatory networks from expression data using
tree-based methods, PloS One, vol. 5, no. 9, p. e12776,
2010.

[26] W. J. Longabaugh, E. H. Davidson, and H. Bolouri,
Computational representation of developmental genetic
regulatory networks, Developmental Biology, vol. 283,
no. 1, pp. 1–16, 2005.

[27] G. Karlebach and R. Shamir, Modelling and analysis of



Xiang Chen et al.: A Novel Method of Gene Regulatory Network Structure Inference from Gene Knock-Out ... 453

gene regulatory networks, Nature Reviews — Molecular
Cell Biology, vol. 9, no. 10, p. 770, 2008.

[28] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang,
Probabilistic boolean networks: A rule-based uncertainty
model for gene regulatory networks, Bioinformatics,
vol. 18, no. 2, pp. 261–274, 2002.

[29] H. Kim, J. K. Lee, and T. Park, Boolean networks using
the chi-square test for inferring large-scale gene regulatory
networks, BMC Bioinformatics, vol. 8, no. 1, p. 37, 2007.

[30] S. Bornholdt, Boolean network models of cellular
regulation: Prospects and limitations, Journal of the Royal
Society Interface, vol. 5, no. Suppl 1, pp. S85–S94, 2008.

[31] J. X. Zhou, A. Samal, A. F. d’Hérouël, N. D. Price, and
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