
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 07/11 pp435–445
DOI: 10 .26599 /TST.2018 .9010108
Volume 24, Number 4, August 2019

Collaborative Assessments in Computer Science Education: A Survey

Hans Yuan and Paul Cao�

Abstract: As computer science enrollments continue to surge, assessments that involve student collaboration may

play a more critical role in improving student learning. We provide a review on some of the most commonly

adopted collaborative assessments in computer science, including pair programming, collaborative exams, and

group projects. Existing research on these assessment formats is categorized and compared. We also discuss

potential future research topics on the aforementioned collaborative assessment formats.

Key words: assessment; collaboration; pair programming; collaborative exam; group project

1 Introduction

An unprecedented number of students aim to study
Computer Science (CS). Many universities report
surging enrollment and the positive growth trend is
continuing[1]. Computer science education faces many
unique challenges. Firstly, computer science curriculum
includes computer programming. Therefore, traditional
pedagogies from other STEM (Science, Technology,
Engineering, and Mathematics) areas may not be
directly transferable. Secondly, the student body in
computer science classes is becoming increasingly
diverse, especially recently. A large number of non-
majors participate in CS0 or CS1 classes. Thus,
teaching pedagogies needs to cater to a diverse student
body with varied technical background. Lastly, content
in CS classes is not standardized. Courses with
similar titles may vary dramatically across academic
institutions on what is actually covered. This lack of
standardization makes assessments of student learning
difficult. Concept inventory and learning goals are still
being developed[2]. These aforementioned challenges
have attracted education researchers to explore and
develop novel intervention and experiments to improve

�Hans Yuan and Paul Cao are with the Computer Science
& Engineering Department, University of California, San
Diego, La Jolla, CA 92093, USA. E-mail: fh3yuan, yic242g@
eng.ucsd.edu.
�To whom correspondence should be addressed.

Manuscript received: 2018-06-01; accepted: 2018-06-26

student learning in CS.
Assessments strongly influence student learning

activities[3]. The so-called “hidden curriculum”, i.e.,
student perceptions of what will appear in future
assessments, dominates what and how long students
study. Students usually try to achieve high study
efficiency by aligning their study with the assessment.

Two types of assessments, summative and formative,
have been extensively researched in the education
literature. Summative assessments are usually high-
stakes exams that focus on the assessment of what
students know near the end of a study period (midterms
and final exam). Formative assessments focus on
using the results of the assessment to inform teachers
how to improve student learning. Formative exams
consist of low-stakes assessments such as in-class
exercises and short quizzes[4]. Educators generally
believe that students can achieve learning gains in
formative assessment while also making learning gain
in summative assessment through preparatory studies
for the exam[4].

Assessments in computer science classes are varied
and tend to include quizzes, exams, and programming
assignments. Exams, one of the most widely used
summative assessments, are used to gauge the
effectiveness of instructions as well as student learning.
Prior work[5] examined the benefits of testing under the
theory of “testing memory” in laboratory studies and
classroom experiments. They revealed that knowledge
retention is improved by testing in at least the



436 Tsinghua Science and Technology, August 2019, 24(4): 435–445

short term[5]. The authors also argued for frequent
testing which utilizes other mediated effects from
testing. Low-stake formative assessments, such as in-
class clicker questions and quizzes, provide frequent
feedback to students. Most of the non-theory computer
science classes also require students to complete
programming assignments as a way to measure
students’ understanding of complicated algorithm and
problem-solving skills.

The impact of peer collaborations on student learning
has been studied in education research[6]. Significant
progress was made within the CS education community
for improving in-class student learning. They focused
on in-class active learning pedagogies, such as Peer
Instruction and POGIL (among others)[7, 8]. However,
recent work both outside computer science[9–16] and
within computer science[17–20] has begun looking at
examinations and programming exercises as additional
opportunities to facilitate learning. Funding agencies,
such as NSF, promote active learning and collaborations
in STEM education[21].

Given the importance of assessments in CS
education, especially those with collaborative aspects,
we provide a review of current research on the selected
assessment formats: pair programming, collaborative
exams, and group projects. For each type of
assessments, we review the state-of-the-art education
research and provide our analysis of potential future
research. The rest of the paper is organized as
follows: For each section in Sections 2 – 4, we
introduce the assessment, analyze and compare the
existing studies, and provide potential research on the
assessment format. We conclude the paper in Section 5.

2 Pair Programming

2.1 Introduction

One of the first uses of the term “pair programming”
came from Cockburn and Williams[22] as they described
pair programming’s effectiveness in lowering financial
and temporal cost, decreasing program defectiveness,
reducing project management overhead, and fostering
human relationships between programmers. The pair
programming process involves two people at the same
physical machine actively working together to develop
a software solution. The pair consists of (1) the
navigator, responsible for thinking about the high-level
progression of the code, and (2) the driver, who controls
the keyboard and mouse to type in the code. Together

as a unit, the pair turns high-level ideas into code
while thinking about how the desired program works.
Periodically, the navigator and driver switch their roles.

2.2 Early research

Early research initially focused on pair programming’s
impact on student coding skill and examined the
top contributing factors toward student success in
introductory CS courses. Students’ comfort level was
the strongest predictor for success[23]. Over the years,
use of pair programming in introductory CS resulted
in strongly favorable feedback from students[24], higher
retention rates[25], better quality homework code[26, 27],
and stronger confidence in students’ own programming
ability[28]. Students perceive their combined efforts
result in stronger programs while increasing their
confidence in their ability to do computer science.

Although pair programming benefits students,
the effects are less pronounced when a pair has
compatibility issues, which occur due to uneven skill
level and possibly personality type[29, 30].

The individuals’ skill level, such as prior
programming experience and perceived expertise,
impacts the dynamics of the pair. For example, one
of the partners may feel the burden of explaining
prerequisite concepts to the partner[24]. The weaker
student may feel intimidated and allow the stronger
student to do all the work. Because of that, the
dynamics of pair programming break down: the
interaction between the driver and the navigator does
not occur as desired.

A systematic review by Salleh et al.[30] found
that some research concluded personality to be a
significant factor, yet other research shows inconclusive
results. The authors argued that the top indicators
of incompatible pairs were (1) differences in actual
skill level, (2) differences in perceived skill level, and
(3) matching Myers-Briggs personality type. However,
the authors found conflicting conclusions towards
personality type as an indicator for compatibility. Most
research studies saw no significant effect or mixed
effect, while a couple showed a positive effect. None
showed a negative effect. Because of these conclusions,
Salleh et al.[30] argued that effort should be put into
constructing pairs of similar skill level and possibly
different personality types.

The effectiveness of pair programming was measured
mainly in two ways: through student feedback and
exam scores. Many of the early papers quantified



Hans Yuan et al.: Collaborative Assessments in Computer Science Education: A Survey 437

pair programming effectiveness by measuring project
grades, exam grades, and questionnaires given to
students[26, 27, 31]. They were then scored and averaged
to convey how strongly students felt about a particular
question. A few studies conducted interviews with
students though many researchers considered test
scores as students’ real performance[24, 32, 33]. With pair
programming as the uncertain variable, a few studies
had the control group as no pair programming and the
experimental group as some form of pair programming
(shown in Table 1). Exams were then used to gauge
performance before and after pair programming was
used in the assignments.

2.3 Recent research

The cause of incompatibility was further investigated
in recent research. Perceived and actual skill abilities
impact the pair’s performance because of one’s lower
or higher perception of the other[34]. A student who
sees the partner as an expert would be affected by the
perception, even if the other student’s skill level is not
at the expert level[32].

Based on the findings of earlier research suggesting
the pairs be formed based on similar skill level, an
attempt to do so measured students’ performance in the
class before pairing students together[39]. Students of
similar ability perform just as well or better than a solo
intro programmer with prior experience. The effects are
more pronounced for lower percentile students, but this
type of pairing does not hurt students’ learning in the
higher percentiles.

The success of pair programming hinges on the
partners sharing a single computer and working
on the same piece of code together. One study

attempted to conduct hybrid pair programming where
the pair is partners with separate computers with
individual project code[45]. This dynamic breaks down
the interactions between the partners and strengthens
support for the unchanged version of pair programming.

Researchers have begun studying the long-term
effects of pair programming in multiple settings. At the
university, one study found that retention increased as
a result of using pair programming in CS1 for female
students and minorities, regardless of major[25]. Another
study found that a combination “best practices” which
incorporates pair programming, media computation,
and peer instruction together into CS1, had lowered
course drop rates and increased course pass rates for
both men and women, majors and nonmajors[44].

Only very recently have researchers begun to
determine whether all students did pair programming
faithfully on homework projects. As they pair
programmed, students were recorded[38, 45]. The data
contained verbal and visual information not captured
by scores and questionnaires, revealing phenomenon
beyond performance. For example, Celepkolu and
Boyer[45] codified levels of collaboration between
the pair while Ruvalcaba et al.[38] observed specific
differences in verbal communication between middle
school students of different ethnic backgrounds.

Finally, researchers have begun to see how software
design can improve learning software. Tutorial
programs like PythonTutor[52] help people learn to
program without physical interaction from another
person. Novice programmers may experience
frustrating setup overhead, and CodePilot[46] attempts
to address this by having collaboration and version
control built into the IDE. Another app acting as a tutor

Table 1 Pair programming research summary. This table summarizes research on pair programming based on the research
topic and research methods.

Pair compatibility Demographics
Variations
in designPerceived

skill level
Actual

skill level Personality Self-
esteem

Nonmajor/
major Gender Ethnic

group
Pre-

university

Research
type

Observation [24, 32, 34, 35] [29] [29, 34] [29, 34, 36] [36, 37] [38]
experimentation [39] [39–42] [25] [43] [31, 41, 44] [25, 42, 44] [25] [33, 45, 46]

Type
of

data

Exams [39, 40] [31] [36, 42]
Programming
assignment [39] [42] [31] [38, 47–49] [45, 50, 51]

Questionnaire [43] [25] [37] [50]
Peer evaluation [29, 34]

Interviews [24, 32] [32] [33]
Retention rates [25, 44] [25, 44] [25]

Recordings [47] [38, 47] [33, 45, 51]
Attendance [41] [37]



438 Tsinghua Science and Technology, August 2019, 24(4): 435–445

measured the effect of pair programming and found
that pairs required less help and spent less time than
soloers[53].

In Table 1, we summarize recent research on pair
programming and categorize based on their research
topics and research methods. Research topics include
compatibility, demographics, and variations in design.
We divide research methods into observational studies
and experiments. We also consider the type of data
analyzed in each study.

2.4 Discussion

Based on the literature research, we think the following
areas of pair programming might be promising in the
future.

� Effectiveness study. Although many studies have
measured pair programming’s effectiveness, future
studies may continue to improve the specific design
and implementation of pair programming. One area of
possible research is to continue measuring whether all
pairs faithfully adhere to the rules of pair programming.
Though assignments may be formatted for pair
programming tasks, it was only occasionally guaranteed
that the pairs programmed together rather than splitting
the tasks among the pair to divide and conquer.

� Apply pair programming to other domains.
Combinations of pair programming are used in various
contexts, such as media computation and mobile
programming. Pair programming helps undo a deterring
perception that computer science is a field for the
survival of the fittest[44]. In mobile programming, using
the traditional pair model may not work identically
since running an app may involve the use of another
physical device[50]. Pairs may, instead of focusing on
the same code on the same screen, focus on different
screens and thus focus on different ideas.

� Variations of pair programming. Although pair
programming is shown to be effective overall, there
is still incentive to address issues faced by the few
pairs not getting along. A pair of students may
work in a lopsided manner: the stronger student
completes most of the work while the weaker student
misses important practice from the assignment. Pair
programming models that counteract this type of
phenomenon might be helpful. For example, two-stage
programming assignments by Battestilli et al.[54] and
its variations might be promising. It is also possible
that software can help the pair programming model.
Software interfaces can “tutor” students, or strengthen

the pair programming process[53]. There is also the
possibility that pairs use a software interface in which
pair programming is the more natural way to succeed.
Shared gaze may allow for remote pair programming
to occur as effectively as in person. The fundamental
principles that allow pair programming to succeed may
become implemented in software, allowing people to
focus on the same code at the same time[33].

� Pairing policy. Alternative policies to pair by
ability can be explored, such as mental models.
Although some studies have framed pair programming
as a cognitive phenomenon (distributed cognition,
mental model)[22, 55], researchers examined the use
of mental model consistency as a pairing policy
for assignments[56]. Furthermore, to the best of
our knowledge, no work exists to measure the
relationship between prior experience and mental model
consistency.

3 Collaborative Exam

3.1 Introduction

In addition to guiding students what and how to study
for a certain course, both formative and summative
assessments also provide valuable feedback to students
on their performance. Existing research has shown that
quality feedback may have one of the most influential
effects in student learning[57, 58]. In the context of
formative assessment, the role of feedback is crucial.
According to Gibbs et al.[59, 60], the effectiveness of
feedback can be improved by following the guidelines
below.
� Feedback should be sufficiently detailed and often

enough.
� Feedback should be focused on students’

performance and learning with actions that are
under students’ control.
� Feedback should be timely, preferably before

students know their marks on the assessment.
� Feedback should be utilized by students.
In computer science education, the effects of

feedback have been studied. For example, Epstein
et al.[61] used three experiments to investigate the
effects of immediate feedback in assessments and
found the technique leads to better knowledge retention
after a week. Stone[62] studied the effect of reflective
blogs as a way to provide frequent feedback to
students. Results of this study show that these
types of feedback have affected students’ confidence,



Hans Yuan et al.: Collaborative Assessments in Computer Science Education: A Survey 439

frustration, and engagement, mostly in a positive
manner. However, assessment feedback can be viewed
differently depending on the timing of feedback. If
feedback is provided together with the marks of an
assessment, students tend to over-focus on the exam
scores instead of examining and reflecting on the
feedback[4]. Another realistic constraint is the time
it takes for instructors to provide meaningful and
constructive feedback. The time constraint can be
remedied by letting students discuss through peer
instruction.

To make summative exams a learning experience for
students, collaborative exams can be used as a formative
assessment where students work cooperatively[63, 64]. A
variant of collaborative exams is two-stage exams[65].
Two-stage exams start with a normal individual exam
immediately followed by a group exam where students
work in small groups to solve a set of problems. The
group exam component provides instant feedback to
students as they work toward answering the questions
in a high-stakes exam environment. The two-stage
exam format can be viewed both as a formative
assessment (the collaborative portion) and a summative
assessment (the individual portion). Students receive
instant feedback from their peers on the content before
they know their grades. Due to the high-stakes nature of
the exam, students are expected to actively contribute to
finding the best solution in the collaborative portion.

Educators in different fields have embraced this
testing strategy. In geology and oceanography, quasi-
controlled experiments have shown that collaborative
testing aids poorly performing students[13, 15]. Another
study in geology used historical data to show that
collaborative testing improves attendance and student
grades[66]. In mechanical engineering, collaborative
testing has been similarly shown to improve student
grades[67]. In physics, the reason why students value
the collaborative testing format has been explored, and
found students have overwhelmingly positive opinions
towards two-stage exams[14]. Students reported that the
exam format tends to be enjoyable and helpful for
learning. It may also increase confidence and provide
immediate feedback. To find a better grouping strategy,
team dynamics during two-stage exams has also been
explored[68].

3.2 Existing research

Two-stage exams have been examined for their
effectiveness in promoting student learning using

controlled experiments in non-computing disciplines.
Using a pre-post test design, Cortright et al.[9] used a
crossover design to explore short-term learning benefits
from group exams, based on performance on a follow-
up exam given four weeks later. They found the
group exam improved student knowledge retention.
A similar crossover design was used in physics to
find that student improvement from two-stage exams
is significant within 1–2 weeks but vanishes after 6–
7 weeks[12]. A potential confounding factor to these
studies was that more time was spent only on re-
tested topics during the group exam. Addressing this
potential problem, Gilley and Clarkston[11] added an
individual retest to the crossover design. The individual
retest mirrors the group test in time and allows for
differentiating learning between simply having more
time on a topic and having more time in the context
of a collaborative exam. Their work concluded that
the group component of the two-stage exam improves
student learning in geology.

In computer science, Yu et al.[18] reported on the
positive attitudes from students on the testing format.
This study also examined student learning through the
use of isomorphic questions on midterms and final
exams to measure two-stage exam effectiveness, but
the results were inconclusive[18]. Cao and Porter[19]

completed the first quantitative study of two-stage
exams in computer science which showed significantly
improved student learning through a pre-post test
experiment in CS1.5[19]. Two sections of CS1.5 (Java)
in the Spring of 2016 were selected for this study
as CS1.5 is a gateway course into the major. Peer
instruction[8] is used in this course. For each midterm,
two CS topics were pre-selected. The individual exam
(40 minutes) includes one problem for each of the
pre-selected topics in addition to other normal topics
covered in the previous two weeks. Individual exam
papers were collected before the start of the “individual-
retest” phase (12 minutes). The class was divided into
halves with each half answering a single problem on
one of the two pre-selected topics. The individual-
retest phase tries to compensate for the time differences
that students spent on the two pre-selected topics. In
the end, the group-retest phase (or simply called the
group phase) begins with four students in randomly
pre-assigned groups[18] with two to three groups with
five students. Each group answers a question on the
topic that the other half of the class answered during the
individual-retest phase. The group test phase lasts about



440 Tsinghua Science and Technology, August 2019, 24(4): 435–445

18 minutes depending on the time it took to collect and
distribute papers. The entire test period is 80 minutes.
Two weeks after the midterm, a scheduled quiz (30
minutes) was given which included problems on topics
covered in the past two weeks and one problem on each
of the topics tested in the midterm.

The overall effectiveness of the group exam is
determined by comparing normalized gains for students
exposed to the control (individual-retest) versus the
experimental condition (group-retest). Because of the
randomized crossover exam, each student is in the
control group for one topic and in the experimental
group for the other topic. Paired t-test on student
normalized learning gain was used to determine
statistical significance. For the first experiment, students
gained both from the group-retest and individual-
retest, but those in the group-retest gained more. For
the second experiment, students performed worse on
the post-test and hence experienced negative learning
gain. Recall that the questions were not designed to
be isomorphic, so the loss in performance could be
due to differences in question difficulty. Students in
the group-retest performed better by experiencing a
smaller reduction in normalized learning gain. Both
experiments have small to moderate effect sizes. During
the initial study of two-stage exams in computer
science[19], data on how students view their exam papers
were collected using an online grading platform. The
results showed that there is no difference between the
control and experimental groups in the percentage of
students who either view their exam papers or not.
Therefore, two-stage exams do not seem to improve the
rate of exam pickup from students though they improve
student learning in the short term. We believe that
students developing better exam preparation strategies
as well as evaluating their performances are important.
Hence, we propose to use exam wrappers as a tool
to increase students’ metacognitive skills and improve
their understanding of course contents.

In a follow-up study, Cao and Porter[20] investigated
the first study in computer science on how
collaborative exams affect student learning based
on students’ performance level, both individually
and collaboratively in a group. They found that mid-
performing students show significant improvement
in their post-test compared with their per-test after
collaborative exams while low- and high-performing
students tend to have insignificant performance

differences. Using group members’ performance levels
in the pre-test to measure group heterogeneity, we find
that low and moderate heterogeneity groups statistically
benefit from collaborative exams. These results suggest
the homogeneous grouping of students by performance
when employing group exams.

3.3 Discussion

As the effectiveness of collaborative exams has been
identified, more research on variations and composition
of group members are still needed. Based on the
literature research, the following research areas could
be potentially explored.

What kind of questions are the most effective in
the collaborative phase of the exam? To study the
effect of collaborative exams immediately following a
normal individual summative midterm, two possible
types of questions can be given in the collaborative
phase. Firstly, selected identical questions from the
individual exam can be given again to groups of
students. Or, students may be given questions that are
different from but related to those in the individual
exam during the collaborative phase. Existing literature
on two-stage exams primarily focuses on identical
or isomorphic questions for effective studies[11], but
there is evidence that related questions which are more
involved will have better effects[19].

What is the optimal team composition during
the collaborative phase to achieve better student
learning, especially for underrepresented students
in computer science such as female and minorities?
Computer science is undergoing an enrollment boom
recently, but the percentage of female students
and minorities in this area is still low[69–71]. Thus
interventions that may improve unrepresented students’
learning have been an active research area. In the
context of collaborative exams, group tests have been
shown to improve student performance on subsequent
questions with low-performing students benefiting
more[10]. However, no existing work has studied
the effect of grouping strategies on underrepresented
students.

To what extent does the timing of the collaborative
part of the exam affect student learning? To gain the
full benefit of this exam format, 80-minute or longer
exam time is necessary as students need sufficient time
to discuss and find a solution. As most of the midterm
exams are held in class, collaborative exams have
rarely been applied to 50-minute classes. To remedy



Hans Yuan et al.: Collaborative Assessments in Computer Science Education: A Survey 441

the time constraints of a 50-minute class, we propose
to investigate if a delayed collaborative exam held
days after a normal individual exam also has similar
benefits to improve student learning. The impact of this
research result may significantly improve the adaptation
of collaborative exams in undergraduate classes.

4 Group Project

We want to begin answering the question “how
has collaborative assessment been done within group
project courses such as SoftWare Engineering (SWE)
and Human-Computer Interaction (HCI)?” Although
there is a plethora of research on the courses
themselves, they focus more on designing the course
than evaluating the effect of the course on student
learning.

Furthermore, what is defined as “assessment” in
these courses? Unlike CS1 material, which can be
tested directly via written exams and programming
assignments, SWE and HCI group project success is
not so easily defined due to their subjective nature. The
most common metric for the following case studies is
student satisfaction with the course.

For SWE courses, ways to measure success include
the number of lines of code in a project, the
maintainability of the object-oriented design, and
software companies’ interest in students’ work in the
projects[72]. For HCI courses, the usability of high-level
design and the apparent progress rather than the final
product may indicate student performance[73]. Despite
the subjectivity of these measurements, students feel
they learned a substantial amount when working the
SWE/HCI group projects that felt realistic. Attempts to
improve project courses towards realistic environments
can be categorized into two groups:
� Integrating the “real world” into projects;
� Introducing students to “real world” projects.
In this section, we focus on a small subset of research

studies that focuses on how making projects realistic
affects the efficacy of SWE and HCI courses for student
group learning.

4.1 Making academic projects realistic

A natural first answer to preparing student groups for
the “real world” setting is to manipulate how groups
succeed in the academic setting. One way to change
groupings is to have every enrolled student (both
undergraduate and graduate) in a course work together
on the same massive project[74]. Due to the scale, no

individual student can know every detail of the project.
Students embody different roles such as team lead,
project manager, and developer. They use tools such as
online discussion boards and issue trackers to maintain
communication and progress. The study found from
the student feedback that (1) while SWE or project
manager experience was useful, there was too much
management overhead and (2) the lack of a “domain
expert” detracted from the realistic environment of
the project. Since academic projects are constrained
to time frames set by the school and students may
have differing obligations, the detailed replication of an
SWE environment may have unintended conflicts with
the temporal resources students have. Also, students’
goal in the academic setting is to learn and thus have
different motivation from that of a software engineer in
a company.

Unlike pair programming and the aforementioned
student project, which consists of theoretically equally-
contributing team members aspiring for the same goal,
groups can consist of people with varying roles. One
way is to include non-student mentors for the group
members. For example, Hartfield et al.[73] invited
experts from the industry to act as mentors for the
HCI class student groups. Since the mentors do
not affect students’ grades, the students can honestly
describe design shortcomings to solicit candid advice
and suggestions. The assessment is formative because
students can improve their work without worrying about
their grades. The author reported that students learned a
“tremendous amount” and that this course ranked twice
in the 99th percentile in the School of Engineering at
Stanford University for “overall value of [a] course”.

These two ideas had one thing in common: the
group composition was heterogeneous due to the
inclusion of professionals[73] and graduate students with
prior industry experience[74]. Furthermore, the groups
have different roles (lead, developer, and mentor).
Because of the heterogeneous groups, project scale,
and logistical challenges, the groups worked in a
more realistic environment. Student feedback is more
positive as they appreciate working on projects with
grounded aspirations.

4.2 Projects in the real world

In the “real world”, people live around the globe, speak
different languages, and have different needs/problems.
The industry is no exception to this rule — worldwide
collaboration must work with time zones and language



442 Tsinghua Science and Technology, August 2019, 24(4): 435–445

differences. To prepare students for a globalized
world, Petkovic et al.[72] designed an SWE course
where some student groups consist of students from
San Francisco, California and others from Fulda,
Germany. The practical obstacles of the SWE course
such as scheduling and communicating are amplified
by time zone and language differences. Despite the
additional challenges, both local-only groups and global
groups overcame their challenges just as well. Student
feedback for the course was strongly positive, the
project attracted job interviewers’ interest, and the
lessons from the class directly translated to students’
work environments. Since the main challenges in SWE
are to coordinate efforts between people (colloquially
termed “soft skills”), the main focus of SWE courses
may not only be attaining programming ability.
An internationally coordinated project signals to job
interviewers the possible experience the student gained
from overcoming obstacles like time zones. Because
students found the project applicable to “real world”
scenarios, we believe that the project reached a level
of realistic above traditional group project classes.

Another consideration of group projects is the
problem the product tries to solve — how realistic is
the problem? To implement a real product, it must
have a legitimate purpose to address people’s needs.
Thus, students would need to talk to real clients and
users. The benefit of this approach is that students
work on a real project[75]. They worked with a Dutch
banking company whose users needed better ATM
interfaces for illiterate or foreign populations. To talk
designs with users, the students visited a school that
taught introductory Dutch and tested their designs with
a population that closely resembles their target users.
The students’ projects had a realistic aspect that would
not be present in the traditional group project class. In
their open-response survey question, the authors found
that the students thought the involvement of clients
and users were important and that the project was
interesting. When working on a project based on a real
need, the context of the project is not contrived or
invented. Because students worked on a project whose
premise is realistic, this structure of group project
proved more motivating and instructional for students.

While software implementations and engineering
remain important, the question is becoming important,
“What can computers do for us?” The sample of
group project classes seen thus far showed how an
instructor might introduce realistic elements into the

class or introduce the student to the real world.
However, it is also possible that the needs of the
real world drive the course itself[76]. In addition to
learning design, managing tasks, communicating within
a team, and iterating prototypes, students also “learned
compassion”. When assessing students, the focus has
been on technical knowledge and skill. However, as
technology becomes more involved in people’s lives,
empathizing to design and engineer solutions that
is usable by other people may become a type of
assessment worth considering.

5 Conclusion

Collaboration among students during formative and
summative assessments may significantly improve
student learning. We provide a systematic review on
pair programming, collaborative exam, and group
projects. Existing research has shown that students
exposed to pair programming and collaborative
exams performed more strongly. For advanced
students learning SWE and HCI in groups, the
direct pedagogical effect of the course on learning
was measured on the quality of their work and
the satisfaction derived from doing their projects.
This paper proposed that future research on pair
programming might focus on continued effectiveness
studies, the application to other domain, and variations
of pair programming and pairing policies. For
collaborative exam, the type of questions, team
compositions, and timing of the collaborative phase
may be examined.

References

[1] Computing Research Association, The Taulbee survey,
http://cra.org/crn/wp-content/uploads/sites/7/2017/05/2016-
Taulbee-Survey.pdf, August 25, 2017.

[2] L. Porter, D. Zingaro, C. Lee, C. Taylor, K. C. Webb,
and M. Clancy, Developing course-level learning goals for
basic data structures in CS2, in Proc. 49th ACM Technical
Symp. Computer Science Education, Baltimore, ML, USA,
2018, pp. 858–863.

[3] B. R. Snyder, The Hidden Curriculum. New York, NY,
USA: Knopf, 1970.

[4] R. E. Bennett, Formative assessment: A critical review,
Assessment in Education: Principles, Policy & Practice,
vol. 18, no. 1, pp. 5–25, 2011.

[5] H. L. Roediger and J. D. Karpicke, The power of testing
memory: Basic research and implications for educational
practice, Perspectives on Psychological Science, vol. 1, no.
3, pp. 181–210, 2006.

[6] S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith, N.
Okoroafor, H. Jordt, and M. P. Wenderoth, Active learning



Hans Yuan et al.: Collaborative Assessments in Computer Science Education: A Survey 443

increases student performance in science, engineering, and
mathematics, Proc. Natl. Acad. Sci. USA, vol. 111, no. 23,
pp. 8410–8415, 2014.

[7] H. H. Hu, C. Kussmaul, B. Knaeble, C. Mayfield, and A.
Yadav, Results from a survey of faculty adoption of process
oriented guided inquiry learning (POGIL) in computer
science, in Proc. 2016 ACM Conf. Innovation and
Technology in Computer Science Education, Arequipa,
Peru, 2016, pp. 186–191.

[8] L. Porter, C. B. Lee, B. Simon, and D. Zingaro, Peer
instruction: Do students really learn from peer discussion
in computing? in Proc. 7th Int. Workshop on Computing
Education Research, Providence, RI, USA, 2011, pp. 45–
52.

[9] R. N. Cortright, H. L. Collins, D. W. Rodenbaugh,
and S. E. DiCarlo, Student retention of course content
is improved by collaborative-group testing, Advances in
Physiology Education, vol. 27, no. 3, pp. 102–108, 2003.

[10] Ö. Dahlström, Learning during a collaborative final exam,
Educational Research and Evaluation, vol. 18, no. 4, pp.
321–332, 2012.

[11] B. H. Gilley and B. Clarkston, Collaborative testing:
Evidence of learning in a controlled in-class study
of undergraduate students, Journal of College Science
Teaching, vol. 43, no. 3, pp. 83–91, 2014.

[12] J. Ives, Measuring the learning from two-stage
collaborative group exams, arXiv preprint arXiv:
1407.6442, 2014.

[13] G. L. Macpherson, Y. J. Lee, and D. Steeples, Group-
examination improves learning for low-achieving students,
Journal of Geoscience Education, vol. 59, no. 1, pp. 41–
45, 2011.

[14] G. W. Rieger and C. E. Heiner, Examinations that support
collaborative learning: The students’ perspective, Journal
of College Science Teaching, vol. 43, no. 4, pp. 41–47,
2014.

[15] R. F. Yuretich, S. A. Khan, R. M. Leckie, and J. J. Clement,
Active-learning methods to improve student performance
and scientific interest in a large introductory oceanography
course, Journal of Geoscience Education, vol. 49, no. 2,
pp. 111–119, 2001.

[16] J. F. Zipp, Learning by exams: The impact of two-stage
cooperative tests, Teaching Sociology, vol. 35, no. 1, pp.
62–76, 2007.

[17] M. Craig, D. Horton, D. Zingaro, and D. Heap, Introducing
and evaluating exam wrappers in CS2, in Proc. 47th ACM
Technical Symp. Computing Science Education, Memphis,
TN, USA, 2016, pp. 285–290.

[18] B. Yu, G. Tsiknis, and M. Allen, Turning exams into a
learning experience, in Proc. 41st ACM Technical Symp.
Computer Science Education, Milwaukee, WI, USA, 2010,
pp. 336–340.

[19] Y. J. Cao and L. Porter, Evaluating student learning
from collaborative group tests in introductory computing,
in Proc. 2017 ACM SIGCSE Technical Symp. Computer
Science Education, Seattle, WA, USA, 2017, pp. 99–104.

[20] Y. J. Cao and L. Porter, Impact of performance level
and group composition on student learning during
collaborative exams, in Proc. 2017 ACM Conf. Innovation
and Technology in Computer Science Education, Bologna,
Italy, 2017, pp. 152–157.

[21] National Science Foundation, Improving Undergraduate
STEM Education: Education and Human Resources
(IUSE: EHR), https:// www.nsf.gov/pubs/2017/nsf17590/
nsf17590.htm, 2018.

[22] A. Cockburn and L. Williams, The costs and benefits of
pair programming, in Extreme Programming Examined.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2001, pp. 223–243.

[23] B. C. Wilson and S. Shrock, Contributing to success in an
introductory computer science course: A study of twelve
factors, in Proc. 32nd SIGCSE Technical Symp. Computer
Science Education, Charlotte, NC, USA, 2001, pp. 184–
188.

[24] B. Simon and B. Hanks, First-year students’ impressions
of pair programming in CS1, J. Educ. Resour. Comput.,
vol. 7, no. 4, p. 5, 2008.

[25] J. C. Carver, L. Henderson, L. L. He, J. Hodges, and D.
Reese, Increased retention of early computer science and
software engineering students using pair programming,
in Proc. 20th Conf. Software Engineering Education &
Training, Dublin, Ireland, 2007, pp. 115–122.

[26] C. McDowell, L. Werner, H. Bullock, and J. Fernald,
The effects of pair-programming on performance in an
introductory programming course, in Proc. 33rd SIGCSE
Technical Symp. Computer Science Education, Cincinnati,
KY, USA, 2002, pp. 38–42.

[27] C. McDowell, B. Hanks, and L. Werner, Experimenting
with pair programming in the classroom, in Proc. 8th

Annual Conf. Innovation and Technology in Computer
Science Education, Thessaloniki, Greece, 2003, pp. 60–
64.

[28] C. McDowell, L. Werner, H. E. Bullock, and J. Fernald,
Pair programming improves student retention, confidence,
and program quality, Communications of the ACM, vol. 49,
no. 8, pp. 90–95, 2006.

[29] N. Katira, L. Williams, E. Wiebe, C. Miller, S. Balik, and
E. Gehringer, On understanding compatibility of student
pair programmers, in Proc. 35th SIGCSE Technical Symp.
Computer Science Education, Norfolk, VA, USA, 2004,
pp. 7–11.

[30] N. Salleh, E. Mendes, and J. Grundy, Empirical studies of
pair programming for CS/SE teaching in higher education:
A systematic literature review, IEEE Trans. Softw. Eng.,
vol. 37, no. 4, pp. 509–525, 2011.

[31] N. Nagappan, L. Williams, M. Ferzli, E. Wiebe, K. Yang,
C. Miller, and S. Balik, Improving the CS1 experience with
pair programming, ACM SIGCSE Bull., vol. 35, no. 1, pp.
359–362, 2003.

[32] A. Tafliovich, J. Campbell, and A. Petersen, A student
perspective on prior experience in CS1, in Proc. 44th ACM
Technical Symp. Computer Science Education, Denver,
CO, USA, 2013, pp. 239–244.



444 Tsinghua Science and Technology, August 2019, 24(4): 435–445

[33] S. D’Angelo and A. Begel, Improving communication
between pair programmers using shared gaze awareness,
in Proc. 2017 CHI Conf. Human Factors in Computing
Systems, Denver, CO, USA, 2017, pp. 6245–6290.

[34] J. Sennett and M. Sherriff, Compatibility of partnered
students in computer science education, in Proc. 41st

ACM Technical Symp. Computer Science Education,
Milwaukee, WI, USA, 2010, pp. 244–248.

[35] M. Celepkolu and K. E. Boyer, Thematic analysis of
students’ reflections on pair programming in CS1, in Proc.
49th ACM Technical Symp. Computer Science Education,
Baltimore, ML, USA, 2018, pp. 771–776.

[36] C. McDowell, L. Werner, H. E. Bullock, and J. Fernald,
The impact of pair programming on student performance,
perception and persistence, in Proc. 25th Int. Conf.
Software Engineering, Portland, OR, USA, 2003, pp. 602–
607.

[37] O. Aarne, P. Peltola, J. Leinonen, and A. Hellas, A study
of pair programming enjoyment and attendance using
study motivation and strategy metrics, in Proc. 49th ACM
Technical Symp. Computer Science Education, Baltimore,
ML, USA, 2018, pp. 759–764.

[38] O. Ruvalcaba, L. Werner, and J. Denner, Observations
of pair programming: Variations in collaboration across
demographic groups, in Proc. 47th ACM Technical Symp.
Computing Science Education, Memphis, TN, USA, 2016,
pp. 90–95.

[39] G. Braught, J. MacCormick, and T. Wahls, The benefits
of pairing by ability, in Proc. 41st ACM Technical Symp.
Computer Science Education, Milwaukee, WI, USA, 2010,
pp. 249–253.

[40] G. Braught, L. M. Eby, and T. Wahls, The effects of
pair-programming on individual programming skill, in
Proc. 39th SIGCSE Technical Symp. Computer Science
Education, Portland, OR, USA, 2008, pp. 200–204.

[41] C. O’Donnell, J. Buckley, A. Mahdi, J. Nelson, and M.
English, Evaluating pair-programming for non-computer
science major students, in Proc. 46th ACM Technical
Symp. Computer Science Education, Kansas City, MO,
USA, 2015, pp. 569–574.

[42] G. Braught, T. Wahls, and L. M. Eby, The case for pair
programming in the computer science classroom, Trans.
Comput. Educ., vol. 11, no. 1, p. 2, 2011.

[43] M. M. Muller and F. Padberg, An empirical study about
the feelgood factor in pair programming, in Proc. 10th Int.
Symp. Software Metrics, Chicago, IL, USA, 2004, pp. 151–
158.

[44] L. Porter and B. Simon, Retaining nearly one-third more
majors with a trio of instructional best practices in CS1,
in Proc. 44th ACM Technical Symp. Computer Science
Education, Denver, CO, USA, 2013, pp. 165–170.

[45] M. Celepkolu and K. E. Boyer, The importance of
producing shared code through pair programming, in Proc.
49th ACM Technical Symp. Computer Science Education,
Baltimore, ML, USA, 2018, pp. 765–770.

[46] J. Warner and P. J. Guo, CodePilot: Scaffolding end-
to-end collaborative software development for novice
programmers, in Proc. 2017 CHI Conf. Human Factors in
Computing Systems, Denver, CO, USA, 2017, pp. 1136–
1141.

[47] J. Tsan, F. J. Rodrı́guez, K. E. Boyer, and C. Lynch,
“I think we should... ”: Analyzing elementary students’
collaborative processes for giving and taking suggestions,
in Proc. 49th ACM Technical Symp. Computer Science
Education, Baltimore, ML, USA, 2018, pp. 622–627.

[48] L. Werner, J. Denner, S. Campe, E. Ortiz, D. DeLay, A. C.
Hartl, and B. Laursen, Pair programming for middle school
students: Does friendship influence academic outcomes?
in Proc. 44th ACM Technical Symp. Computer Science
Education, Denver, CO, USA, 2013, pp. 421–426.

[49] C. M. Lewis and N. Shah, How equity and inequity can
emerge in pair programming, in Proc. 11th Annu. Int.
Conf. Inter. Computing Education Research, Omaha, NE,
USA, 2015, pp. 41–50.

[50] M. Seyam and D. S. McCrickard, Teaching mobile
development with pair programming, in Proc. 47th ACM
Technical Symp. Computing Science Education, Memphis,
TN, USA, 2016, pp. 96–101.

[51] F. J. Rodrı́guez, K. M. Price, and K. E. Boyer, Exploring
the pair programming process: Characteristics of effective
collaboration, in Proc. 2017 ACM SIGCSE Technical
Symp. Computer Science Education, Seattle, WA, USA,
2017, pp. 507–512.

[52] P. J. Guo, Online python tutor: Embeddable web-
based program visualization for CS education, in Proc.
44th ACM Technical Symp. Computer Science Education,
Denver, CO, USA, 2013, pp. 579–584.

[53] R. Harsley, D. Fossati, B. Di Eugenio, and N. Green,
Interactions of individual and pair programmers with an
intelligent tutoring system for computer science, in Proc.
2017 ACM SIGCSE Technical Symp. Computer Science
Education, Seattle, WA, USA, 2017, pp. 285–290.

[54] L. Battestilli, A. Awasthi, and Y. J. Cao, Two-stage
programming projects: Individual work followed by
peer collaboration, in Proc. 49th ACM Technical Symp.
Computer Science Education, Baltimore, ML, USA, 2018,
pp. 479–484.

[55] A. Radermacher, G. Walia, and R. Rummelt, Improving
student learning outcomes with pair programming, in Proc.
9th Annu. Int. Conf. Int. Computing Education Research,
Auckland, New Zealand, 2012, pp. 87–92.

[56] A. Radermacher, G. Walia, and R. Rummelt, Assigning
student programming pairs based on their mental model
consistency: An initial investigation, in Proc. 43rd ACM
Technical Symp. Computer Science Education, Raleigh,
NC, USA, 2012, pp. 325–330.

[57] B. J. Fraser, H. J. Walberg, W. W. Welch, and J. A.
Hattie, Syntheses of educational productivity research,
International Journal of Educational Research, vol. 11, no.
2, pp. 147–252, 1987.

[58] P. Black, Formative assessment: Raising standards inside
the classroom, School Science Review, vol. 80, no. 291, pp.
39–46, 1998.



Hans Yuan et al.: Collaborative Assessments in Computer Science Education: A Survey 445

[59] G. Gibbs and C. Simpson, Conditions under which
assessment supports students’ learning, Learning and
Teaching in Higher Education, vol. 1, no. 1, pp. 3–31,
2004.

[60] A. Cain and M. Ali Babar, Reflections on applying
constructive alignment with formative feedback for
teaching introductory programming and software
architecture, in 2016 IEEE/ACM 38th Int. Conf. Software
Engineering Companion, Austin, TX, USA, 2016, pp.
336–345.

[61] M. L. Epstein, A. D. Lazarus, T. B. Calvano, K.
A. Matthews, R. A. Hendel, B. B. Epstein, and G.
M. Brosvic, Immediate feedback assessment technique
promotes learning and corrects inaccurate first responses,
The Psychological Record, vol. 52, no. 2, pp. 187–201,
2002.

[62] J. A. Stone, Using reflective blogs for pedagogical
feedback in CS1, in Proc. 43rd ACM Technical Symp.
Computer Science Education, Raleigh, NC, USA, 2012,
pp. 259–264.

[63] P. Heller, R. Keith, and S. Anderson, Teaching problem
solving through cooperative grouping, Part 1: Group
versus individual problem solving, American Journal of
Physics, vol. 60, no. 7, pp. 627–636, 1992.

[64] S. A. Stearns, Collaborative exams as learning tools,
College Teaching, vol. 44, no. 3, pp. 111–112, 1996.

[65] D. Cohen and J. Henle, The pyramid exam, UME Trends,
vol. 10, no. 2, pp. 15–16, 1995.

[66] K. Knierim, H. Turner, and R. K. Davis, Two-stage
exams improve student learning in an introductory geology
course: Logistics, attendance, and grades, Journal of
Geoscience Education, vol. 63, no. 2, pp. 157–164, 2015.

[67] M. Fengler and P. M. Ostafichuk, Successes with two-
stage exams in mechanical engineering, in Proc. Canadian
Engineering Education Association (CEEA) Conf., 2015,
pp. 1–5.

[68] I. D. Beatty, Collaboration or copying? Student behavior
during two-phase exams with individual and team phases,

in Physics Education Research Conf. 2015, College Park,
MD, USA, 2015, pp. 59–62.

[69] L. Barker, C. L. Hovey, and L. D. Thompson, Results
of a large-scale, multi-institutional study of undergraduate
retention in computing, in 2014 IEEE Frontiers in
Education Conf. (FIE) Proc., Madrid, Spain, 2014, pp.
1–8.

[70] S. Beyer, M. DeKeuster, K. Walter, M. Colar, and C.
Holcomb, Changes in CS students’ attitudes towards CS
over time: An examination of gender differences, ACM
SIGCSE Bull., vol. 37, no. 1, pp. 392–396, 2005.

[71] C. Alvarado, Y. J. Cao, and M. Minnes, Gender differences
in students’ behaviors in CS classes throughout the CS
major, in Proc. 2017 ACM SIGCSE Technical Symp.
Computer Science Education, Seattle, WA, USA, 2017, pp.
27–32.

[72] D. Petkovic, G. Thompson, and R. Todtenhoefer, Teaching
practical software engineering and global software
engineering: Evaluation and comparison, in Proc. 11th

Annual SIGCSE Conf. Innovation and Technology in
Computer Science Education, Bologna, Italy, 2006, pp.
294–298.

[73] B. Hartfield, T. Winograd, and J. Bennett, Learning HCI
design: Mentoring project groups in a course on human-
computer interaction, in Proc. 23rd SIGCSE Technical
Symp. Computer Science Education, Kansas City, MO,
USA, 1992, pp. 246–251.

[74] D. Coppit and J. M. Haddox-Schatz, Large team projects
in software engineering courses, in Proc. 36th SIGCSE
Technical Symp. Computer Science Education, St. Louis,
MO, USA, 2005, pp. 137–141.

[75] H. Koppelman and B. van Dijk, Creating a realistic context
for team projects in HCI, in Proc. 11th Annual SIGCSE
Conf. Innovation and Technology in Computer Science
Education, Bologna, Italy, 2006, pp. 58–62.

[76] M. Bratton, Global TIES: Ten years of engineering for
humanity, International Journal for Service Learning in
Engineering, vol. 9, pp. 205–221, 2014.

Hans Yuan received the BS degree from
University of California, San Diego, USA
in 2018. He developed course material
for introductory computer science courses,
studied online tech-enhanced learning, and
did research with an ambulance dispatch
software project. He is interested in
education efficacy and humanitarian design

and engineering. Now, he is a Cloud Software Engineer at Survey
Monkey by day and continues ambulance dispatch research by
night.

Paul Cao received the BS degree in
engineering from Nanjing University of
Science & Technology in 2001, and PhD
degree from Duke University (USA) in
2006. He taught at Oberlin College and
Ashland University and is currently a
lecturer in the Department of Computer
Science & Engineering at University of

California, San Diego, USA. He is a member of ACM and IEEE.
His research interest is computer science education and mobile
data analysis.


