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Course Drop-out Prediction on MOOC Platform via Clustering
and Tensor Completion

Jinzhi Liao, Jiuyang Tang, and Xiang Zhao�

Abstract: As a supplement to traditional education, online courses offer people, regardless of their age, gender, or

profession, the chance to access state-of-the-art knowledge. Nonetheless, despite the large number of students

who choose to begin online courses, it is easy to observe that quite a few of them drop out in the middle, and

information on this is vital for course organizers to improve their curriculum outlines. In this work, in order to

make a precise prediction of the drop-out rate, we propose a combined method MOOP, which consists of a

global tensor and local tensor to express all available feature aspects. Specifically, the global tensor structure is

proposed to model the data of the online courses, while a local tensor is clustered to capture the inner connection

of courses. Consequently, drop-out prediction is achieved by adopting a high-accuracy low-rank tensor completion

method, equipped with a pigeon-inspired algorithm to optimize the parameters. The proposed method is empirically

evaluated on real-world Massive Open Online Courses (MOOC) data, and is demonstrated to offer remarkable

superiority over alternatives in terms of efficiency and accuracy.
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1 Introduction

With the proliferation of the Internet, Massive Open
Online Courses (MOOC), which integrate picture,
voice, and flash animations into online courses,
significantly influence traditional education while
relating to it as a competitor and supplement. Current
MOOC platforms, such as Coursera and EdX, offer
the opportunity for every person, regardless of their
age, gender, or previous educational background, to
access state-of-the-art courses and communicate with
top lecturers. While hundreds of courses are registered
on these platforms on a daily basis, an ever-larger
number of students[1] choose to participate.

Nevertheless, what ought not to be neglected is the
large number of participants who drop out of on-line
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educational platforms, since it is common for students
to select courses on impulse, only to give up midway
through. Instead of focusing on student behavior at
course selection, it is advisable for educators to pay
more attention to the drop-out behavior, which provides
more information about the quality of courses and
the preferences of students. In contrast to traditional
modes of education, on-line courses such as MOOC
are unable to supervise students’ learning process,
which, to a certain degree, influences the outcome
of these courses. Once the system is able to capture
students’ behavior after selecting a course, educators
will formulate better schemes to model the long-term
interest of participants and, in turn, the overall quality
of courses. Therefore, the ability to predict drop-outs is
of urgent significance.

An ideal drop-out prediction model can learn from
the history of participant behavior and make more
precise predictions. To illustrate, assume a student has
already selected “python”, “java”, and “world economic
forum”, but has finished only the first two. Then, when
the student is planning to select “macro-economics” and
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“TensorFlow”, the model is supposed to provide a drop-
out prediction for these two courses. What should be
accounted for is the inner connection of the courses.
In other words, “python”, “java”, and “TensorFlow”
all belong to the machine learning framework, while
“macro-economics” and “world economic forum”
can be categorized as economics. Consequently, the
prediction model ought to yield a high drop-out
probability for the newly selected course “macro-
economics”, and a lower likelihood of dropping out
of “TensorFlow”. Figure 1 depicts the aforementioned
scenario. Therefore, for the aim of constructing an
efficacious drop-out prediction model, the focus is to
harness the similarities between students and courses.

In this research, targeted at predicting the drop-
out rate of students enrolling in on-line courses, we
propose a combinational model of a global tensor and
local tensor to describe the inner correlations between
students and courses. In contrast to conventional
methods, we estimate missing values in a combinational
manner, taking into account (1) the global connections
between students and all courses, and (2) local
connections between students in similar course groups.
To enhance the accuracy of clustering, a new similarity
calculation method is devised in such a way that it
works closely with High-accuracy Low-Rank Tensor
Completion (HaLRTC) to provide an accurate drop-out
prediction. With the goal of predicting MOOC drop-
out, we put forward a method named Mooc drOp-Out
Prediction (MOOP).

To summarize, this article makes four key
contributions.
� We propose to process drop-out prediction by

merging a global tensor and local tensor to express all

available feature aspects. To the best of our knowledge,
this represents one of the first attempts at this approach.
� A global tensor structure is proposed to model

the MOOC data, while a local tensor is clustered
to represent course connections. A new similarity
estimation method is introduced to enhance the
explanatory power of the cluster.
� Drop-out prediction is achieved by adopting a

high-accuracy low-rank tensor completion method,
equipped with a pigeon-inspired algorithm to optimize
the parameters.
� We experimentally evaluate the proposed method

on real-world MOOC data, and thereby demonstrate
remarkable superiority over alternatives in terms of
efficiency and accuracy.

The rest of this paper is organized as follows.
Section 2 presents an overview of previous work
relating to various prediction methods in the domain
of MOOC drop-out. After outlining the necessary
background knowledge, the proposed MOOP method
is introduced in Section 3, including the specific model
and algorithms. Experimental studies are reported in
Section 4, followed by a concluding Section 5.

2 Related Work

MOOC, as a new approach to education, revolutionize
traditional education methods and attract attention
both in academic and industrial settings. Although the
courses are of huge benefit and convenience, one critical
problem that should not be neglected is their high
drop-out rates[2–4]. When course organizers arrange
their course schedules, the drop-out rate should be
given equal, if not greater, attention when compared
with the selection rate, since the act of selecting

Fig. 1 Sketch of course drop-out problem.
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does not guarantee long-term persistence with study.
Consequently, a large number of methods have been
devised to deal with the task of predicting MOOC drop-
outs.

Traditionally, statistical techniques have been widely
utilized to explore the correlations between the drop-
out rate and other factors, with the aim of working out
the determinant factors of success in schooling. Some
previous studies discovered that university entry scores
were a good index to forecast student performance[5],
since it is obvious that the higher the entry score,
the better equipped the student is for study. However,
Thomas et al.[6] found that entry score actually had
a poor correlation to performance in some specific
domains, such as mechanics courses, and that these
scores were not easily accessible, since many academies
did not arrange other examinations to test the students’
professional skills. The common weakness of these
factors lies in the uncertainties inherent in different
situations. Specifically, the differences between the
age might determine degree of education and the
institution[7], and gender plays an important role
in engineering and physical sciences, where the
proportion of female students is very low. Motivation
has been generally shown to correlate positively
with student success and retention[8]. The drop-out
rate is also considered an aspect of the analytic
framework; it is used, for example, to predict the
performance of participants in online classes[9] and
to identify predictors of academic persistence in
distance education[10]. Although the addition of drop-
out rates expands the statistical methods, the intrinsic
disadvantages of tackling high-dimensional data restrict
the development of successful methods.

Based on its remarkable performance in prediction
and classification of context analysis, Natural Language
Processing (NLP) is also promoted as a method
for the analysis of MOOC data. There are many
methods based on NLP aimed at investigating elements
of MOOC that are unrelated to student success.
Elouazizi[11] used the linguistic aspects of point-of-
view as an indicator of cognitive presence to construct
an exploratory framework for examining students’
learning-based inquiry in the MOOC context. Focusing
on finding the leaders in MOOC discussion forums,
Moon et al.[12] proposed a method to measure language
accommodation which represents the students’ choices
of words given a specific theme. Several NLP methods
are adopted by Crossley et al.[13] to compare the

performance of different languages in forum posts to
evaluate which one is predictive of MOOC completion.
Wen et al.[14] tested three courses using a sentiment
analysis approach to verify the significant correlation
between the sentiments expressed in the course forum
posts and the number of students who drop out of the
course. Moreover, in Ref. [15], two approaches are
devised to quantify the engagement, which is validated
on three courses with different topics. In particular,
the motivation and engagement attitudes contained in
course forums are identified to achieve this task.

Based on its success in other domains, researchers
have gradually began to apply neural networks to
predict MOOC drop-outs. An artificial neural network
was initially put forward to predict the drop-out rate,
and achieved a high level of accuracy and efficiency[16].
In order to further improve the accuracy, a multi-
layer network was proposed, upon which a MOOC
drop-out predictor was constructed by utilizing the
collected data[17]. Additionally, drop-out prediction was
viewed as a sequence classification problem and a
temporal model was utilized. Among the methods, long
short-term memory networks yield the best results.
Sinha et al.[18] paid attention to students’ behavior
when they interacted with MOOC video lectures,
to capture behavioral patterns in student activity.
They then utilized these patterns to evaluate students’
information processing index. In a following work[19],
they constructed a graph to capture the sequence of
active and passive learning activities, and used graph
metrics as features for predicting attrition.

With the increasing popularity of machine learning
techniques, many other attempts have been made to
handle the problem. Kloft et al.[20] proposed a machine
learning method based on support vector machines for
predicting drop-outs, where the MOOC data of the
current and previous weeks were learned to estimate the
missing data in the following week. Nagrecha et al.[21]

combined feature engineering, data preprocessing, and
metrics as parameters in the context of interpretability
to construct a decision tree to accomplish drop-out
prediction. Hidden Markov models were employed by
Balakrishnan and Coetzee[22] to help predict student
retention as well as to infer general patterns of behavior
between those students that complete the course, and
those that drop out at different points in time. Logistic
regression, one of the most conventional machine
learning methods, is also widely utilized[23–26].

It is undoubtedly difficult for any given solution to
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overmatch the others in all scenarios, since different
drop-out prediction tasks require different models to
capture the core of problem, and the fittest models ought
to deal with diverse realistic demands. In this paper,
in order to fully exploit the latent patterns of data, we
propose the MOOP model, which is validated to achieve
promising outcomes.

3 Methodology

In this section, we first elaborate the tensor structure to
model the MOOC data, then introduce a new similarity
method to cluster course data for constructing the local
tensor, and follow this with details of a pigeon-inspired
parameter optimization procedure. The overall process
is depicted as Algorithm 1.

3.1 Tensor structure for prediction

We first throw light on the basics of tensors, and then
present the tensor structure equipped with a fast low-
rank tensor completion for drop-out prediction.

Tensor basics. A tensor is a high-dimensional
data representation, whose expression is vector (1-
mode) and matrix (2-mode). An n-mode tensor can
be defined as X 2 RI1�I2�����In , where In denotes the
quantity of mode n, and its elements are denoted
as x.I1;:::;Ik/, where 1 6 k 6 n. The matriculating
operator, which unfolds a tensor into a matrix, is defined
as unfold .X; n/ D X.n/, in which the tensor element
.I1; I2; : : : ; In/ is mapped to the matrix element

Algorithm 1 MOOP
Input: global tensor T , completion tensor T , balance

parameter ˛, weight parameter ˇ D .ˇ1; ˇ2; : : : ; ˇk/, and

i D .
i1; 
i2; : : : ; 
ik/; i 2 Œ1; k�, selecting feature F1,
finishing feature F2, global rating feature F3, and criterion
precision P ;

Output: prediction ˇ, 
i .
1: initialize ˛ D 0:5, ˇ, 
i

2: local tensor Lk = J-Sim(X , F1, F2, F3)
3: for n D 1 W k do
4: train data X D random.T /
5: test data X D T � X
6: while Function.X ;X / reach P do
7: ˇn; 
n D PIO.X ;Lk ; a; ˇn; 
n/

8: X D HaLRTC.X ;Lk ; a; ˇn; 
n/

9: Lk D refresh.Lk ;X /
10: return ˇn; 
n

11: end while
12: end for
13: return ˇ, 
i ;

.In; J /, where

J D

k�1Y
mD1; m¤n

Im (1)

The reverse of the matriculation is defined as
fold .X.n/; n/ D X in a similar way.

The inner product of two same-size tensors A;B 2
R.I1�I2�����IN / is defined as the sum of the products of
their entries:
.A;B/ D

X
i1

X
i2

: : :
X
iN

a.i1;i2;:::;in/b.i1;i2;:::;in/ (2)

For any 1 6 n 6 N , the product of a matrix M 2

RJ�In with a tensor A 2 R.I1�I2�����IN / is expressed
as A �n M , and transformed into the product of two
matrixes.

Y D A �nM , Y.n/ DMA.n/ (3)

Denote kXkF D
p
.X;X/ as the Frobenius norm of

a tensor. It is clear that kXkF D kX.k/k:

Global tensor. Suppose that there are m courses and
n students in the MOOC data. In order to employ the
excellent explanatory power of the tensor structure, we
construct the data into 3-dimension tensor T , as Fig. 2
shows.

The abscissa axis and vertical axis represent the
students, which means the scale of each matrix in the
tensor is n � n, and the other dimension represents the
m course. Thus the size of T is n � n � m, and we
randomly select a slice of size k. There are different
value interpretations for Xi ik: (1) The value Xi ik D 0

represents “student i does not select the course k”;
(2) the value Xi ik D 1 represents “student i does
select the course k, and fails to finish it”; (3) the value
Xi ik D 2 represents “student i does select the course
k, and finishes it”; (4) the value Xijk D 0 represents
“student i and student j do not select the same course

n

m

n

…

…

Fig. 2 Sketch of global tensor.



416 Tsinghua Science and Technology, August 2019, 24(4): 412–422

k”; (5) the value Xijk D 1 represents “student i and
student j do select the same course k, and they both
fail to finish it”; and (6) the value Xijk D 2 represents
“student i and student j select the same course k, and
they both finish it”. As we can see, the tensor can not
only express the drop-out performance of all students
in all courses, but also reveal the relationship between
students in the specific course. Therefore, we put all
data into one tensor to construct a global tensor as a
step in generating a MOOP for drop-out prediction.

3.2 Similarity model for local tensor

We throw light on the local tensor, and propose our new
similarity calculation method, J-Sim, to cluster course
dimension and construct the local tensor.

Local tensor. The idea of constructing a local
tensor comes from the fact that there are evident
differences among courses in different categories, such
as humanities and social sciences, which renders the
simple combination of student’s behaviour across all
courses inappropriate. For example, a student majoring
in humanities might pay more attention in a course
such as literature, and naturally shares little similarity
with another student taking a course in physical
sciences. These uncorrelated student pairs increase
computation cost and decrease accuracy. To enhance
the performance of the model, we construct a local
tensor as a supplement to the global tensor so as to
predict drop-out rate.

In order to model the local tensor, firstly, we
introduce course vectors, which comprise three types
of features:
� Selecting feature .f1/. For courses, this feature

is assigned with the value 0 or 1 for each student,
representing whether the student has chosen the course
or not;

� Finishing feature .f2/. For courses, this feature
is assigned with the value 0 or 1 for each student,
representing whether the student has finished the course
or not;
� Global rating feature .f3/. For courses, this feature

records all the finished courses in the selected courses.
Secondly, we expect to cluster course dimension

based on the features above to acquire several local
tensors. In a local tensor, there are only correlative
courses, and students’ behaviours will be evaluated in
one subject framework, as Fig. 3 shows. There is no
doubt that with the combination of local tensors the
pertinence of MOOP sharply increases.

Similarity estimation method. The cluster
performance is largely influenced by the results of
similarity estimation, which is elaborated as follows.

Suppose that there are two students X and Y , and
Xi; j D .x1; x2/ denotes the relation between X with
course i; j . Yi; j D .y1; y2/ can be interpreted similarly
as above. In the traditional method, the similarity
between two vectors is usually calculated via the cosine
function, which can be expressed as below:

cos � D
x1x2 C y1y2q

x21 C y
2
1 �

q
x22 C y

2
2

(4)

The advantage of the cosine function lies in the fact
that it has a high sensitivity to common behaviours. In
other words, the more mutual coursesX and Y select in
common, the more similar they might be.

Nevertheless, as can be observed from Eq. (4), we
may easily draw the conclusion that whenX expands to
aX , the similarity does not change.

cos � D
ax1x2 C ay1y2q

.ax/21 C .ay/
2
1 �

q
x22 C y

2
2

(5)

where a denotes the arbitrary constant.
When it comes to MOOC, the problem can be
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Fig. 3 Sketch of local tensor.
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interpreted by saying that if student X selects the same
courses as student Y , where X gives up on all of
the courses while Y finishes them, the similarity of
these two students still reaches 100%. In fact, although
the interests of the two students might be similar, the
outcome of the learning process is disparate. Besides,
the cosine function cannot distinguish the different
vectors having the same angle, which might result in
considering two students with totally different tastes
as similar. Thus, we have to construct another unique
similarity estimation method to modify the cosine
function.

Inspired by the promising properties of hyperbolic
functions, we propose the similarity estimation method
to cluster dimensions.

sim.X; Y / D
2 � exp

�
�˛

�
1

cos �
� 1

��
1C exp

�
�˛

�
1

cos �
� 1

�� (6)

where cos � denotes cosine similarity between X and
Y , and ˛ represents balance factor. The effectiveness of
our similarity equation, namely J-Sim, is evaluated in
Section 4.

3.3 Combination method

The merge of global tensor and local tensor equipped
with a tensor completion method, as well as a parameter
optimization algorithm applied to each combination
block, are illustrated in this subsection.

Merge of global and local tensors. Considering
just a global tensor or local tensor in isolation will
distort the inner connections between students and
courses. Combining a global tensor and local tensor
is advantageous in three ways: (1) A global tensor
introduces the overall features into the model, which
can reveal how the whole course framework influences
students; (2) the local tensor specifies the problem
of different course groups possibly having different
effects on students; (3) the merge of two tensors leads
to a comprehensive analysis of the intrinsic relations
between courses and students.

Suppose that we get k local tensors after the former
clustering. Therefore, we utilize ˇ D .ˇ1; ˇ2; : : : ; ˇk/

to describe the connections between the global
tensor and each local tensor, and 
 D .
1; 
2; : : : ; 
k/
represents the corresponding parameters of each local
tensor. To further explore the influence of students’
behaviours from other local tensors, we expand 
 into

i D .
i1; 
i2; : : : ; 
ik/; i 2 Œ1; k�. In other words,

when we concentrate on estimating the drop-out rate of
courses in a certain local tensor, not the global tensor’s
but other local tensors’ influence should be taken into
account, and it is obvious the parameter 
i must be
different in different local tensors. The vivid description
is illustrated in Fig. 4.

Tensor completion method. In order to accurately
predict and accomplish the above merge, we adopt a
tensor completion method to estimate MOOC drop-
outs.

Conventional tensor completion methods, such as
Canonical Polyadic (CP) decomposition[27] and Tucker
decomposition[28], adopt a heuristic algorithm, which
lowers the dimension of existing data to simplify the
calculation. Particularly in CP decomposition, a tensor
A 2 Rn1�n2�����nd is represented with a suitably large
r as a linear combination of r rank-1 tensors (vectors);
that is,

A D

rX
iD1

�i˛
1
i ˝ ˛

2
i ˝ � � � ˝ ˛

d
i (7)

min
X;˛1; :::; ˛n

�i k X � ˛
1
i ˝ � � � ˝ ˛

n
i k

2
F (8)

s.t. X˝ D D˝ (9)

where ˝ denotes the real number filed of tensor.
In Tucker decomposition, a tensorA 2 Rn1�n2�����nd

is decomposed into a set of matrices U.m/ 2 RIm�Jm

.1 6 m 6 d/; and one small core tensor G 2

RJ1�J2�����Jd ; that is,
A D G �1 U.1/ �2 U.2/ � � � � �d U.d/ (10)

min
X;G;U.1/:::U.n/

1

2
k X�G�1U.1/�� � ��nU.n/ k

2
F (11)

s.t. X˝ D D˝ (12)

Nonetheless, these methods require the
transformation of data structures and each
decomposition partially distorts, hence giving rise
to gradual error accumulation.

In contrast to conventional methods, this paper
focuses on global and local tensor completion,
which produces high accuracy and demands low
computational efforts from the algorithm. Thus, we
incorporate an HaLRTC algorithm[29] for this purpose,
which has been proven to outperform other tensor
completion methods.

Parameter optimization procedure. We mainly
utilize the Pigeon-Inspired Optimization (PIO)
procedure to optimize the parameters of MOOP.
As introduced in Ref. [30], PIO, which is a population-
based swarm intelligence algorithm, imitates pigeons
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Fig. 4 Sketch of connecting global and local tensors.

navigation homing behavior. In the algorithm, Duan
and Qiao[30] adopted two operators to describe two
stages of the homing phenomenon.

In the first stage, pigeons can briefly picture the
topographic map in their head by means of magnetic
sense. They take the height of the sun as a compass
to modify their flight path. When approaching the
destination, the dependence on the sun decreases.

Landmark operator. In the second stage, when
approaching the destination, the pigeons pay more
attention to the landmark. When spotting the familiar
building, they will fly straight to their goal. Otherwise,
they will follow leaders that are familiar with the
landmark.

PIO sets an initial location Xi D Œxi1; xi2; : : : ; xin�

and velocity Vi D Œvi1; vi2; : : : ; vin� for the pigeons.
Then, the new location and velocity of each pigeon are
updated.

V ti D V
t�1
i e�R�t C rand.Xgbest �X

t�1
i / (13)

X ti D X
t�1
i C V ti (14)

where R 2 Œ0; 1� denotes the map compass operator,
rand represents random number values in Œ0; 1�, t
denotes the current iteration, and Xgbest is the global
optimum in t � 1 iterations. The first stage operation
will repeat until T1 iterations.

In the second stage, with the landmark operator
utilized, pigeons compare the operator with the
destination. If matching well, the pigeons fly straight
to the goal. After each iteration, the half of the
pigeons which are furthest from the destination can be
weeded out. Xcenter, which is the central location of the
remainder, will be set as the new landmark. The second
stage operation will repeat until T2 iterations. The
combined system is defined as follows:

X t�1center D

P
X t�1i � F.X t�1i /

N t�1
p

P
F.X t�1i /

(15)

N t
p D

N t�1
p

2
(16)

Xi D X
t�1
i C rand.X t�1center �X

t�1
i / (17)
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where F.�/ is the quality of the individual pigeon
individual, and defined as

F.X t�1i / D

8<:
1

fitness.X t�1i /C "
; for maximization;

fitness.X t�1i /; for minimization
(18)

where " denotes the random noise.
With PIO applied to optimize the parameters of

MOOP, each global tensor and local tensor pair has
more explanatory and typical power for prediction.

4 Experiments and Results

In this section, the experimental results are reported,
followed by an in-depth analysis.

4.1 Experiment settings

We utilized the most widely used public MOOC
students-courses data (https://kddcup2015.com) for
empirical evaluation.

Data sources. Enrolment data are leveraged for
evaluation, containing information on students,
courses, and the completion states of specific courses.
Specifically, the number of registered students is
79 186, and the number of courses is 39. We count
how many students are selecting each given course,
and how many courses are registered by each student,
and detailed statistics of the data are depicted in Fig. 5.
As we can see, a great number of registered students
(74 821) have selected less than 3 courses, which might
represent the contingency of their selecting behavior
and thus sharpen the explanatory ability of MOOC
data. Therefore, we filter for students who select less
than 3 courses in the following experiment, and Fig. 5c
expresses the outcome.

Evaluation indices. Since our target is to predict the
dropout of students, we adopt F1-score as the evaluation
metric.

MAPE D
2 � TP

2 � TPC FNC FP
(19)

TP denotes that the prediction is positive and the true
value is positive; FP denotes that the prediction is
positive and the true value is negative; and FN denotes
that the prediction is negative and the true value is
negative. We randomly set several existing values as
null to construct training data and testing data, and
the selected data was transformed into a selecting list
(original value is 1) and a finishing list (original value
is 2). Then, we utilized MOOP to estimate the missing
data, and evaluated the prediction with the two lists.
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Fig. 5 Data statistics. (a) The amount of registering students
about each course; (b) the amount of courses each student
registering; and (c) detailed statistics of the data.

4.2 Experiment results

We firstly showed J-Sim variation trend in ˛ D

Œ0:1; 8�, which verified the superiority of the similarity
calculation method in Figs. 6 and 7. The outcome
reveals that J-Sim has a more flexible variation
trend than the cosine function and is better at
distinguishing the course similarities for clustering than
the conventional cosine similarity method. Note that the
lighter the colour is, the less discriminative the MOOC
data are, and we choose ˛ D 0:5.

We further compare MOOP with other state-of-the-
art methods. Matrix Factorization (MF) is a traditional
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Fig. 7 Visualization of clutering result.

method widely used in collaborative filtering and
can solve the problem to an extent. The Tucker
decomposition method, as a conventional tensor
completion method, is also utilized for comparison. A
Support Vector Machine (SVM), which can efficiently
perform non-linear classification, is also considered
as a competitor. Furthermore, in order to validate the

superiority of the merged tensors, the prediction method
based only on a global tensor, g-MOOP, is implemented
for comparison as well. In other words, there are 5
different methods are put into assessment.

As Table 1 shows, MOOP outperforms other
methods. The reason that all results in the selecting
list are higher than the drop-out list is that we suppose
the students who finish courses also select the same
courses, and the drop-out list results are considered as
an index.

Overall speaking, MF has the worst performance.
Since a matrix can only simultaneously process two
dimensions of data, namely students and courses, some
features of the data, such as the interactions within
students or courses, can be lost. Furthermore, the
method cannot deeply explore the connection between
two dimensions because of limitations of the algorithm.
Consequently, it merely achieves 69.5% on selecting
and 65.6% on drop-out. Other methods, such as Tucker
and g-MOOP, only contain one more dimension, and
gain an improvement of 11.8% and 15.3% on selecting,
12.5% and 16.2% on drop-out. On one hand, this reveals
the superiority of the tensor structure; on the other hand,
it shows that the improvement is limited since it fails to
deeply explore the interactions.

The diversity between Tucker and g-MOOP might
lay in the core of the tensor completion algorithm. As
mentioned above, Tucker transforms the original tensor
into a core tensor with a corresponding matrix in each
dimension, while HaLRTC, used in g-MOOP, focuses
on retaining the original tensor as far as the algorithm
can reach. Thus, the latter sacrifices efficiency to gain
accuracy, and gains an improvement of 3% over Tucker.

Although SVM has an advantage in features analysis,
it is overmatched by MOOP by 6.1% on selecting and
10.7% on drop-out, which can be attributed to the
limitations in data size.

4.3 Discussion

Based on the superiority of MOOP, educators can
accurately orientate students who might give up on the
course halfway through. The results will contribute to
the following improvements.

Table 1 Evaluation of different methods about prediction.

F1-score
Method

MF Tucker g-MOOP SVM MOOP
Selecting 0.695 0.777 0.801 0.853 0.905
Drop-out 0.656 0.738 0.762 0.794 0.879
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� Educators can provide some special educational
pattern for students with a high drop-out rate. Once
these students login to the MOOC platform, the system
would recommend those special courses to them, which
reflects the idea of teaching students in accordance of
their aptitude.
� When it comes to the situation where some

analysis is taking place about given course, the behavior
of students with a high drop-out rate might decrease the
precision. Since some of these students select the course
at random, especially the number selecting less than 3
courses, this could lead to errors into the evaluation of
a course.
� With more information acquired, educators could

analyze the reasons why these students have such a high
drop-out rate. The outcome will drive reforms of the
education system to some extent.

These measures will eventually enhance the ability of
students, and also promote the quality of education.

5 Conclusion

In this paper, a MOOC prediction method based on the
combination of a global tensor and local tensor, solved
with HaLRTC and optimized with PIO, is proposed
to tackle the drop-out prediction task. Concretely,
local tensors are clustered by J-Sim, which divides all
courses into several course groups. When estimating the
missing drop-out data in a specific course, the global
tensor and other local tensors are import optimization
parameters to complete the local tensor that the selected
course belongs to. Experiment results not only validate
the superiority of our proposed method, but also imply
the prospect of application to real-time MOOC drop-out
prediction scenarios.

With regard to future work, there are several latent
problems which are worthy of exploring. Firstly, the
superior experimental results of MOOP can mostly
be ascribed to limitations in the scale of MOOC
data. When it comes to a situation where more
features of data are provided, the problem of how to
maintain the superiority arises. Secondly, the tensor
completion method, HaLRTC, used in this work
sacrifices efficiency to enhance accuracy, which might
lead to high time consumption. We plan to propose a
new algorithm to handle completing the tensor task,
which will balance efficiency and accuracy. Thirdly,
additional valuation metrics and datasets could be
adopted to verify the performance of MOOP.

Acknowledgment

This work was partially supported by the National Project
of Educational Science Planning (No. ECA160409), the
Hunan Provincial Project of Educational Science Planning
(No. XJK016QXX001), and the National Natural Science
Foundation of China (Nos. 71690233 and 71331008).

References
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