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A Classifier Using Online Bagging Ensemble Method for Big Data
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Abstract: By combining multiple weak learners with concept drift in the classification of big data stream learning, the

ensemble learning can achieve better generalization performance than the single learning approach. In this paper,

we present an efficient classifier using the online bagging ensemble method for big data stream learning. In this

classifier, we introduce an efficient online resampling mechanism on the training instances, and use a robust coding

method based on error-correcting output codes. This is done in order to reduce the effects of correlations between

the classifiers and increase the diversity of the ensemble. A dynamic updating model based on classification

performance is adopted to reduce the unnecessary updating operations and improve the efficiency of learning.

We implement a parallel version of EoBag, which runs faster than the serial version, and results indicate that

the classification performance is almost the same as the serial one. Finally, we compare the performance of

classification and the usage of resources with other state-of-the-art algorithms using the artificial and the actual

data sets, respectively. Results show that the proposed algorithm can obtain better accuracy and more feasible

usage of resources for the classification of big data stream.
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1 Introduction

At present, the influence of big data[1] on our
daily lives has become more pervasive. In order to
improve their performance, many types of big data
require real-time processing, in order to obtain useful
knowledge or require better insights to react quickly.
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The classical applications for big data include face
recognition, advertisement recommendation, automatic
driving, stock market predictions, cancer detection, and
so on. Thus, learning on big data stream has attracted
increasing research attention in the past years.

Current thinking suggests that big data refer to
datasets whose sizes are beyond the ability of typical
tools to capture, manage, and analyze[2]. In relation
to this, several challenges for the processing of big
data streams in the existing learning algorithms have
been identified. Some of the challenges include the
limited resource (time and memory) requirements and
the required speed of execution. Another challenge is
the evolution of underlying data distribution (known
as “concept drift”) resulting from the dynamic changes
in user behaviors and network environments. The final
challenge is the occurrence of several issues (e.g.,
overfitting, missing values, class imbalance, etc.) in
batch learning and data stream leaning.

Ensemble methods have been extensively studied
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and used in practical applications, which complete
learning tasks by building multiple learners. This is
the case in the big data stream environments[3]. Aside
from exploiting weak learners and improving the
accuracy[4], they can also be used to solve concept
drifts[5, 6], new class detection[7], feature drifts[8], and
so on. Bagging[9]-, boosting[10]-, and Random Forest
(RF)[11]-based algorithms are classical, frequently used
ensemble methods.

Boosting-based algorithms combine multiple
weak learners to obtain strong learners and mainly
concern with reducing deviations, which can improve
generalization ability. Bagging is a parallel ensemble
learning method, in which the base learners are
generated in parallel. Bagging is mainly concerned with
reducing variance and obtaining good generalization
ability. Meanwhile, RF is an extended variant of
bagging which uses the decision trees to build the
bagging ensemble. In the context of evolving data
streams, there are fewer RF models than those based on
the bagging and boosting methods.

In the evolving data stream setting, the bagging-based
algorithms are more optimal than the boosting-based
algorithms[12, 13], the reason for which is also an open
issue. In the current paper, we present a bagging-based
online classification algorithm for the evolving big data
streams. Our contributions are summarized as follows:
� We exploit the excellent performance of bagging

and introduce different levels of diversity, in order
to change the input space of single classifiers and to
increase the diversity of the ensemble. We also tune
the resampling weights with higher or lower diversity
to obtain the most optimal accuracy for the current type
of concept drift.
� We construct a change detection module for

adapting to the concept drift. This is used to train a
backup base classifier when a warning is alarmed, and
replace the current model when the drift occurs instead
of simply resetting the base classifiers simply.
� We design a robust method for voting the outputs.

We use fuzzy output codes as a form of voting on the
base classifiers instead of deterministic codes. This
can be used to reduce the correlations among the base
classifiers and to increase the ability of fault tolerance
and the diversity of the ensemble.
� We implement a parallel version for our proposed

ensemble classifier according to the Random Access
Memory (RAM)-Hours and Central Processing Unit
(CPU) time. This improves the efficiency of the

algorithm, but does not affect the classification
performance of the algorithm.

The remainder of this paper is organized into
sections. We describe the related work in Section 2,
and improve the online bagging algorithm in Section 3.
In Section 4, we conduct the experimental evaluation.
Finally, in Section 5, we conclude this paper and
suggest possible directions for future studies.

2 Related Work

In online learning, ensembles of classifiers have been
used to improve the performance of single classifiers
successfully. Besides, the ensemble can add, remove,
update, and reset the members dynamicly confronting
concet drifts in data stream learning. The bagging- and
boosting-based algorithms are the most frequently used
ensemble methods for data stream leaning. Studies have
shown that the performance of online bagging is better
than that of the online boosting in most cases[14].

Breiman[9] proposed bagging as an aggregating
method for classification, this method uses bootstrap
aggregating[15] to improve accuracy. Fern and Givan[16]

proposed an online bagging, which takes a fixed value
as the weight of the upcoming instances to update
the base classifier. However, experiment results show
that its performance is not so good. The probability
of each instance to be sampled for a training subset
is approximately according to a Poisson distribution
with different � values, for example, �D 1[12], �D6[17],
and a changing � value[18]. All these could change
the diversity of the ensemble, while higher diversity
corresponds to a lower average Q statistic, which
indicates better accuracy[14]. Q statistic, proposed by
Yule and Pearson[19], is widely used in diversity
measurement in many fields. The range ofQ statistic is
�1 and 1. On the basis of an analysis from ten measures,
they recommended the use of the Q statistic for the
purpose of improving the accuracy of ensembles[14].
For two classifiers, Di and Dj , the Q statistic can be
calculated as

Qi;j D
N 11N 00 �N 01N 10

N 11N 00 CN 01N 10
(1)

where N a;b represents the amount of training instances
that a and b come from classifiers Di and Dj ,
respectively. When the classification of D is correct,
the value of Qi;j is 1; otherwise, the value is 0. In this
paper, the high or low average Q statistic corresponds
to low or high diversity, respectively.

This paper introduces different diversities by
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changing the � values. As shown in Fig. 1, when
� D 1, 37% of the values that represent the probability
of instances being sampled calculated by the Poisson
distribution are 0, 37% are 1, and 26% are bigger than
1. The leveraging bagging algorithm[17] uses a � value
equal to 1 and the Diversity for Dealing with Drifts
(DDD) algorithm[18] uses a changing � value. We use
a different � value before and after a drift in order to
improve the generalization ability on the old or new
concepts, resulting in the finding that diversity by itself
is conducive in reducing the initial increase in error
caused by a drift.

In evolving data stream environments, ensembles
use several methods for the detection of concept
drift problems. For example, Bifet et al.[17] adopted
the ADaptive WINdowing (ADWIN) algorithm and
Minku and Yao[18] adopted the Early Drift Detection
Method (EDDM) for the detection of concept drifts. An
ensemble of classifiers, which is another method to
cope with concept drifts, constantly resets the lower
performance base classifiers with new ones when
concept drift appears[20]. Our algorithm sets a warning
and a drift threshold in each base classifier. Then,
a backup base classifier is trained based on a current
window when a waning is detected, and the current
base classifier is replaced with the backup base classifier
when a drift is detected. Meanwhile, the value of � is
reset according to the current drift type.

Dietterich and Bakiri[21] proposed the error-
correcting code technique to improve the performance
of multiclass problems by only using a new binary
classifier. Their proposed method maps the instances
category from original space to f0, 1g. Schapire[22]

presented a boosting-based ensemble method using the
variation of error correcting output codes, and Bifet et
al.[17] also used a variation of error-correcting output
codes to introduce the randomization. This approach
can increase the diversity of ensemble and reduce the
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Fig. 1 Poisson distribution.

impact of correlations among the base classifiers. In the
current work, we use fuzzy output codes as a voting
strategy on the output of the ensemble, which can
reduce the correlation among the base classifiers in the
ensemble and increase the diversity of the classifiers.

3 An Efficient Online Bagging Ensemble

In data stream classification, we train a model to predict
a class label y for an unlabeled new instance x, which is
a vector of d features. We assume that the actual class
label of a new upcoming instance is available before the
next instance arrives, so that it can be used for training
immediately after it is used for testing.

3.1 Diversity for training space

Online bagging is a widely used ensemble learning
algorithm in evolving data stream, not just because
of its higher performance than single classifiers, i.e.,
there is no need to adjust complex parameters and
easy parallelizing, but also because of its abilities to
add, remove, and update base classifiers when drifts
occur. The pseudo code of the original online bagging
algorithm is shown in Algorithm 1. We use S to denote
the data stream, Y to denote the set of class labels, M
to denote the number of base model, and x to denote the
features vector of instances. The learning environments
can be explained as the number of instances tending to
infinity in batch setting. At this point, the frequency
w of each training instance appearing in each base
classifier hm approximately obeys the distribution of
Poisson, wherein � equals 1. When an instance is
used to training, it will be used w times. The overall
prediction class label for a new upcoming instance is
given below.

ho.x/ D argmaxy2Y

MX
mD1

I.hm.x/ D y/ (2)

where I.�/ is the indicator function.
We use different � values instead of 1 in Poisson

distribution before and after concept drift to encourage
different levels of diversity and obtain better accuracy.
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for a new upcoming instance is given below.

ho(x) = argmaxy∈Y

M∑

m=1

I(hm(x) = y) (2)

We use different λ values instead of 1 in Poisson
distribution before and after concept drift to
encourage different levels of diversity and obtain
better accuracy. λ value is not a fixed value. In
this way, higher or lower λ values are correlated to
higher or lower average Q statistics[22], respectively.
In turn, higher or lower average Q statistics,
represents higher or lower diversity, respectively.
This can modify the space of the training sets for
sub-classifiers inside the ensemble.

Algorithm 1  Online bagging
Input: OnlineBagging(M,S, Y )
Output: predicted calss label(Majority vote)

1 Initialize M base classifier: h1, h2, . . . , hM ;
2 while HasNext(S) do
3 (x, y)← NextInstance(S);
4 for m← 1, . . . , M do
5 w ← Possion(1);
6 Train hm with instance using weight w;

7 return the overall class label through majority vote;

3.2 Solution for the concept drift
In the evolving data stream setting, the algorithm
should not only be accurate, but should also be
able to deal with concept drift. It is known to

to existing classifiers as it is trained based on the
latest instances.

data

feedback
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Fig. 2 A generic schema for an online adaptive learning
algorithm

The pseudo-code of our proposed algorithm is
shown in Algorithm 2. We use a broad threshold to
detect warnings and a narrow threshold to detect
drift from lines 12 to 16. When a warning is
detected, a backup classifier is trained and used to
replace the bad one when drift is detected.

Algorithm 2
Input: EoBag
Output: predicted calss label

1 Initialize
classifier:

2 Compute coloring
3 while HasNext(
4 (x, y
5 for m
6 y
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� value is not a fixed value. In this way, higher
or lower � values are correlated to higher or lower
average Q statistics[23], respectively. In turn, higher or
lower average Q statistics, represents lower or higher
diversity, respectively. This can modify the space of the
training sets for sub-classifiers inside the ensemble.

3.2 Solution for the concept drift

In the evolving data stream setting, the algorithm
should not only be accurate, but also be able to
deal with concept drift. It is known to all that early
instances correspond to outdated concepts, whereas
new instances are associated with the latest concept
in stream setting. The traditional way is to reset the
worst classifier immediately when the drift is detected.
The process of retraining a new classifier reduces the
classification performance of the ensemble. Given that
the new classifier has not been trained on any existing
instances, predicting the new concept very well is
impossible. Thus, instead of resetting the classifier
when drifts occur, we use a more lenient threshold
to represent the occurrence of a warning and train a
backup classifier on the most recent instances alongside
the ensemble without influencing the overall decisions.
As shown in Fig. 2, whenever the drift is detected
for a classifier, then it is replaced by its backup
classifier. This approach has at least two advantages.
First, it spends less time in positively influencing the
overall ensemble decision because of the trained backup
classifier. Second, the backup classifier is superior to
existing classifiers as it is trained based on the latest
instances.

The pseudo-code of our proposed algorithm is shown
in Algorithm 2. We use a broad threshold �w to detect
warnings and a narrow threshold �d to detect drift from
lines 12 to 16. When a warning is detected, a backup
classifier is trained and used to replace the bad one when
drift is detected.
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Fig. 2 A generic schema for an online adaptive learning
algorithm.

sub-classifiers inside the ensemble.

Algorithm 1: OnlineBagging
Input: OnlineBagging(M,S, Y )
Output: predicted calss label(Majority vote)

1 Initialize M base classifier: h1, h2, . . . , hM ;
2 while HasNext(S) do
3 (x, y)← NextInstance(S);
4 for m← 1 . . .M do
5 w ← Possion(1);
6 Train hm with instance using weight w;

7 return the overall class label through majority vote;

3.2 Solution for the concept drift
In the evolving data stream setting, the algorithm
should not only be accurate, but should also be
able to deal with concept drift. It is known to
all that early instances correspond to outdated
concepts, whereas new instances are associated
with the latest concept in stream setting. The
traditional way is to reset the worst classifier
immediately when the drift is detected. The
process of retraining a new classifier reduces the
classification performance of the ensemble. Given
that the, new classifier has not been trained on
any existing instances, predicting the new concept
very well is impossible. Thus, instead of resetting
the classifier when drifts occur, we use a more
lenient threshold to represent the occurrence of a
warning and train a backup classifier on the most
recent instances alongside the ensemble without
influencing the overall decisions. As shown in Fig.
2, whenever the drift is detected for a classifier,
then it is replaced by its backup classifier. This
approach has at least two advantages. First, it
spends less time in positively influencing the overall
ensemble decision because of the trained backup
classifier. Second, the backup classifier is superior

algorithm

The pseudo-code of our proposed algorithm is
shown in Algorithm 2. We use a broad threshold to
detect warnings and a narrow threshold to detect
drift from lines 12 to 16. When a warning is
detected, a backup classifier is trained and used to
replace the bad one when drift is detected.

Algorithm 2   Efficient online bagging
Input: EoBag(M,S, θw, θd, Y )
Output: predicted calss label

1 Initialize M classifier: h1, h2, . . . , hM and weights of

← {0, 1};
classifier: Wm;

2 Compute coloring µm : y 
3 while HasNext(S) do
4 (x, y)← NextInstance(S);
5 for m← 1, . . . , M do
6 ŷ ← predict(hm, x);
7 update class µm(y) and W (hm) with y and ŷ;
8 w ← Possion(λ);
9 while w > 0 do

10 Train hm with instance using weight w;
11 w = w − 1;

12 if θw < detect(hm, x, y) < θd then
13 bm ← CreateBackClassifier();

14 if detect(hm, x, y) > θd then
15 hm = bm;
16 update λ value with a greater one

17 return the overall class label through weighted majority vote;

3.3 Fuzzy output codes
In the traditional ensemble method, all the
classifiers try to predict the same result. However,
we use the error correction code to make each
classifier with a different prediction function.
This reduces the correlation among the individual
classifiers in the ensemble and increases the
diversity of the classifiers. In data stream
classification setting, the error-correcting output
codes are inspired by the error-correcting codes
presented in Shannon’s information theory[23].

3.3 Fuzzy output codes

In the traditional ensemble method, all the classifiers
try to predict the same result. However, we use
the error correction code to make each classifier
with a different prediction function. This reduces
the correlation among the individual classifiers in
the ensemble and increases the diversity of the
classifiers. In data stream classification setting, the
error-correcting output codes are inspired by the error-
correcting codes presented in Shannon’s information
theory[24].

We introduce coding ideas into class resolution and
raise fuzzy output codes based on error-correcting
output codes. This is expected to be a fault-tolerant
approach in the decoding process. In detail, we assign
a binary string of a specific length to each class label,
each bit of the string is implemented in the following
way: we select a binary value �m.y/ for each classifier
m and each class label y uniformly and randomly in line
2 of Algorithm 2.

The sequence of bit assignments for each of the
class labels can be viewed as a “code word”. A good
code word for a k-class problem should meet two
criteria. As shown in Table 1 for an ensemble of six
classifiers in a classification task of three class labels,
the first criterion is column independence, wherein each
code word should be differentiated according to the
Hamming distance; the other criteria is that fi should
be uncorrelated with fj .

In Table 1, the binary string of Class A is 001110
and the first 0 corresponds to the code result of
classifier 1 and so forth. Each classifier has a different
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Table 1 Instance matrix of fuzzy output codes for 3 classes
and 6 classifiers.

Classifier Class A Class B Class C
f1 0 0 1
f2 0 1 1
f3 1 0 0
f4 1 1 0
f5 1 0 1
f6 0 1 0

prediction function. When a new instance is arriving,
each classifier outputs a value of 0 or 1 and then the
ensemble gets a binary string. Then, we compute the
Hamming distance between this predicted string and all
class label’s code words, resulting in the identification
of the closest class label. For a prediction instance x,
if its real class label is C, the prediction result from
f1 to f6 is 0, 1, 1, 0, 0, 0, respectively, among which
f5 incorrectly predicts 1 to 0. Next, we calculate the
Hamming distance between 011000 and the code word
of each class label. The closest one is Class C and
the prediction is correct. In this paper, this is called
“fuzzy voting”, which uses the similarity degree of
string to predict the classification result. We can see
that this method possesses a certain ability of fault
tolerance. The process is realized in lines 6 to 7 of
Algorithm 2.

According to the efficient online bagging (hereafter
referred to as EoBag), the overall prediction class label
for a new coming instance is given below.

ho.x/ D argmaxy2Y

MX
mD1

WmI.hm.x/D�m.y// (3)

3.4 Parallel implementation

In ensemble classification, the training of the base
classifiers is usually the most time-consuming task,
unless greedy learners are used in the ensemble. In big
data stream scenarios, the base learners are repeatedly
used for multiple tasks, such as tracking drifts and
updating data structures that represent their weights.

In EoBag, the training of the base classifier includes
the updating of drift detection parameters and the
evaluation of the prequential accuracy on the base
classifier, and the training of a new backup classifier
if the drift warning appears. Each base classifier
performs these operations independently, allowing it to
design multi-threaded concurrent executions. In order
to verify the advantages of this approach, we compare
the parallel and serial versions of EoBag. In the

experimental part, the comparison results indicate that
the parallel version execution speed is significantly
improved. At the same time, we simply parallelize
the parts that are executed independently, so the
classification performance is not affected.

4 Experimental Analysis

In this section, we evaluate the performance of the
EoBag in the following three aspects: classification
accuracy, resource usage (memory, time), and running
time with experiments. Experiments comprise the
comparison of our proposed algorithm against three
other state-of-the-art ensemble classifiers and a most
commonly used single classifier. To assess classification
performance, we perform a 10-fold cross-validation
prequential evaluation[25]. Experiments focusing on
resource usage were run individually and repeated
10 times to eliminate fluctuations on the results. The
number of base classifiers in all ensembles is set to
50, and the configuration of the base classifier for all
ensembles is the same. We use four artificial and three
real datasets to conduct our experimental analysis.

All experiments were configured and executed within
the Massive Online Analysis (MOA) framework[26]. All
algorithms evaluated in this paper were implemented
in the Java programming language by extending the
MOA software. The experiments were performed on
a 1.9 GHz Core 16 Intel(R) Xeon(R) CPU E7-4820
machine with 32 GB RAM.

4.1 Experimental setting

Artificial data has several advantages: they are easier to
reproduce and there is little cost in terms of storage and
transmission. We consider four of the most likely used
in the literature. The University of California Irvine
(UCI) machine learning repository[27] contains some
real-world benchmark data for evaluating machine
learning techniques. We also consider three of the
largest that have been thoroughly used in the literature
to evaluate the classification performance of data stream
classifiers: Forest Covertype, Electricity, and Poker
Hand. Table 2 presents an overview of the data sets
used in the current work.

4.2 Experimental results

We start our experimental evaluations by comparing
variations of EoBag to evaluate its sensitivity to various
parameters (e.g., drift and warning threshold, ensemble
size, and subspace size) and variations of the algorithm
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Table 2 Data sets.

Data set
Number of
instances

Number of
features

Type
Number of

classes
LED 500 000 24 Artificial 10
SEA 500 000 3 Artificial 2

Hyperplane 500 000 10 Artificial 2
Random RBF 500 000 10 Artificial 5

Covertype 581 012 54 Real 7
Electricity 45 312 8 Real 2
PokerHand 1 000 000 10 Real 10

that deactivates some of its characteristics (e.g., drift
detection and warning detection). The second set of
experiments concerns the evaluation of computational
resources usage (CPU time and RAM-Hours). Finally,
we present experiments comparing the classification
accuracy of efficient online bagging and other state-of-
the-art ensemble classifiers.

4.2.1 EoBag variations
The first experiment is a comparison among six
variations of the efficient online bagging algorithms
(the following is expressed in EOBag), each of which
“removes” some characteristics from EOBag (e.g., drift
detection). We performed this comparison to illustrate
the benefits of using EOBag, and to discuss how each
strategy included contributes to the overall classification
performance. Each variation configuration is presented
below.

(1) EoBagm (m represents moderate) uses a more
tolerant detection threshold to ADWIN, which brings
fewer drifts or warnings (�w D 0:0001 and �d D

0:000 01/.
(2) EoBagf (f represents fast) uses a more stringent

detection threshold to ADWIN, which brings more
drifts or warnings (�w=0.01 and �d =0.001).

(3) EoBagnbk (nbk represents no backup classifier).
There is no warning detection and backup classifier,
that is, it will reset the corresponding classifiers
immediately as soon as the drifts are detected.

(4) EoBagstd (std represents standard). This is an
original online bagging version as it does not detect a
concept drift; thus, instead of resetting the classifiers, it
uses majority vote strategies.

(5) EoBagmaj (maj represents majority). This is
consistent with EOBagm, the only difference is the use
of the majority vote instead of the weighted majority.

As shown in Table 3, EoBagf is slightly better than
EoBagm because the former can detect drift faster and
train the backup classifier earlier to cope with concept
drift. By comparing EoBagm with EoBagnbk, there

Table 3 Accuracy for EoBag variations. (%)
Data set EoBagm EoBagf EoBagnbk EoBagstd EoBagmaj

Artificial

LED 73.90 73.94 73.91 67.51 73.92
SEA 89.66 89.67 89.66 87.80 89.66
Hyperplane 90.26 90.56 90.53 83.68 90.26
Random

RBF
89.70 89.88 89.76 78.76 89.67

Avg 85.88 86.01 85.97 79.44 85.88

Real

Covertype 92.32 91.86 92.35 88.20 92.31
Electricity 88.92 89.45 88.95 86.83 88.80
PokerHand 85.27 87.50 86.49 85.10 85.26
Avg 88.84 89.60 89.26 86.71 88.79
Overall Avg 87.15 87.55 87.38 82.55 87.13

is no obvious difference in terms of the effect of
using a backup classifier. This is because, in a large
ensemble, it will not have a great impact on the overall
results while only a few members have drift. However,
compared with EoBagnbk which uses a completely new
classifier to obtain a prediction, we can see that the
performance of EoBag (EoBagm and EoBagf) with
a backup classifier is slightly better. We can also see
that the performance of an original bagging EoBagstd
without drift detection is relatively poorer compared
with others. The reason is that using the classifier,
which has been drifting, can have a negative impact on
the classification result. Therefore, when the concept
drift occurs, we either discard the classifier directly or
replace the classifier with the backup classifier.

However, when the concept drift affects more
members of the ensemble, the method of direct
abandonment will reduce the scale of the ensemble
and affect the classification performance. Finally, we
observe that the weighted majority can obtain better
classification performance than the simple majority
voting in most cases. This is because the weights
depend on the accuracy of the classification as the
previous reset is more effective. However, it can be
observed in some datasets that EoBagmaj shows better
performance than others. This is because, when the
weight is overestimated or undervalued, it tends to
have a bad effect on the classification results. Thus, the
selection of the weight function should be as reasonable
as possible. In general, the weighted voting is better.

4.2.2 Comparison between the parallel and serial
versions

We compared the performance of the EoBag’s parallel
version and serial version in terms of resource usage.
The sizes of the ensemble are 5, 10, 15, and 30. Figures
3a and 3b give the comparison of the experimental
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Fig. 3 Comparison between the paralell and serial versions
in terms of CPU time and RAM-Hours, for 5, 10, 15, and 30
learners.

results in CPU time and RAM-Hours, respectively.
The parallel version requires more memory than serial
version, but it executes faster with an average RAM-
Hours value that is much lower than that of the serial
version. Ideally, under the circumstances of the parallel
execution of independent tasks, our algorithm refers
to the training of the base classifiers, and the number
of parallel tasks can be scaled linearly according
to the number of threads assuming that there are
enough available threads. Nevertheless, some factors
can impede the scalability of the EoBag’s parallel
implementation, such as the number of available threads
and some operations that have not been parallelized
(such as merging vote). In Figs. 3a and 3b, we can
see that the gains are more prominent when the number
of trees is equal to or greater than 15 (the number of
available processors is 16), This is consistent with the
expected result as all the base classifiers can be trained
simultaneously.

4.2.3 Comparison between the EoBag and other
classifiers

Next, we compare the overall classification
performances in terms of accuracy of EoBag,
Hoeffding tree, and other widely used ensemble

algorithms. EoBag uses ADWIN for warning and
drift detection with the parameter �w D 0:01 and
�w D 0:001, respectively. Experiments were carried
out on both artificial datasets and real datasets with
concept drifts.

Figures 4–7 show the classification accuracy of
EoBag and other algorithms on artificial datasets
of the LED, SEA, Hyperplane, and Random RBF,
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Fig. 4 Accuracy of the data set LED.
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Fig. 5 Accuracy of the data set SEA.
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Fig. 6 Accuracy of the data set Hyperplane.
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Fig. 7 Accuracy of the data set Random RBF.

respectively. The results show that the ensemble model
has better performance than the single model in terms
of classification accuracy and the ability to adapt to
concept drift. In Fig. 4, before the concept drift, all
algorithms perform almost the same, but after that,
EoBag can recover quickly and reach the previous
level. In Fig. 5, EoBag is comparable to ARF and
LeverageBagging in the SEA dataset in terms of
accuracy, but shows better performs than OzaBag in
terms of adapting to the abrupt concept drifts. Figure
6 indicates that EoBag shows better accuracy than
other algorithms, but ARF is less influenced by the
concept drift and has the highest accuracy after concept
drift. EoBag, ARF, and LeverageBagging obtain similar
performances when used on the Random RBF dataset
(Fig. 7), and all three perform much better than OzaBag
and Hoeffding Tree when concept drifts occur.

In the real-world datasets, EoBag consistently
performs the best when used on the Poker Hand
dataset, as shown in Fig. 8 and shows almost the
same performance as the ARF on the Electricity
dataset (Fig. 9) and the LeverageBagging on the Forest
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Fig. 8 Accuracy of the data set Poker Hand.
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Fig. 9 Accuracy of the data set Electricity.
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Fig. 10 Accuracy of the data set Forest Covertype.

Covertype dataset (Fig. 10). Compared with all the
other algorithms, EoBag obtains the best performance
and maintains stability when concept drifts occur.

In addition, we compared EoBag against some
widely used ensemble classifiers in terms of CPU time
and RAM-Hours with 50 base models in Tables 4 and
5, respectively. We can see that EoBag outperforms
LeverageBagging and is close to OzaBag and ARF

Table 4 Compared EoBag against some widely used
ensemble classifiers in terms of CPU time with 50 base
models. (s)

Data set EoBag Leveage-
Bagging OzaBag ARF

Artificial

LED 908.25 3817.06 1088.65 1056.67
SEA 1243.18 4687.76 1263.78 1187.24
HyperPlane 1198.57 4798.76 1293.58 1978.91
Random RBF 2376.57 7013.65 2478.87 2869.77
Avg 1431.64 5079.31 1531.22 1773.15

Real

Covertype 1783.07 3365.78 2087.38 2034.04
Electricity 398.42 589.66 231.02 467.18
PokerHand 899.97 1264.86 1596.31 977.89
Avg 1027.15 1740.10 1304.90 1159.70
Overall Avg 1229.40 3409.70 1418.06 1466.43
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Table 5 Compared EoBag against some widely used
ensemble classifiers in terms of RAM-Hours with 50 base
modes. (GB-Hour)

Data set EoBag Leveage-
Bagging OzaBag ARF

Artificial

LED 0.399 0.412 1.765 0.467
SEA 1.784 5.391 0.418 1.972
HyperPlane 1.031 7.912 3.219 1.129
Random RBF 0.014 0.476 0.601 0.019
Avg 0.087 3.548 1.501 0.897

Real

Covertype 0.107 0.986 3.121 0.028
Electricity 0.001 0.007 0.002 0.001
PokerHand 0.001 0.002 0.001 0.001
Avg 0.036 0.332 1.041 0.010
Overall Avg 0.421 1.940 1.271 0.453

algorithms in terms of CPU Time. Furthermore, EoBag
is more efficient than OzaBag and LeverageBagging,
and is similar to ARF in terms of RAM-Hours.

5 Conclusion and Future Work

Data stream classification has raised some research
issues as it uses limited resources to adapt to a
constantly evolving stream with data arriving at
high speeds. Ensemble-based methods are appropriate
choices for the evolving data streams, as they often
obtain high performance of classification and adapt to
some drifts. In this paper, we explored the problem
of classification for big data stream. Different from
previous modeling methods, we presented an improved
online bagging algorithm for the classification of the
evolving big data stream. The proposed method
provides effective solutions, such as better accuracy and
more feasible usage of resources, to the problem of
big data stream classification. As for our further work,
we will focus on improving the execution efficiency of
the algorithm. In addition, we aim to propose a semi-
supervised, weak-label classification strategy to deal
with the real-world scenario.
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