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A Deep Learning Method for Chinese Singer Identification

Zebang Shen, Binbin Yong, Gaofeng Zhang, Rui Zhou, and Qingguo Zhou*

Abstract: As a subfield of Multimedia Information Retrieval (MIR), Singer IDentification (SID) is still in the research

phase. On one hand, SID cannot easily achieve high accuracy because the singing voice is difficult to model

and always disturbed by the background instrumental music. On the other hand, the performance of conventional

machine learning methods is limited by the scale of the training dataset. This study proposes a new deep learning

approach based on Long Short-Term Memory (LSTM) and Mel-Frequency Cepstral Coefficient (MFCC) features

to identify the singer of a song in large datasets. The results of this study indicate that LSTM can be used to

build a representation of the relationships between different MFCC frames. The experimental results show that the

proposed method achieves better accuracy for Chinese SID in the MIR-1K dataset than the traditional approaches.
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1 Introduction

The bulk of multimedia data on the Internet grows at
1000-fold speed. Hence, online multimedia content
indexing and retrieval has become one of the most
cutting-edge topics in the multimedia domain. To
retrieve multimedia contents precisely and efficiently,
extensive research has been conducted in the field
of Multimedia Information Retrieval (MIR), which
involves building a robust categorical and retrieval
system!!!. Music is one of the most widely used
multimedia contents on the Internet. Although
retrieving a song using several keywords, such as
singer name or song name, is easy, retrieving a song
using a small piece of music can be fairly complex.
To avoid retrieval dependency on keywords, various
Content-Based Retrieval (CBR) techniques have been
developed.

Singer IDentification (SID) is a subfield of CBR,
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which retrieves the singer name through a small piece
of music. Therefore, SID has been used to classify
and group massively disordered music data in the past
years. Furthermore, accurate SID can be used in digital
rights management when the singer of music on the
Internet can be identified automatically. However, the
SID application is still undeveloped at present. First,
high accuracy is still difficult to achieve because the
singing voice is different from the speaking voice.
Hence, the problem is difficult to model. Meanwhile,
the background instrumental music and audio of other
singers may affect the accuracy of SID. Second, the
performance of conventional machine learning methods
is limited by the use of small-scale training dataset.

To solve these problems, various approaches have
been proposed to identify the singer on the basis of
the music content precisely. Many of the proposed
approaches focus on the singer feature extraction. For
example, Dupraz and Richard!?' investigated audio
fingerprinting, which can be used in SID. Schindler and
Rauber!®! combined several types of features to improve
the identification accuracy. Cai et al.l*! analyzed the
auditory sense features of humans and combined many
single features to train a Gaussian mixture model. Patil
et al.l’! used the Mel-Frequency Cepstral Coefficient
(MFCC) features and cepstral mean subtracted features
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to examine SID and achieved accuracy rates of 75.75%
and 84.5% for a dataset of 500 songs, respectively.
Several artificial intelligence methods have also been
applied in the SID field, but most works use the
fully connected Back Propagation Neural Network
(BPNN)I®! and Support Vector Machine (SVM)[7:81,
The running speed of BPNN is fast, but the BPNN can
be easily overfitted. SVM works well for small samples.
However, for the large amount of music data on the
Internet, the performance of SVM becomes worse.
Moreover, single SVM aims for binary classification
problems, but it is complex to construct the model with
SVM for multi-class classification problems. When the
number of classes is large, the training time of SVM is
unacceptable. To solve the second problem of the SID
application, we need more efficient approaches.

To apply SID to a large-scale dataset, a deep learning
based method is proposed in this study. Since the
pioneering work of Hinton and Salakhutdinov’®!, deep
learning has revolutionized many fields. One successful
application of deep learning is speech recognition?l.
By using Deep Neural Networks (DNNs)!'!l or deep
Recurrent Neural Networks (RNNs)!'2l| we can build
complex acoustic models that map the input features
to grapheme outputs correctly. However, in the field
of MIR, particularly the SID area, research based
on deep learning is still rare. Shen et al.l'3l used
Long Short-Term Memory (LSTM) to do SID in their
study. Inspired by the successful application of RNNs
on acoustic modeling, a new deep learning method
for SID, which is based on the multilayer LSTM
networks, is presented in this study. In addition, several
regularization strategies have been introduced to control
overfitting.

The remainder of this paper is organized as follows:
Section 2 gives a brief introduction to the RNNs and
LSTM networks. Section 3 describes the architecture
of the proposed method. Section 4 discusses the settings
of the experiments. Section 5 provides the experimental
results and analysis. Finally, Section 6 draws the
conclusion.

2 Introduction to LSTM

The LSTMI'* is a type of RNN with loops and
gates. The LSTM network is the basic layer of the
proposed model. By stacking several LSTM layers
and combining the LSTM networks with DNNs, we
construct the SID deep learning model.
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2.1 Recurrent neural networks

The RNN is a neural network that is designed
specifically for processing a sequence of values
(xD, ..., x@), which is based on an early idea
proposed in machine learning and statistical models:
sharing parameters across different parts of a model!'!.
Similar to convolutional neural networks that share
weights across pixels, RNNs share weights across time
steps. Figure 1 shows the computational graph and
unfolding state of a commom RNN structure.

For a static length of series data x(l), x(z), el x(’),
RNNs perform forward propagation to calculate the loss
and backpropagation to update the weights by gradient
descent across the time steps. First, the hidden layer
inputs at time ¢, which are related to the current inputs
and the hidden states at time ¢ — 1, are calculated using
Eq. (1).

a® =b+wh'V 4 Mx® (1)

where M is the input weight matrices and W is the
hidden layer weight matrices, #¢~" denotes the hidden
state at time step ¢ — 1, x®) denotes the input data at
time ¢, and b is the hidden layer biases. Then, the
hidden states at time ¢ are calculated using the nonlinear
activation function.

h® = tanh(a®) (2)

The output of the hidden layer 0® is formally written
as

o =c+ NK® 3)

where N is the output weight matrices and ¢ is the
output biases. Afterward, the softmax is performed on
the outputs.

p® = softmax(0®) 4)

Fig. 1 Computational graph and its unfolding state of
RNNs. x denotes the input sequence, % is the hidden state,
Loss measures how far the output o is from the training target
y,and M, N, and W are the weights of RNNs.
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in which p(’) is the prediction of the input at time ¢
with respect to the previous data because the RNN is
an iterative model. Then, the cross entropy between the
predictions and actual labels is calculated as the loss
function.

Loss = — Z y® log(p®) 5)

t

where y(’) is the actual label at time ¢. Finally, the
gradient descent algorithm based on Loss is utilized to
train the RNN.

RNNSs share parameters along the time axis, which
enable the past states of the model to influence the
current states. For SID, this type of neural network
is very appropriate because the audio is a continuous
sequence. However, the gradient vanishing problem will
occur when the sequence is long. That is, the gradients
reach 0 if the sequence is long, which leads to training
failure. To overcome this problem, the LSTM has been
proposed.

2.2 Long short-term memory

Given that the LSTM network is a kind of RNN, its
basic structure is similar to that of RNNs. To overcome
the graident vanishing problem, LSTM uses the LSTM
cell instead of hidden neurons in RNNs. The structure
of the LSTM cell is shown in Fig. 2. The LSTM cell
contains the forget, input, and output gates''®!, which
can be expressed as three functions, namely, f (’), i (’),
and 0. f® decides which information model should
be discarded from the cell state. The equation of the
forget gate is expressed as

fO =0, (Wrx® +VehD + by (6)
To simplify the sign, W and V in the equations denote
the weight matrices and b denotes the biases of the
model. These weights and biases are the parameters
that should be learned during training. x® is the input
vector at time ¢ and 1®) refers to the output vector of
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the cell at time 7. o, is the sigmoid function which can
be defined as

ex

e* +1

The input gate decides which information should be
stored in the cell states, whereas the output gate decides
which information should be the output. The equations
of the input gate i ) and output gate 0® are defined as
follows:

(7

og(x) =

iD= oa(WixD + VY 4 py) (8)
0 = o, Wox® + V,h =D 1 b,) )

The cell state ¢® is updated as follows:
cW = f(t) octV 406, (Wx® +V,h"D 4 p,)
(10)
The operator o denotes the Hadamard product and oy,

refers to the hyperbolic tangent function.
e* —e ™

= — 11
on(x) = 3 pe (1D
The output of the cell at time ¢ is
KO = ,® 4 Oh(C(t)) (12)

Through the LSTM cell, the LSTM networks can
deal with the long-term dependency of a long sequence
without gradient exploding or vanishing. Except for the
internal computation, the forward and backpropagation
of LSTM are much similar to those of RNNs. An
advantage of LSTM over conventional RNNs, hidden
Markov models, and other sequence machine learning
methods is its relative insensitivity. Thus, in this study,
the LSTM neural network is adopted in conducting SID
because the singing voice is a typical sequence data with
long dependency.

3 Proposed Method for Singer Identification

In this study, we use the MIR-1K dataset, which
contains 1000 segments of Chinese popular music
with a fixed sampling rate of 22050Hz, to conduct
the experiments. The audios in the MIR-1K dataset
contain several nonvocal parts. Therefore, we cut these
nonvocal parts manually. Then, the MFCC features
are extracted and rescaled to zero mean and unit
variance. Although MFCC feature extraction used
sliding windows on the original audios, in our method,
we use a sliding window with a fixed size to select
a fixed-length sequence from the MFCC features.
Actually, this window size is the number of time
steps of the input sequences. Then, the proposed
model is trained with these sequences using the Adam
optimization algorithm!!'”. After training, the model is
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tested with a test set, which is another subset of the
MIR-1K dataset. The complete model is illustrated in
Fig. 3.

3.1 MFCC features

MFCC features!!®1°! are widely used in automatic
speech and speaker recognition. The MFCC is a
representation of the short-term power spectrum of a
sound which is based on a linear cosine transform of
a log power spectrum on a nonlinear mel scale of
frequency!?’l. Essentially, the MFCCs are coefficients
that collectively comprise a Mel-Frequency Cepstrum
(MFC). In the MFC, the frequency bands are equally
spaced on the mel scale, which approximates the
human auditory system’s response more closely than
the linearly spaced frequency bands used in the normal
cepstrum. Thus, the MFCCs are considered to be
appropriate for SID.

To get the MFCCs features, the original signal is
framed into 40 ms short frames. Given that the sampling
rate of the dataset is 22 050 Hz, the frame length is

0.04 x 22050 = 882 (13)

The frame shift is set at 512 in our method. Then
20 and 40 coefficients are extracted from each frame
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Fig. 3 Complete processing flow of the proposed method.
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for comparison. After feature extraction, these MFCC
spectra are standardized and rescaled to zero mean and
unit variance.

After standardization, the feature sequences of the
audio are still too long for training a model. Thus,
these long sequences should be split into a set of small
sequences. Instead of using equal-length sequences,
the sliding window with a fixed window size is
adopted in our method. For comparison purposes,
we select the time steps of 10 and 20 at different
stages of the experiments. For the 20-step sequence,
the audio duration is only 0.5 s, which is smaller than
that of previous works!!#32:221 " Furthermore, these
sequences are shuffled and inputted into the model for
training.

3.2 Model architecture

As shown in Fig. 3, the proposed model is a
DNN, which consists of two LSTM layers, one fully
connected layer, and one ouput layer. The numbers
of hidden neurons in the two LSTM layers are both
400, which is confirmed by the experimental results
presented in Section 5. The outputs of the last time step
in the second LSTM layer are the inputs of the fully
connected layer.

After the LSTM layers, the model has a fully
connected layer with 400 hidden neurons. The
activation function in this layer is the rectified linear
units!??!. Finally, the model has an output layer, which
maps the outputs of the fully connected layer to 10
units and calculates the softmax. The cross entropy is
selected as the loss function, and the formula has been
expressed as Eq. (5).

To start training, the parameters of the proposed
model are initialized with a zero mean and unit
variance Gaussian distribution. The Adam optimization
algorithm is used to train the DNN. The Adam
optimization algorithm is based on adaptive estimates
of lower-order moments and well suited for problems
with a large amount of data and many parameters. The
deep learning model for real-world SID application is a
large model with many layers and parameters. Thus, we
use the Adam optimization algorithm for training.

To overcome the overfitting problem, the dropout!?#!
and early stopping!?! strategies are adopted. For each
small batch, the units in the LSTM layers and fully
connected layers are randomly dropped out with a
fixed probability of 50%. This regularization method is
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widely used, thus, we will not discuss it in detail.

The early stopping strategy, which is also used
to prevent overfitting, is shown in Algorithm 1. A
validation set is used to validate the cost of every 100
batches while training. The early stopping method helps
stop the training process before overfitting occurs.

4 Experimental Setup

To verify the performance of the proposed method,
a series of experiments is conducted. This section
describes the experimental setup.

4.1 Dataset description

We use a subset of the MIR-1K dataset because the
data in each category of the original MIR-1K dataset
are uneven. Several singers have 132 song segments,
whereas other singers have only 8 song segments. Thus,
a subset of 10 singers with 400 song segments is
selected. In this subset, each singer sings 5 complete
songs that are split into 40 segments. The details of the
subset are given in Table 1. The validation set is a small
randomly selected subset of that is not used for training.

Algorithm 1 Early stopping algorithm in proposed method
Input: training dataset X and validation set V'
Output: model M
Set: patiance < 10 & current patiance ¢ = 0

initialize M
while ¢ < patiance do
train M with Adam algorithm
if step %100 == 0 then
if cost of V is smaller then
save the copy of M as M’
else
c++
return the latest copy M’

Table 1 Details of the dataset.

Singer Gender Total song Training song Testing song
name (segment)  (segment) (segment)
Abjones Male 5 (40) 4 (31) 19
Annar  Female 5 (40) 4 (31) 19
Bobon Male 5 (40) 4(32) 1(8)
Fdps Male 5 (40) 4 (31) 1(9)
Heycat Female 5 (40) 4 (32) 1(8)
Jmzen Male 5 (40) 4 (32) 1(8)
Kenshin Male 5 (40) 4 (32) 1(8)
Stool Male 5 (40) 4 (32) 1(8)
Titon Female 5 (40) 4 (32) 1(8)

Yifen Female 5 (40) 4 (32) 1(8)

4.2 Feature extraction

After MFCC feature extraction, a sliding window is
used to split these feature spectra into a set of sequence
data. We use different window sizes here for different
experiments. The details of final input data are shown
in Tables 2 and 3.

4.3 Performance metrics

To measure the performance of the experimental
models, accuracy (AC), precision (PR), recall (RC), and
F-Measure (FM) are calculated for each model. For
comparison, contrast experiments have been conducted
with three machine learning methods, namely, SVM,
Deep Fully Connected Neural Network (DFCNN), and
Random Forest (RF). These methods are widely used in
previous works on SID!!-7-8 and are appropriate as the
performance benchmarks.

5 Results
Table 4 shows the experimental results of the MIR-1K

Table 2 Details of the input data with 20 MFCC features.

Window Time . . . . Size of
. raining set size  Test set size .
size step one nput
10 10 (78753, 10,20) (20675, 10,20) (10, 20)
20 20 (75583,20,20) (19845, 20,20) (20, 20)

Table 3 Details of the input data with 40 MFCC features.

Window Time .. . . Size of
. Training set size  Test set size .
size step one input
10 10 (78753, 10,40) (20675, 10,40) (10, 40)
20 20 (75583, 20,40) (19845, 20,40) (20,40)

Table 4 The performance of the proposed method and the
benchmarks.
Feature and step Method AC (%) PR (%) RC (%) FM (%)
RF 67.8 70 68 68
20 features SVM 81.5 82 82 82

10 steps DFCNN 78.6 79 79 79
LSTM  86.2 86 86 86
RF 68.6 71 69 68
20 features ~ SVM 82.2 82 82 82
20 steps DFCNN  81.1 82 81 81
LSTM 883 89 88 88
RF 70.6 73 71 71

40 features SVM 78.6 79 79 79
DFCNN 81.0 81 81 81
LSTM 85.4 86 85 85
RF 70.6 73 71 71
40 features SVM 79.1 79 79 79
20 steps DFCNN 81.7 82 82 82

LSTM 88.4 89 88 88

10 steps
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dataset, from which we can observe that the proposed
method outperforms the conventional machine learning
methods, particularly when more features and time
steps are utilized. The best accuracy of the proposed
method for SID is approximately 88.4% for the audio
duration of only 0.5 s. The optimized SVM achieves
the second-best accuracy when the data and time steps
are small. However, the use of SVM for real-world SID
application is expensive. SID in the music information
retrieval system has to deal with a large amount of data
with numerous classes, in which case the training time
of the SVM classifier will be unacceptable.

The DFCNN with two hidden layers and Adam
optimization algorithm also achieves the second-best
accuracy when the numbers of features and time
steps are large. The DFCNN can build complex
representations by increasing the number of hidden
layers and neurons. The proposed method is essentially
a DFCNN. Instead of totally using a fully connected
layer, we use the LSTM layer, which considers
parameter sharing and long-term dependency. This
change helps improve the identification accuracy
considerably without the loss of efficiency.

By comparing the proposed method with different
lengths of time steps (the sequence length), we observe
two interesting phenomena: first, the human timbre
has long-term dependency; second, the LSTM neural
network can model this type of dependency. For the
first phenomenon, according to previous works!! and
our experiments, the longer the sequence is, the higher
the accuracy that the model can achieve. A long and
continuous audio contains more information than a
few discrete frames of features, which is the same
for humans as we can always recognize a singer with
a long piece of music. The information that exists
between continuous frames can be considered long-
term dependency. For the second phenomenon, the
identification accuracy of the LSTM-based method
increases with the number of time steps, which indicates
that the LSTM can model this type of long-term
dependency. By contrast, the number of MFCC features
is unimportant for SID, and the results of 20 and 40
features are similar.

To analyze the influence of the number of hidden
neurons on the identification accuracy of the proposed
method, we compare the proposed method with
different hidden neurons in the same dataset. The results
are shown in Table 5. In this experiment, 40 MFCC
features and 20 time steps are selected. The proposed
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TableS Comparison of the proposed methods with different
numbers of hidden neurons.

Model AC (%) PR (%) RC(%) FM (%)
LSTM with 100 ¢ 4 86 85 85
hidden neurons
LSTM with 200 o , 87 86 88
hidden neurons
LSTM with 300 ¢q , 88 88 88
hidden neurons
LSTM with 400 o0 89 88 88
hidden neurons
LSTM with 500 283 %9 28 38

hidden neurons

method with 400 hidden neurons achieves the highest
accuracy. When the number of hidden neurons is more
than 400, the performance is not improved, whereas the
computation time increases. Thus, the hidden LSTM
layer with 400 neurons is selected as the final model.

6 Conclusion

The results show that the proposed deep learning
method improves the performance of Chinese SID on
the MIR-1K dataset compared with the conventional
machine learning methods, such as SVM, RF, and deep
feedforward network with fully connected structure.
Hence, deep learning methods should be introduced
to the field of SID when developing a real-world SID
application. In contrast to that proposed in previous
works, the proposed deep learning method can deal
with a large dataset that contains thousands of classes
and numerous sample audios by increasing the model’s
hidden neurons and LSTM layers.

Although the proposed method outperformed the
traditional approaches, developing a real-world SID
application by employing the dataset used in this study
is still inadequate. In the future, we can build a
public SID dataset with numerous sample audios and
On the basis of the public
dataset, more deep learning based SID approaches
could be investigated, which helps develop automatic
SID applications for large-scale dataset. To speed up
model inference, several edge computing techniques,
such as fog computing, mobile edge computing, and
dew computing, can be applied in the future!?6].

thousands of classes.
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