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Asynchronous Brain-Computer Interface Shared Control of
Robotic Grasping

Wenchang Zhang, Fuchun Sun�, Hang Wu, Chuanqi Tan, and Yuzhen Ma

Abstract: The control of a high Degree of Freedom (DoF) robot to grasp a target in three-dimensional space using

Brain-Computer Interface (BCI) remains a very difficult problem to solve. Design of synchronous BCI requires the

user perform the brain activity task all the time according to the predefined paradigm; such a process is boring

and fatiguing. Furthermore, the strategy of switching between robotic auto-control and BCI control is not very

reliable because the accuracy of Motor Imagery (MI) pattern recognition rarely reaches 100%. In this paper, an

asynchronous BCI shared control method is proposed for the high DoF robotic grasping task. The proposed method

combines BCI control and automatic robotic control to simultaneously consider the robotic vision feedback and

revise the unreasonable control commands. The user can easily mentally control the system and is only required

to intervene and send brain commands to the automatic control system at the appropriate time according to the

experience of the user. Two experiments are designed to validate our method: one aims to illustrate the accuracy

of MI pattern recognition of our asynchronous BCI system; the other is the online practical experiment that controls

the robot to grasp a target while avoiding an obstacle using the asynchronous BCI shared control method that can

improve the safety and robustness of our system.
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1 Introduction

An electroencephalogram (EEG)-based Brain-
Computer Interface (BCI) system recording the
brain potentials via electrodes placed on the scalp can
rebuild the neuromuscular bypass through an external
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device. People with impaired motor cortical neural
systems, such as stroke patients, benefit from the use
of brain-actuated robots in everyday life for self-care
or rehabilitation training[1]. Such people can control
a robot arm and hand[2], wheelchairs[3], or prosthetic
devices[4] by their minds to grasp daily necessities. In
the BCI system, there are many paradigms during
mental task such as steady state visual evoked potential
and P300 known as evoked potentials, and Motor
Imagery (MI) by Event-Related Desyncronization and
Synchronization (ERD/ERS) spontaneous potentials.
A well-performing BCI system can be a hybrid
system that combines and collocates these paradigms
efficiently. Among these paradigms, MI is the most
frequently used one because of the natural spontaneous
signals used for building a BCI. MI-based BCI
detects the changes of mu (8–12 Hz) and beta (13–28
Hz) rhythms according to the ERD/ERS potentials.
However, MI signal analysis is a very challenging task
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to complete because of the low signal-to-noise ratio.
The user is required to perform repeated training to
improve the accuracy of the MI pattern recognition.
Furthermore, the feature extraction algorithm in the
frequency-bands, time, and spatial domains of the EEG
signal is very important for solving this problem.

In recent years, an increasing number of researchers
have been devoted to studying and designing the EEG-
based BCI system for helping stroke patients to control
the high degree of freedom robot arm to grasp objects in
the 3D-scene using their minds. Meng et al.[5] proposed
a novel method that decomposes the 3D-space into
two sequential low-dimensional planes to improve the
high accuracy of direction controls via EEG-based BCI.
However, this step-by-step sequential control should be
performed under the predesigned paradigm framework.
Furthermore, two key problems were not taken into
account. First, their system was predesigned, and the
user should perform activities according to the specified
tasks strictly. Second, the control direction might be
incorrect because of EEG decoding error.

Usually, the BCI is divided into synchronous and
asynchronous modes. Most of the early BCIs are
synchronous because of the ease of design. These early
BCIs have predefined time windows for MI signal
pattern recognition. The user should complete the given
mental activity that is designed in advance while being
guided by a specific cue or trigger stimulus. However,
this process may fatigue the user if the task requires too
much time. Recently, development of an asynchronous
BCI system that classifies the MI pattern in real-
time without a predesigned cue stimulus has gained
increasing attention because the user can perform the
mental task at any desired time. The whole control task
is easier and more comfortable for the user using the
asynchronous BCI system compared to the synchronous
BCI system. Mason and Birch[6] first proposed a Low-
Frequency Asynchronous Switch Design (LF-ASD) to
evaluate the performance of an EEG asynchronous
device. Their method showed lower mean error rates
than two other ASDs. Subsequently, Townsend et
al.[7] applied Receiver Operating Characteristics (ROC)
curves to adjust the upper and lower thresholds for the
classification of the “resting periods” and the “mental
periods”. Borisoff et al.[8] designed a two-state brain
switch prototype for self-paced control; however, the
error rates of their prototype were still too high for real
world use. Chae et al.[9] designed an asynchronous
direct-control system of MI-based EEG for humanoid

robot navigation. Lisi and Morimoto[10] proposed
an asynchronous BCI and analyzed the EEG signal
associated with gait speed changes. They evaluated the
performance according to the logistic model probability
output by means of the ROC and the respective Area
Under the Curve (AUC). From the above, ROC curves
were commonly applied to find the proper threshold
for classification and estimate the performance of the
asynchronous BCI.

For asynchronous BCI systems, a switch of the
automatic and BCI control is often designed to
change the control model. Geng et al.[11, 12] presented
a 3-class asynchronous BCI to control a simulated
robot via a self-paced online BCI. They designed
a switch to change the control models between
Automatic Control (AC) and Subject Control (SC)
modes. Although the switching method was efficient
at that time, only one control mode can be used
at a specific time. It is generally known that the
accuracy of BCI pattern recognition algorithm cannot
reach 100%. Thus, recently, the use of the shared
control strategy[13] becomes a trend of development
for asynchronous BCI systems. Su et al.[14] proposed
a Dual Control Path (DCP) method to improve the
throughput of asynchronous pipeline. Their DCP had
two control paths that were combined to control one
data path. Millan et al.[15] presented an asynchronous
and non-invasive BMI for the continuous control of
an intelligent wheelchair. They implemented shared
control techniques between the BMI and the intelligent
wheelchair to assist the subject in the driving task. The
results showed that subjects could rapidly achieve a
significant level of mental control, even if far from
optimal, to drive an intelligent wheelchair. Liu et al.[16]

applied the supervisory theory of fuzzy discrete event
system to design a shared controller for wheelchair
moving control. Sun et al.[17] proposed a new shared
controller based on the Fused Fuzzy Petri Nets (FFPNs)
for brain-actuated robot control to grasp an object while
avoiding an obstacle. The experimental results showed
that the proposed method significantly improves the
performance and robustness of the robotic control.

In this paper, we propose an asynchronous MI-
based BCI system and apply the shared control method
for brain-actuated robot grasping control. In this
asynchronous MI-based BCI system, two detectors are
designed: one is called the Intention Detector (ID),
which discriminates the “rest” and “MI” states and has a
threshold that can be adjusted according to ROC curves;
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the other is the Motor Imagery Direction Classifier
(MIDC) that classifies the MI pattern (left, right, and
forward) by Low-Rank Linear Dynamical Systems
(LR-LDS) modeling. Next, a shared control method
is applied for the user mental control and robot AC to
achieve the grasping task. The results of the experiment
prove that our methods have a good performance.
The user can control the robot hand moving direction
via mental activity in the automatic grasping control
process whenever desired. The contributions of this
paper are listed as follows:

(1) Our proposed asynchronous BCI system has
many advantages, such as high classification accuracy,
no requirement for a predesigned EEG paradigm task,
and ease of robotic control transformation.

(2) The shared control method can combines AC and
BCI command intelligently, and it is easy to design and
realize the asynchronous BCI system control for robotic
grasping.

(3) The asynchronous BCI system is very practical
and effective for robotic grasping. The robot hand can
automatically move to the target while avoiding the
obstacle on the BCI shared control conditions.

This paper is organized as follows. Section
2 describes our proposed system pipeline. The
asynchronous MI-based BCI system is illustrated
in Section 3; the system performs data acquisition,
preprocessing for EEG, feature extraction, and online
EEG classification converting to control command.
Section 4 shows the shared control strategy for
robotic grasping. Section 5 describes the experiments
performed and analysis of the experimental results.
Section 6 presents our conclusion.

2 System Architecture

Figure 1 shows the pipeline of our proposed
system. The system includes two sub-systems: the
asynchronous BCI system and the shared control
system. For the asynchronous BCI system, EEG signals
are first pre-processed and analyzed. Next, three MI
patterns (“left hand”, “right hand”, and “tongue”) are
used to control three directions as “left”, “right”, and
“forward”, respectively. The training dataset of EEG is
built to find the common features of MI pattern offline.
Next, a suitable classifier can be trained for the online
analysis of MI-based EEG. In the actual control stage,
the ID works all the time to find the existence of MI
from the asynchronous BCI. When the user sends the

Fig. 1 Pipeline of the asynchronous BCI system.

MI signals, the classifier trained offline is applied to
classify the MI pattern in a real-time window. The brain
commands are translated to control the robotic grasping
direction.

Moreover, the shared control system contains the
mental control command system described above and
the robot AC system that aims to plan the moving path
for the robot hand and arm according to the vision
feedback from Kinect. When the AC system starts
to grasp an object, the user can mentally control the
robotic hand moving direction at any time via the
asynchronous BCI system. The user views the robot
state and intervenes once the robotic planning path
functions poorly. Therefore, the mental commands are
detected by the asynchronous BCI in real-time. Next,
the shared control method is applied to integrate these
two control modes. Finally, the robot arm and hand
can move via the actuator motor control to avoid the
obstacle and reach the object.

3 Asynchronous MI Based BCI

3.1 Data acquisition

We apply a Neuroscan EEG-recording system with 32-
channel electric potentials from the scalp of the user
wearing an EEG cap to collect the EEG signals. The
sampling frequency is 1000 Hz. The five healthy people
within the age group of 20–28 years are selected as
subjects.

The analysis of asynchronous BCI has two sessions:
offline training and real-time control. The main purpose
of offline training is feature extraction and classifier
selection using machine learning algorithms. Figure
2 shows the offline training protocol. First, the rest
periods last for 5 seconds, and each of the subjects
keeps her/his brain idle to the best of her/his ability.
After the rest period, each subject attempts to perform
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Fig. 2 Pipeline of the asynchronous BCI system.

the motor imagination task according to the three
random MI cues displayed in the monitor. Ten trials
are recorded from each subject, with 50 trials in total
obtained. The BCI system processes the subject’s
ongoing EEG signal every 200 ms. The raw data of
each trial can be represented by fifty 200�32 labeled
matrices.

Next, the real-time control session detects the
user’s brain activity every 200 ms. Finishing feature
extraction and classification, the mental pattern can
be recognized by the trained classifier. Through a
conversion algorithm, the mental control command of
moving direction is sent from the BCI to the robot arm
and hand every 1 s.

3.2 Pre-processing of EEG

Before EEG signal analysis, the following
preprocessing methods are employed.

(1) Channel selection. We chose 21 channels over the
motor cortex (CP6, CP4, CP2, C6, C4, C2, FC6, FC4,
FC2, CPZ, CZ, FCZ, CP1, CP3, CP5, C1, C3, C5, FC1,
FC3, and FC5) that are related to MI.

(2) Filtering. A Butterworth filter is employed for
filtering of the EEG signals within a specific frequency
band between 8 and 30 Hz, which encompasses both the
alpha rhythm (8–13 Hz) and the beta rhythm (14–30 Hz)
related to MI.

(3) ICA decompositions. We apply the “fastica”
algorithm (Hyvarinen[18]) to decompose different neural
artifacts because of its efficient and fast performance.

3.3 Feature extraction and classification

There are two steps in the asynchronous MI-based BCI:
one is the use of the ID to detect the “rest” and “MI”
states; the other is the use of the MIDC to discriminate
the MI patterns as “left”, “right” or “forward” after
detecting MI in the ID step.

During the ID step, the Linear Discriminant Analysis

(LDA) algorithm is applied as the classifier to find a
linear hyper-plane that can separate the two classes
of the “rest” and “MI” states. The classification
probabilities can be calculated using MATLAB running
Algorithm 1.

To improve the classification accuracy, a threshold is
employed to adjust the probabilities for classification
based on the similarity between the test data and the MI
states training data. However, the brain is usually very
active. There may be many other intentions and noise
when the user performs mental task. Aiming to detect
the MI pattern, the ROC[19, 20] and the respective AUC
are used to find a suitable threshold that balances the
True Positives (TPs) and False Positives (FPs). The two
axes of the ROC curve consist of the True Positive Rate
(TPR) and the False Positive Rate (FPR). The former is
a measure of sensitivity, and the latter is a measure of
selectivity. These rates are defined as follows:

TPR D
nTP

nTP C nFN
;

FPR D
nFP

nTN C nFP

(1)

where nTP; nFN; nTN; and nFP are the numbers of
TP, false negative, true negative, and FP results,
respectively. Thus, we adopt an all-or-nothing
approach[21], in which the whole trial is represented
by the epoch with the highest output probability. A
balanced point is considered as a threshold that results
in a TPR value equal to 1. FPR and the threshold value
for that point are used to redefine the LDA threshold.
From each ROC curve, a threshold corresponding to
the point of the ROC curve closest to the line y D 1�x
is selected as an indication of equal balance between
TPs and FPs. Figure 3 shows the online classification
performance. There are three curves that denote three
mental patterns: “left”, “right”, and “forward”. For
example, if TP is the true positive of “left”, then FP is
the false positive that includes the “right”, “forward”,
and “rest”. When the thresholds of “left”, “right”, and
“forward” are resulted as 0.6, 0.62, and 0.64, we obtain

Algorithm 1 Classification probabilities calculation
W D LDA.X; Y /I
% LDA is the linear discriminant analysis function. W is linear
discriminant coefficients, X are training data, Y are test data.
L D Œones.m; 1/X� �W 0I

% L is linear scores for training data. m is the numbers of
training data and test data.
p D exp.L/:=repmat(sum(exp.L/; 2/; Œ1 2�/I
% p is class probabilities.
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Fig. 3 Online classification performance. ROC curves
determine the appropriate threshold values, and the average
threshold discriminates the rest and MI time periods.

the final threshold of ID as the average value of 0.62.
Therefore, the maximum accuracy of ID classifying
the “rest” and MI states by LDA is approximately 80%
when the threshold is 0.62.

Aiming to design the MIDC, Low-Rank Linear
Dynamical Systems (LR-LDS) modeling[22] is applied
for EEG signal feature extraction. The training EEG
signal matrix X can be decomposed as

X WD AC BC E (2)

where A 2 Rm�n is a low-rank matrix that contains the
global information to describe the variant EEG signals,
B 2 Rm�n approximates invariant and denotes the same
MI pattern, and E 2 Rm�n is the matrix of sparse noise.

To calculate the matrices A;B; and E, we add
the orthogonal constraint and define the optimization
problem formulation as

min
A;B;E
kAk� C ˛kEk1 C ˇ

X
i¤j

kBi � Bj k
2
F;

s.t. X D AC BC E
(3)

Next, the Augmented Lagrange Multiplier (ALM)[23]

method is utilized to solve the above problem as
follows:
L.A;B;E;���/ D kAk� C ˛kEk1 C ˇ

X
i¤j

kBi � Bj k
2
FC

h���;X � A � B � Ei C
�

2
kX � A � B � Ek2F (4)

where ��� is a Lagrange multiplier matrix, and � is a
positive scalar.

Finally, the low-rank decomposition matrices A;B;
and E are computed using MATLAB. We apply the
EEGLAB toolbox developed by the Swartz Center for
Computational Neuroscience to visualize the matrices,
as plotted in Fig. 4.

Subsequently, we use the LDS algorithm[24] to extract
the spatio-temporal feature matrix from B calculated
above. Next, the Martin Distance[25, 26] is applied
as the kernel to present distance of different LDS
feature matrices. We can classify the EEG signals by
comparing the Martin Distance between the training
data and the testing data. The nearest two samples may
be in the same class. Therefore, the forecast label and
predict accuracy can be calculated using the k-Nearest
Neighbor algorithm. Overall, our LR-LDS method
finds the same invariant pattern of EEG effectively
and extracts the spatio-temporal feature simultaneously.
Thus, our LR-LDS method performs the MI pattern
classification well.

3.4 Control command transformation

The dynamic fading feedback rule[20] is applied to
determine the control commands. In our work, the
classifications from the BCI are generated every
200 ms, and the direction commands control the robot
hand to move for 1 s at a constant speed. Figure 5
illustrates an example for the control commands. For
the first 2 s, the “rest” pattern appears every 0.2 s.
When the classification result is same as the candidate
decision, the selection level is increased by one level.
Next, the “right” classifications increase gradually up to
level 3. Thus, the asynchronous BCI generates a “right”
control command for 1 s. The robot hand executes the
motion and moves to the right direction accordingly. If
the classification result is different that the candidate
decision, then the selection level is decreased by one
level. At 4.6 s, the classification “forward” reaches the
level 3. Therefore, the asynchronous BCI generates a
“forward” control command at that moment. The robot
hand executes the motion and moves to the forward
direction accordingly. Subsequently, the classification
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Fig. 4 Low-rank decomposition of EEG signal for the subject “right hand” MI at 0, 8, 16, and 24 ms (top to bottom: X, A, E,
B). Note that A shows the global variant, E is the sparse noise, and B shares the same invariant pattern.

of BCI becomes the “idle” classification. There is no
mental activity, so the robot still executes to moving
command to grasp the object by automatic control.

4 Shared Control for Robotic Grasping

It is very difficult to achieve accurate control of high
Degree of Freedom (DoF) robot arm through BCI
step by step because it is almost impossible for the
accuracy of MI pattern recognition to reach 100%. The
shared control strategy for asynchronous BCI combines
mental control by the MI EEG paradigm and AC
based on robotic vision as feedback. Therefore, the
shared control strategy has many advantages, such as
no requirement for mental control all the time and
improvement of the AC accuracy.

We applied the FFPNs method[17] to solve the shared
control problem. The FFPN is defined as follows:

FFPN D .P; T;D; I;O;W;�; f; ˛; ˇ/ (5)

where P is a finite set of fuzzy places; T denotes a finite
set of fuzzy transitions; D is a finite set of propositions;
I W P � T ! f0; 1g is an input function that defines the
set of directed arcs from P to T. O is an output function
that defines the set of directed arcs from T to P; W is
a weight function attached to the arcs (if this integer is
missing, then it is assumed that the weight of the arc is
1);� denotes a mapping of the fuzzy transition to fuzzy
transition subclass; f is an association function mapping
from transitions to real values between zero and one.
˛ is an association function mapping from places to
real values between zero and one. ˇ is an association
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Fig. 5 Dynamic fading feedback rule for the variation
of selection levels and classifications of a real-time BCI
experiment over 8 s. The mental control commands every
0.2 s are transformed into the robotic control order every 1 s.

function, involving a bijective mapping from places to
propositions. The Fuser transition function is defined as

F.x/ D
X

xi � wi ;
X

wi D 1 (6)

The FFPN for shared control fuses the moving
direction of AC and the asynchronous BCI command.
To control the high DoF robot arm to move to the object
in 3D space, we should first reduce the dimension level
to plane to ensure that the target and the robot hand are
at the same height. The only control parameter is the
moving direction of the robot hand originating from the
AC and asynchronous BCI command in the same plane
(Fig. 6).

The structure of FFPN for the shared control can be
described as shown in Fig. 7.

P3 is calculated based on the fuzzy rule defining
both W1 and W2. If the control command of BCI is

Fig. 6 Shared control of the robot hand moving direction.

Fig. 7 FFPN for the shared control. P1 is a place that
represents the AC of the moving direction. P2 is a place
that denotes the asynchronous BCI control of the moving
direction, including left, right, and forward. T1 is the fused
fuzzy transition of shared control. P3 is the place of FFPN
output representing the final moving direction. W1 and W2
are weights.

not rational according to the robotic vision feedback,
then W2 of BCI control should be set to a very small
value (even to 0). If the BCI command is relatively
rational, then the final direction can be calculated by
the intelligent adjustment of W1 and W2, considering
the distance from the robot hand to the obstacle.

For example (Fig. 8), � denotes the angle between
the obstacle and the original moving direction and can
be defined as fuzzy set (NB(–90ı); NM(–60ı); NS(–
30ı); Z(0ı); PS(30ı); PM(60ı); PB(90ı)), where N is
negative; P is positive, B is big, M is middle, S is small.
! is the angle between the target and the AC direction
and is calculated as PS based on the fuzzy rule. The
distance from the robot hand to the obstacle is defined as
N from the fuzzy set (N: near, M: middle, F: far). If the
mental control direction is right, then it is rational based
on the robotic vision and human experience. Therefore,
the value of W2 should be increased. (W1, W2) can be
set as (0.2, 0.8) according to the parameter adjustment.
The value of ˛ denoting the angle between the target
and final output direction can be computer as

30ı � 0:2C 90ı � 0:8 D 78ı:

Fig. 8 FFPN calculation for the output of the moving
direction.
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5 Experiment

5.1 Asynchronous BCI system performance

The five subjects studied in the experiment manipulated
the asynchronous MI based BCI system. The EEG
signals were used to control the three directions (right,
left, and forward) of the robot hand movement. The
subjects rested or imaged right hand movement, left
hand movement, and tongue movement according to the
experiment procedure. Two steps were used: training
paradigm and test paradigm. The aim of the training
paradigm was to learn the different features of the
subjects’ EEG signals. We labeled the classifications of
ten trails every 0.2 s from each subject during 5 s MI that
was described in Section 3.1. To test the accuracy of our
method, an additional four trials from each subject were
recorded. Therefore, we obtained 100 labeled matrices
to test the classification accuracy from each subject.

We performed a pair of contrast tests to illustrate the
performance of our method. Test 1 applied Common
Spatial Pattern (CSP)[27, 28] to extract the feature of
EEG signals and used LDA to classify the MI patterns.
Test 2 was our proposed method in this paper. The
results of the two tests are listed as Table 1. We clearly
observed that the accuracies of classification in Test
2 were all higher than those of Test 1. Our method
with the threshold and the LR-LDS modeling method
performed better.

5.2 Performance of grasping control

The experiment platform was based on the Barrett 3-
finger hand, the SCHUNK 7-joint arm, and Kinect
(Fig. 9). Our goal was to evaluate the contribution of
our shared control for grasping an object.

In the applied shared control, the robot performed
grasp planning intelligently using computer vision
based on avoiding obstacle and achieving the shortest
path planning all the time. The user asynchronously

Table 1 Accuracy of classification by contrast tests. (%)
Subject

a b c d e

Test 1

Right 63.6 60.6 69.7 66.7 54.5
Left 66.7 63.6 63.6 63.6 57.6
Up 58.8 61.8 67.6 55.9 55.9

Average 63 62 67 62 56

Test 2

Right 72.7 69.7 81.8 72.7 75.8
Left 69.7 75.8 75.8 78.8 72.7
Up 70.6 64.7 73.5 58.9 70.6

Average 71 70 77 70 73

Fig. 9 Experiment platform.

sent high-level commands via BCI whenever desired
according to the experience of the user. The compared
experiment aimed to illustrate the performance of
shared control under two conditions: Asynchronous
BCI with shared Control (AC) and Synchronous BCI
Control (SC). We chose a bottle as the object for
grasping. After the robot hand started to move, a
cylinder box, serving as the obstacle, was randomly
placed nearby the object. The experiments of each of
the five subjects under AC and SC were conducted.
Table 2 presents the results of the grasp success rate.

We found that there were four failures in the grasping
task of SC because the robot arm faced interference
from the obstacle. The primary cause of these failures
is that the accuracies of EEG pattern classification were
not 100%. The errors of classification led to the use of
the wrong direction of robot arm movement to touch the
obstacle. Our AC method could avoid the failure to the
largest extent because the robot could amend the wrong
control commands from asynchronous BCI according
to the robotic vision feedback. Furthermore, the SC
clearly cost much more time for moving the robot hand
to the target, and the subjects should perform the MI
paradigm task all the time, possibly resulting in fatigue
of the brain. In contrast, the user could easily control the
robot arm, using few MI interventions in the AC mode.

6 Conclusion

This paper presented a proposed asynchronous MI
based BCI system for brain-actuated robotic grasping
control. The proposed system allows the user to
mentally control the moving direction of a robot hand
and arm via BCI whenever the user feels it is necessary
to adjust the moving path. To improve the accuracy of
mental pattern classification, we designed the threshold
and LDA classifier for the ID and used our LR-LDS
modeling method for the MIDC in the system. In the
proposed system, the dynamic fading feedback rule is
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Table 2 Results of robotic grasping tasks. Five subjects
(a, b, c, d, and e) controlled the robot arm to grasp object
avoiding obstacle by BCI. ABC: asynchronous BCI with
shared control; SBC: synchronous BCI control; nTP: number
of true positive events; nFP: number of false positive events;
nMN: number of mental commands; ACC: accuracy of the
MI classification; Min: task span; and Suc.: whether it was
successful or not for the robotic grasping.
Subject Method Run nTP nFP nMN ACC (%) Min (s) Suc.

a

ABC
1 10 5 3 66.7 23 Y
2 13 7 4 65.0 28 Y
3 11 4 3 73.3 24 Y

SBC
1 86 39 25 68.8 130 Y
2 55 25 16 68.9 86 N
3 111 44 31 71.6 162 Y

b

ABC
1 18 7 5 72.0 32 Y
2 10 5 3 66.7 22 Y
3 11 4 3 73.3 26 Y

SBC
1 101 39 28 72.1 142 Y
2 85 35 24 70.8 126 Y
3 71 29 20 71.0 108 N

c

ABC
1 8 2 2 80.0 21 Y
2 7 3 2 70.0 23 Y
3 11 4 3 73.3 25 Y

SBC
1 100 45 29 70.0 152 Y
2 116 44 32 72.5 168 Y
3 97 38 27 71.9 138 Y

d

ABC
1 14 6 4 70.0 27 Y
2 7 3 2 70.0 21 Y
3 10 5 3 66.7 24 Y

SBC
1 61 29 18 67.8 94 N
2 86 44 26 66.2 133 Y
3 43 17 12 71.7 70 N

e

ABC
1 11 4 3 73.3 23 Y
2 15 5 4 75.0 27 Y
3 9 6 3 60.0 24 Y

SBC
1 81 39 24 67.5 125 Y
2 101 44 29 70.0 150 Y
3 107 38 27 73.8 142 Y

applied to convert the EEG classification results into
control commands; next, the shared control approach
combines the automatic grasping control of robot and
mental control via our asynchronous MI-based BCI to
grasp the object while avoiding an obstacle. The results
of an experiment of MI classification illustrated that our
method with the threshold and LDS modeling performs
better than the classic CSP method. Furthermore, the
practical experiment of the grasping task showed that
our shared control method obtains higher success rate
than the synchronous BCI control.

The use of the asynchronous BCI with shared
control strategy is the trend for the brain-actuated robot

development. Moreover, hybrid BCIs[29–34], which have
the advantages of more analyzed commands for use
to improve the overall performance of BCI system,
have become a popular research topic in recent years.
Therefore, an extension of our research involving
application of the above methods can achieve real-time
control of an advanced robot to perform more complex
tasks via a comfortable and convenient BCI system.
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