
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 07/10 pp317–332
DOI: 10 .26599 /TST.2018 .9010087
Volume 24, Number 3, June 2019

Trajectory Big Data Processing Based on Frequent Activity

Amina Belhassena� and Hongzhi Wang

Abstract: With the rapid development and wide use of Global Positioning System in technology tools, such as

smart phones and touch pads, many people share their personal experience through their trajectories while visiting

places of interest. Therefore, trajectory query processing has emerged in recent years to help users find their

best trajectories. However, with the huge amount of trajectory points and text descriptions, such as the activities

practiced by users at these points, organizing these data in the index becomes tedious. Therefore, the parallel

method becomes indispensable. In this paper, we have investigated the problem of distributed trajectory query

processing based on the distance and frequent activities. The query is specified by start and final points in the

trajectory, the distance threshold, and a set of frequent activities involved in the point of interest of the trajectory.

As a result, the query returns the shortest trajectory including the most frequent activities with high support and

high confidence. To simplify the query processing, we have implemented the Distributed Mining Trajectory R-Tree

index (DMTR-Tree). For this method, we initially managed the large trajectory dataset in distributed R-Tree indexes.

Then, for each index, we applied the frequent itemset Apriori algorithm for each point to select the frequent activity

set. For the faster computation of the above algorithms, we utilized the cluster computing framework of Apache

Spark with MapReduce as the programing model. The experimental results show that the DMTR-Tree index and

the query-processing algorithm are efficient and can achieve the scalability.

Key words: distributed R-tree; trajectory; frequent activity; query

1 Introduction

Geographic information systems use certain utilities,
such as Global Positioning System (GPS), to collect
the positional data. These data capture the motion
history of moving objects, which are named as
the trajectories. A trajectory is an ordered series of
locations. Some of these locations are called the Point
Of Interests (POIs), which are determined by geospatial
information, including the latitude and longitude. Each
POI may feature an associated description, such as
name, address, activities, and other text description.

�Amina Belhassena and Hongzhi Wang are with School
of Computer Science and Technology, Harbin Institute
of Technology, Harbin 150001, China. E-mail: amina
belhasna@hotmail.fr; wangzh@hit.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2017-11-22; accepted: 2018-02-22

In general, such movement objects are archived in
TraJectory DataBases (TJDBs)[1] for processing and
deep analysis to discover knowledge and support the
decision making. For example, the application maps
installed in smart phones or tablets were developed in
cooperation with the public transportation businesses,
including taxis, metros, and bus stores, and archive the
trajectories of the previous visitors in TJDBs for such
analysis to develop and improve the quality of their
services.

As the ordered sequence of moving objects is
archived in TJDBs, the paths on which these objects
are connected are also stored in TJDBs. Therefore,
the information related to the frequent trajectory is
integrated in the massive TJDBs. Thus, such knowledge
is necessary in numerous applications. For example,
Foursquare, which is a social network based on mobile
applications, provides personalized recommendations

318 Tsinghua Science and Technology, June 2019, 24(3): 317–332

of locations to go to the closest place based on users
previous browsing history. The locations recommended
by this application may be unsuitable for the new
visitors, especially when these locations are undesirable
areas, for example, areas with unavailable security or
surveillance camera. Similarly, the GPS devices use the
shortest trajectories in the road network to navigate their
users in attaining directions. However, in the case when
users want to practice several activities, the shortest
trajectory may not be the best option given the bad
reputation related to the activity location.

To provide the users with the ability to select the best
trajectory, the most suitable POIs based on the distance
and the set of desired activities must be provided. The
mining frequent trajectory from the TJDBs and its query
is not insignificant nor banal. Thus, several researchers
have proposed the Keyword-based Trajectory Search
(KTS)[2–4]. The KTS query is popular and more suitable
in the case of the user needs. Such kind of query is
the combination of associated geospatial with keyword
information. As the users prefer to visit their POI in
short distance, KTS aims to find the K trajectories that
contain the most relevant activity keywords based on
minimal distance.

Furthermore, the TJDB contains the trajectories
created from a massive data of sequence objects,
including their activities, producing a large number
of sub-trajectories and long trajectories to check.
Consequently, the processing of these data needs more
computation and exceeds the power of previously used
centralized methods. Thus, efficiently traversing the
TJDB to extract knowledge and discover the frequent
trajectory becomes an important task in the research
field and industries.

In this paper, we define the frequent trajectory by
the trajectory that can be presented as a path on
which many of the activities involved in the following
POIs are practiced frequently. To organize the massive
trajectory data and extract their knowledge, we propose
an efficient method based on two phases. The first
phase aims to simultaneously manage the trajectory
massive data including its activities on distributed R-
Tree indexes. The second phase aims to simultaneously
extract the mining from the POIs stored on the leaf
nodes of the indexes. The frequent activities and rules
are discovered periodically in an offline manner. Thus,
to process the proposed KTS query over a large
TJDB, we developed an efficient algorithm processed in
parallel based on the proposed method. As depicted in

Fig. 1, T1, T2, and T3 are historical activity trajectories.
The query q is represented by a distance threshold bd ,
a start and a final points S and E, respectively, which
are presented by the black circles in the figure. The
upper table in the figure shows the distance information
between the trajectory points of T1, T2, and T3 and
query points S and E. The lower table in the figure
describes the meaning of POI of T1, T2, and T3. q
aims to find the trajectory with a distance less than
7 km including the activity keywords in the following
manner. Table 1 presents the notation of the activities
in this example.

The user plans to visit specific points in the trajectory.
Afterward, she drinks coffee. Then, she will end by
taking lunch. Shopping, take-coffee, and take-lunch are
described as activity keywords of q which are involved
in POIs corresponding to the query. The activities are
in a sensitive order.

To help the user to find the best trajectory, we
aimed to find the interesting patterns of this query
related to the activities, which are in the form of
Shopping, take-coffee, and take-lunch, respectively,
or f.Shopping; take-coffee/) take-lunchg where the
order of activities appearing in the query is considered.

P1 ={S, C, R}

1 km

1 km 1.5 km

3.1 km P6 ={R}
2.3 km

0.7 km 2.5 km

P10 ={H, M}

S

E

T1

T2

T3
P5 ={G}

Distance threshold = 7 km
Trajectory query = q (S, E)

P2 ={C, R}
P3 ={G, W}

P4 ={G, W, R}

P7 ={H, M}

P8 ={S, C, R}

P9 ={R, C}

Euclidean distance Table

POI meaning Table

Fig. 1 Trajectory example.

Table 1 Activity notation.
Activity Notation

Take-coffee C
Shopping S

Game G
Take-dinner R
Take-lunch R

Hair-cut H
Watch-cinema W

Manicure M

Amina Belhassena et al.: Trajectory Big Data Processing Based on Frequent Activity 319

Furthermore, the support of the frequent activities
Sup and the confidence between activities-set Conf are
important to return the best trajectory to the user, where
the value should not be less than the minimum support
and confidence thresholds. We assumed that minSup
Threshold D 50%, and minConf Threshold D 60%.
Based on the above example, Table 2 represents the Sup
and the Conf of the activities implicating in each POI of
T1 and T2. T3 is negligible because it involves none of
the activities required.

In this example, the process of the trajectory query
will return the trajectory with the distance less than the
distance threshold, including the frequent activity set
with a high Sup and Conf. Initially, in this example, T1
and T2 are returned as the trajectory candidates, because
their distances are minimal, and they include all the
activities required with the same order as in the query.
However, as is described in Table 2, T1 will be returned
as the best trajectory according to its Sup and Conf,
where Sup.SC ! R/ D 80%, which is greater than
the minSup threshold and Conff.SC/ ! Rg D 90%,
which is also greater than the minConf threshold.

To extract the meaningful activity trajectory dataset,
the Apriori algorithm[5–7] is initially proposed to
generate the frequent pattern itemset with an easy
implementation. However, with the huge information
in the trajectory dataset, the computation exceeds the
power of the classical Apriori algorithm implemented in
centralized methods over the scan of a large dataset and
computation of the occurrence frequent items in large
datasets. Therefore, the parallel computing is well used
to accelerate the big data mining[8].

Before mining the large dataset, the massive history
trajectory data should be efficiently organized in an
index such as the R-tree[9], which is more suitable
for handling spatial data. Given the remarkably large
data, the single-node-based method used to implement
R-tree fails to answer the trajectory query which is
based on location, activities, and distance. Therefore,

Table 2 The support and the confidence information.

POI Act Sup Conf
P1 SC! R 0.8 0.9
P2 C! R 1.0 –
P3 G!W 1.0 –
P4 G,W! R 1.0 –
P7 H! M 0.5 0.6
P8 SC! R 0.7 0.8
P9 R! C 1.0 –
P10 H! M 0.7 0.8

several methods are proposed in parallel computing to
implement the R-Tree in the distributed method[10–12].
However, these works involved a large number of I/O
disk operations when reusing data.

In this paper, we investigated a novel problem
of mining distributed large-scale trajectory data. To
achieve a high query processing performance, we
initially organized the history of geographic trajectory
data segments, huge sets of activity keywords, and
the results of frequent activity set algorithm on a
Distributed Mining Trajectory R-Tree (DMTR-Tree)
index.

As the process should support both the trajectory
geometric points with activity keyword texts, the
DMTR-Tree combines our previous index called DTR-
Tree[13] with the Mining Inverted List (MIL). The MIL
is a set of inverted lists that stores the outputs of
frequent itemset mining algorithm.

Initially, the DTR-Tree is a set of distributed R-
trees. Each R-tree stored in such partition includes a
set of POIs with their activities. Next, to select the best
trajectory, for the POIs stored in the leaf nodes of DTR-
Tree, we applied the Apriori algorithm on the activities
located at each POI. This step aims to find the frequent
activities preferred by the previous users with a good
support, and it helps to construct the strong association
rules between the frequent activity sets. The result of
this step is stored in the list MIL. Furthermore, during
the query processing, we observed that the task to
traverse MIL is costly and maybe shuffled. Therefore,
we adopted a useful optimization strategy based on
the traceability method, which achieves a lower cost
by reducing the number of inverted lists in MIL. By
traversing the concerned small R-Tree with its MIL,
we pruned the search space efficiently to obtain the
candidate trajectories.

With such index, we needed to reuse an aggregate of
data through distributed parallel operations. Moreover,
the massive amount of activities generate all the
possible itemsets and count their occurrence present
difficulty, thus prevent the scalability, as such condition
rapidly becomes a combinatorial explosion problem
with the increasing input trajectory activity data size.
Therefore, we performed the programming tasks on
Spark to process our spatial trajectory data mining using
a key value method of the MapReduce to accelerate the
trajectory query. Our contributions in this paper can be
summarized as follows:
� To select the frequent locals with their supports,

320 Tsinghua Science and Technology, June 2019, 24(3): 317–332

we applied the Apriori algorithm on each POI
stored in the leaf node of each small R-Tree
partition. In addition, we constructed the strong
association rules and computed the confidence for
each rule. The results are stored in the MIL.
� To reduce the massive number of inverted lists

of the MIL, we proposed an optimization strategy
based on the traceability method.
� To answer the query q, we developed an efficient

parallel algorithm consisting of two steps. The
first step aims to simultaneously prune the search
space efficiently by traversing the corresponding
separated indexes. The second one aims to
simultaneously select the best trajectory using the
optimized MIL.
� The process of trajectory query ensures a good

rapidity using the key value method in the
distributed Spark cluster.

This paper is organized as follows: Section 2 presents
the different works related to the frequent trajectory
processing, distributed frequent data mining algorithms,
and distributed R-Tree index. Section 3 introduces the
problem statement of this study. Section 4 presents
the structure of the DMTR-Tree index. Section 5
explains how to process the trajectory query based on
the frequent activities. Finally, Section 6 discusses the
experimental results and the performance of this study.

2 Related Work

In this section, we review several of existing research on
the frequent trajectory processing, distributed R-Tree,
and distributed Apriori algorithm.

Discovering frequent pattern mining was first
proposed by Agrawal and Srikant[14]. Numerous works
introduced the sequential pattern mining based on
frequent patterns and association rules mining in
trajectories. References [15, 16] presented a method
to extract the association rules from a moving object
database and returning the best trajectory using a
matching function, where Ref. [15] implemented a
modified version of the Apriori algorithm, and Ref. [16]
used a modified version of the PrefixSpan algorithm.

Moreover, Refs. [17, 18] aimed to identify the
frequent subsequences in trajectories. Masciari et al.[17]

introduced an approach based on the partitioning
strategy to reduce the trajectory size and present the
trajectories as strings; then, they utilized the windows
approach mixed with a counting algorithm to mine the
frequent trajectories. Monreale et al.[18] presented a

new technique to predict the next location of a moving
object. They built a decision tree named the T-pattern
tree to hold a certain area, and it may be used to find
the best path of the new trajectories. However, all the
methods cited in these works implemented the frequent
data mining algorithms in a centralized platform, which
becomes insufficient with tending the current big data
usage.

Several researchers focused on parallelizing
the Apriori algorithm with the MapReduce
framework[10, 19–23], improving the results of the
centralized method. As the MapReduce is limited
when reusing data over the iteration, and as the filtering
process of the Apriori algorithm is repeated in each
iteration after generating the candidate itemset, the
Hadoop cluster based on the MapReduce model may
hasten the process of the algorithm[24]. However,
this cluster requires additional I/O disks. At present,
instead of the Hadoop, Spark[25] in-memory is used
to parallelize the massive trajectory data. Spark
handles the problem of the Apriori algorithm with the
MapReduce using its Resilient Distributed Dataset
(RDD). The RDD catches the results of each iteration
and provides them efficiently for the next iteration, thus
reducing the number of I/O processes from the disk.

Another study[8] proposed the Yet Another Frequent
Itemset Mining (YAFIM), which presents a parallel
Apriori algorithm developed in Spark. This work
proved that Spark is more suitable and effective to
implement the Apriori algorithm in parallel compared
with the MapReduce-based algorithms. The speedup
caused the YAFIM to perform 18� faster than the
Apriori algorithm implemented in the MapReduce
framework. On the other hand, Rathee et al.[26]

improved the performance of Reduced-Apriori in
Spark, thus providing a highly parallel computation.

Furthermore, in order to manage the trajectory big
data, trajectory indexing is well developed to organize
the massive data using spatial access methods such R-
Tree[9], R*Tree[27], and their variants KR*-tree[28] and
bR*-tree[29]. A trajectory query based on the keyword
search is proposed to process the large trajectory
dataset using the hybrid indexes GAT[2] and AC-
Tree[30]. For the large datasets, the R-Tree is well
developed in distributed platform. The SD-Tree[31] uses
interconnected servers to implement the R-Tree, where
large datasets are organized into the tree. Based on
the MapReduce model spatial Hadoop, the R-Tree was
implemented in parallel with a distributed method[32],

Amina Belhassena et al.: Trajectory Big Data Processing Based on Frequent Activity 321

whereas a Hilbert R-Tree index was implemented on
the H-base[33]. However, to ensure the re-usability of
data in memory, Apache Spark is suitable for this
purpose. The GeoSpark[34] handles spatial data and
support spatial access methods, such as the R-Tree
using Spark framework; it improves the performance
of the previous works based on the MapReduce model
and achieves a better run time performance than the
spatial Hadoop. On the other hand, to group the
same trajectories, trajectory clustering has been widely
used in numerous applications. A partition-and-group
framework was proposed for clustering trajectories[35].
The trajectory clustering algorithm TRACLUS was also
developed. Initially, the algorithm partitions the whole
trajectory into a set of line segments at characteristic
points. Then, the similar line segments in a dense region
are grouped into a cluster.

3 Problem Statement

In this section, we define and present the frequent
trajectory query problem studied in this work. Table 3
summarizes the symbols used in this section.

Definition 1. Trajectory A trajectory t raj is
defined as an ordered sequence of POI:
traj D hPOI0:L0;POI1:L1;POI2:L2; : : : ;POIn:Lni:

Each POI includes a group of activities Ai , POI D
Œ
Pk
iD1Ai �:L. L 2 R2 denotes the geographic location

of POI. Consequently, we can define the trajectory traj
by the following equation:

traj D
Pk
jD1

h Pn
iD1Ai :L

i
j
:

Definition 2. Sub-trajectory The sub-trajectory
subT is an ordered sequence of POIs 2 traj.

subT.s; e/ D hs:Gs;POI1:L1;POI2:L2; : : : ;

POIn:Ln; e:Gei:

Table 3 Definition of symbols.
Symbol Definition

traj
A set of trajectories traj D ftraj1; traj2; : : : ;
trajng

subT.s; e/
A set of sub-trajectories included in traj, where
s and e represent the start and end points,
respectively.

POI
A set of point of interest POI D fPOI0; : : : ;
POIng included in subT.bd Distance threshold

Ai :L
A set of activities that can be found in POI where
L represents the longitude and latitude.

dis
Geo-location distance measured between traj and
trajectory query q

f
Evaluated function measured between traj and
trajectory query q

where Li 2 R2 refers to the geographic locations of
POI s. Gs and Ge 2 R2 are the geographic locations of
the start and the final points s and e, respectively. subT
is organized in a small R-Tree partition index.

Definition 3. Query distance measure In this
study, the query distance was used to efficiently traverse
the indexes to obtain trajectory matching. The distance
measured is based on the Euclidean distance, which is
used to measure the shortest distance in the plane with
lightweight computation.

Initially, in a given trajectory query q D .S;E;bd/, S
andE are the start and the end points, respectively, in q.
dis denotes the geo-location distance measured between
q and traj.

dis.traj; q/ D dis.S; traj/C dis.traj; E/:

To calculate the distance dis.traj; q/, which aides in
efficient prunning the search space, we considered
f .q; traj/ 2 Œ0; 1� as the geo-location function
measured between traj and q:

f .q; traj/D 1�
dis.S:q;POI.traj/Cdis.POI.traj; E:q/bd ;

where POI.traj are the trajectory points, dis.S:q;
POI.traj/ and dis.POI.traj; E/ are the Euclidean
distances measured between .S;POI.traj/ and
.POI.traj; E/, respectively.

The short trajectories are more likely to be candidates
when the distance threshold is short. Consequently,
the geo-location trajectories extracted will be increased,
whereas d will decrease. Thus, f 2 Œ0; 1�. Furthermore,
the trajectory query aims to find the frequent trajectories
within bd . Hence, dis.q; traj/ 6 bd , f .q; traj/ > 0.

In this study, each trajectory point POI:traj in
the space is organized through the R-Tree index
and overlapped by the Minimum Bounding Rectangle
(MBR). Thus,
f .q; traj/D 1� dis.S:q;MBR.POI/:traj/Cdis.MBR.POI/:traj;E:q/bd :

The distances between the query points S and E and
MBRs are computed based on the midpoint m of the
rectangle representing MBR.

dis.S:q;MBR.POI/:traj/D
q
.x:S:q�x:m/

2
C.y:S:q�y:m/

2
;

dis.MBR.POI/:traj; E:q/D
q
.x:E:q�x:m/

2
C.y:E:q�y:m/

2
:

As the users prefer to visit the shortest trajectory
close to their locations, the traj with the minimal
distance should be retrieved. The distance d between
the first POI in traj or in subT and S in q should be also
minimal.

d D minŒdis.S:q;MBR.POI1/:traj/�:

The distance dn between the trajectory points POIn

322 Tsinghua Science and Technology, June 2019, 24(3): 317–332

should also be specified.
dn DdisŒ.MBR.POI1/:traj;MBR.POI2/:traj/C � � �C

dis.MBR.POIi /:traj;MBR.POIn/:traj/�:

Therefore, the closest and the shortest trajectory
query is matched based on f :

f .q; traj/ D 1 � minŒdCdnCdis.MBR.POIn/:traj;E:q/�bd :

Definition 4. Mining frequent trajectory Given a
trajectory traj within bd , initially, the mining frequent
trajectory problem is to extract traj with its POIs
belonging to one partition if its length is short. Then,
in order to find the frequent activities Ai held in these
POIs, the inverted list of POIs should be visited.

On the other hand, the sub-trajectories subTs
implicating the frequent ordered activities belonging
to different partitions given a lengthy trajectory query
are extracted. The inverted lists where the frequent Ai s
of each POI are located, should be visited in order to
extract the required subTs and combine them to obtain
the final matching trajectory.

4 DMTR-Tree

In this study, given the remarkably large trajectory
data, difficulty arises from efficiently processing the
trajectory query without a sophisticated index. The R-
Tree index stores the geometrical trajectory data in
a simple way. This index also provides an efficient
method to handle the insertion and deletion. However,
with the proliferation of the data, a centralized method
is insufficient. Therefore, the parallelism solution is
indispensable in this case.

As discussed in Section 1, two major tasks are
required. The first task is query processing, and the
other is frequent itemset mining. As the trajectory
data include not only the geometric points but
also the activities in each point, the queries may
contain constraints on both the geometric points
and activities. In our previous study[13], the index
was aimed to manage the large-scale trajectory data
through a distributed platform. However, to support
the frequent itemset, which considers the activities on
each geometric points, this index prohibits indexing
of the frequent activities. Further, we cannot process
the proposed trajectory query through this index.
Therefore, to support both tasks, we have modified our
previous index[13] to efficiently handle the geometric
points and frequent activities.

Furthermore, given the frequent itemset mining
algorithm and large items, the Apriori algorithm proves

costly in the second iteration during the generation of
the candidate set from the singleton items. For fast
processing, we applied the algorithm on the small-
distributed trees, where each one contains a small set
of points holding a set of activities instead of the whole
dataset. Hence, the index comprises multiple small-
distributed R-trees.

We designed the DMTR-Tree given these
considerations. To support the process of both
geometric points and activities described by the text,
the DMTR-Tree combines the previously proposed
index DTR-Tree[13] with MIL. MIL is a sorted list of
results of the frequent itemset mining algorithm. The
former is a distributed index specific for querying
trajectory, whereas the latter is used for the textual
query processing. The skeleton of the DMTR-Tree
organizes the trajectories on the distributed R-Tree
indexes to share the computation capacity between
machines on the Spark cluster, where each machine
maintains a small R-Tree for the data located on it. With
Spark, the number of disks I/O is minimized during
in-memory data fitting. For each small index, we mined
the association rules to extract all the frequent activities
and construct the strong association rules between
activities in each point. The activities are organized
in the inverted list. Thus, both query processing and
mining tasks could be efficiently handled.

4.1 DMTR-Tree structure

A DTMR-Tree combines the DTR-Tree with MIL using
the MapReduce as the programming model in the
Spark cluster. The master M includes a set of slaves,
Slavei D Slave1;Slave2; : : : ;Slaven, which means that
the rectangle in M interconnects with all Slavei s.

We summarized the structure and the construction of
the DTR-Tree index and the major principle of MIL in
the following paragraphs.
� DTR-Tree structure: The R-Tree index aims to

store spatial and non-spatial data consisting of
objects oi ho:id; o:L; o:Ai. The object oi contains
three attributes. o:id represents a unique identifier,
o:L is the geospatial information determined in
latitude and longitude, and o:A contains the
activities in the item. Each object belongs to a
partition based on its o:L. The R-tree uses the
MBR to store data based on o:L. The data are
stored in the leaves referenced with their o:id. The
DTR-Tree is a collection of R-trees processed by
each worker in the cluster. The process of DTR-

Amina Belhassena et al.: Trajectory Big Data Processing Based on Frequent Activity 323

Tree construction consists of two phases: parallel
partition and local construction[13].
� Mining inverted list: We applied the Apriori

algorithm to extract the frequent activities and
construct the association rules of each point stored
in the R-Tree leaf. We stored all the results in the
inverted lists, which form the MIL. These lists are
stored in the HDFS files.

Using a custom partitioner developed based on a
range partition, the trajectory data are grouped into
partitions �, as shown in Fig. 2a. r� represents the root
of R-Tree stored in a partition �, MBR.r�/ is an MBR
of the root (Fig. 2b). As depicted in Fig. 2c, for each
partition �, a tuple h�;MBR.r�/i has an inverted list.
All the R-tree indexes and the inverted lists are handled
within a cluster.

After processing all the R-Trees, the master node
uses a list L D h�i ;MBR.r�i

/i, where MBR.r�i
/ is the

MBR of the R-tree stored in the partition �i . Based
on the spatial distance used between MBR.R-Tree/ and
the MBR of the query points MBR.q/, the master node
knows whether the search is to be pruned in order to
accelerate the query processing.

The trajectory query q is characterized by a start
point S and a final point E generated in the master
node. Initially, the process of q starts with traversing the
indexes to obtain the trajectory candidates. Afterwards,
based on the result previously obtained, and the outputs
of the distributed Apriori algorithm processing, the best
trajectory is sorted and returned as results.

4.2 Optimization

The DMTR-Tree is a set of R-tree indexes combined
with the inverted lists in MIL. Each local machine
features an R-Tree index storing the trajectory points
in the leaf nodes. Each point of this R-tree contains
one inverted list containing the results of the frequent
activities and association rule algorithms.

ρ1

ρ2

DTR-Tree

R-Tree1 <ρ1, MBR(rρ)>

R-Tree2 <ρ2, MBR(rρ)>

p1 p2 p3 p4

p5 p6 p7 p8

Data Partioning

minSup(CR)=0.8
minSup(CSR)=0.9
minConf{C,S->R}=0.8

Inverted list poi1

Inverted list poi3

minSup(HM)=0.6
minConf{H,M->C}=0.7

Inverted list poi5 Inverted list poi6

Inverted list poi8

minSup(CSR)=0.9
minConf{C,S->R}=0.8

Inverted list poi7

Inverted List MIL

Inverted list poi2

minSup(SC)=0.6
minSup(SCR)=0.7
minConf{S,C->R}=0.8
Inverted list poi4

minSup(GR)=0.8
minSup(SGR)=0.9
minConf{S,G->R}=0.8

(a) (b) (c)

1

2

Fig. 2 DMTR-tree structure.

For the query processing method in Section 5, we
observed that the task of traversing the huge set of
inverted lists by each local machine is costly and may
be shuffled, as it requires visiting each inverted list
of each trajectory point, storing the primary results,
comparing the single frequent activity results, and then
selecting the best trajectory according to its support
and confidence. To solve this problem, we optimized
the traversing of the inverted list tasks on the query
processing by collecting the inverted lists based on
the traceability method. This process provides us an
optimization chance. The following paragraph explains
the method proposed to solve such problem.

After processing the distributed frequent activities
and the association rule mining algorithms, each point
includes an inverted list. Therefore, for each point of
the trajectory candidates, its inverted list should be
consulted to compute the total Sup and Conf. Thus, such
process is costly and may be shuffled.

Therefore, we planned to collect the inverted lists
of the points appearing in the same trajectory or
sub-trajectory stored in each local machine using the
traceability method, which is defined as the capability
to identify an activity point by combining the successive
locations of the POIs in the trajectory.

The following algorithm shows the process of
collecting the inverted lists. Assuming that �i is the
partition stored R-Treei, this tree includes several
trajectory point poi D htrajid; poii i, where trajid is the
historical trajectory identifier containing the point of
interest poii . To ensure the traceability of the activities
belonging to poi, we tested the identifier id of the
trajectory with the identifier j of poi as in Line 3 of
Algorithm 1. Then, we added the results of the frequent
mining algorithm to the inverted list of traj if it exists.
Otherwise, we constructed a new one (Lines 4 and 7).

In addition, we analyzed the time complexity of the
query based on the inverted lists visited. Assuming that

Algorithm 1 Optimization
1: Input: MILhTid; poij i
2: for each poij of MIL do
3: if id D j then
4: if MIL D true then
5: add Conf, Sup of poij to MILhi
6: else
7: newMILhi./I
8: end if
9: end if

10: end for

324 Tsinghua Science and Technology, June 2019, 24(3): 317–332

q is the query returning T as the trajectory candidates,
each trajectory T contains P , which presents the
number of trajectory POIs. Additionally, each P

includes an inverted list. For each P , the running time
to traverse its lists is �P . For each T in q, the running
time to visit the inverted lists is � D �p1 C �p2C

� � � C �pn. Thus, � D
Pn
iD1.�p/. The complexity is

� D O.n/. Considering all T of q, the time complexity
is � D T �O.n/.

After collecting the inverted lists based on the
optimization strategy previously discussed, the
complexity time � for each trajectory T is � D O.1/.
Thus, the � for all T in q is � D T �O.1/.

To visit the inverted lists for the selection of the best
trajectory, this analysis demonstrates the low cost of the
optimized method. Figure 3 illustrates an example of
the comparison of the time consumption for the query q
in such R-Tree index.

5 Query Processing

The query q to be processed aims to find trajectory
t , which includes the frequent activities located on
the POIs with a distance of no more than a distance
threshold Od . Based on the support and the confidence
of the frequent activity set, q returns the best trajectory
to users. The master node is considered as the user
interface on which q is located. The query q is defined
by a start and a final points, S and E, respectively.

dis.P; q/ D dis.S; P /C dis.P;E/ (1)

Using function f , which is explained in Section 3,
the distance between q and trajectory points P of traj
can be calculated easily with a lower cost based on the
Euclidean distance. To find the trajectory matching q,
we passed by the following two phases.

5.1 Phase one

After the construction of each R-Tree by each worker
in the cluster, each worker sends the MBR of the index

Fig. 3 Comparison methods.

with its partition id to the master. Then, the master
node stores all the results through a list. In this phase,
the process starts by traversing the index set stored
in the HDFS files to obtain the trajectory candidates,
from where the distance is less or equal to the distance
threshold implicating all the activities required by q.
L D hPid;MBR.rPid/i contains the partition Pid with

its MBR.rPid/, which represents the MBR of the root r
of the R-Tree index. UsingL, based on Formula (1), the
nearest MBRs covering S and E of q within a distance
threshold bd could be found. Furthermore, to efficiently
and effectively prune the search space, in such R-Tree
partition if the distance between its MBR.rPid/ and
q exceeds the distance threshold, then visiting all the
nodes to obtain the points required by q is unnecessary.

In this study, we considered that there are two types
of trajectories: the short ones, which could belong to
one partition, and the long ones, which are divided into
several sub-trajectories stored in different partitions.
Therefore, for each partition j , if MBR-Rootj covers
S or E, we returned R-Treej to find the trajectory traj
or the corresponding sub-trajectories subTs.

Algorithm 2 presents the pseudo code for processing
the query q. The algorithm finds the trees covering S
and E based on L from line 7 to line 12. If the distance
between these trees is less than bd , we searched from
line 13 to line 14. We considered two cases to search
the trajectory required.

First case: If the ids of the partitions are equal (line
15), then we obtained the same partition with the same
tree. Thus, the trajectory required is short and it just
belongs to one partition.

Algorithm 3 explains the process of this case.
Initially, each worker uses the RDDfind to return the
node that should be visited. This RDD is based on Filter
procedure (line 5). If the node is a leaf, and if the
distance from this node and q does not exceed bd , then
the worker updates the linked list Khi. Otherwise (for
non-leaf nodes), RDDfind is invoked by the worker to
restart the search recursively (lines 22–35).

The trajectory is extracted according to the linked
list Khtrajid; pwzi. K features two attributes: trajid,
which represents the trajectory key, and pwz, which
is the trajectory points of trajid that is determined as
pwz D hpw ; fActzgi , where pw is the trajectory point
identifier, and Actz is a set of an ordered sequence of
activities involved in trajid.

Actz D

(
TRUE; If the ordered activities exist in pw I
FALSE; otherwise.

Amina Belhassena et al.: Trajectory Big Data Processing Based on Frequent Activity 325

Algorithm 2 Query processing
Input:

� Query q
� list Lhidi ;R-treei i

� bd : distance threshold
Output:

� Trajectory traj required by q
1: initialize i D 1
2: traj D hi // activity fifo list
3: ResultŒ � D ∅// trajectory table
4: DŒ � D ∅
5: j D i

6: L0 D hidj ;R-treej i

7: for each R-treei in L do
8: find(S , R-treei)
9: end for

10: for each R-treej in L0 do
11: find(R-treej , E)
12: end for
13: if dis[(S , R-treei)+ dis(R-treej , E)]<Dbd then
14: return R-treei , R-treej

15: if i D j then // the same partition
16: Algorithm 3
17: else
18: for k D i to j do
19: find // RDDfind of Algorithm 3
20: for each sub-trajectory tn do
21: if all Actz of pwz D true then
22: Remove Actz from traj
23: for each element z of pwz do // traverse

the inverted list of pwz

24: U D Sum(Sup(Actz))
25: R D extract the rules of Actz
26: C D Sum(Conf(R))
27: end for
28: return U;C
29: Store ftrajng with its U;C on ResultŒ �
30: end if
31: end for
32: end for
33: for each element r on Result do
34: D D Find-duplicate.elementŒr�/
35: Return D // List D contains the trajectory with

the Sup of each activity
36: end for
37: TRAJECTORY-CHOICE(D) // Algorithm 4
38: end if
39: end if

For example, after extracting the trajectory traj1 in
Fig. 1, the linked list K is updated to

hP1; ftrue, true, truegiI
hP2; ffalse, true, truegi;
hP3; ffalse, falsegi;
hP4; ffalse, false, truegi.

Algorithm 3 Short trajectory case
Input:

� RTree
Output:

� Trajectory traj required by q
1: initialize XŒ�;�� D 0
2: initialize DŒ�� D ∅
3: Step 1: Traversing index
4: RDD tree D sc.parallelize.RTreeŒ �/:map.RTreeŒ �/
5: RDD find D Tree:Filter.tree/:collect. /
6: Step 2: find the trajectory matching q
7: Return the updated linked list K by each slave
8: trajn: the trajectory
9: for each trajectory trajn do

10: if all Actz of pwz= true then
11: for each element z of pwz do // traverse the inverted

list of pwz

12: U D Sum.Sup.Actz))
13: R D extract the rules of Actz
14: C D Sum.Conf.R))// the sum of the Conf of

rules containing the activities required
15: end for
16: return U, C
17: Store ftrajng with its U, C on D
18: return D
19: TRAJECTORY-CHOICE(D) // Algorithm 4
20: end if
21: end for
22: procedure FILTER(Tree tree)
23: s: entry
24: if dis.s:Entry; q/ < bd then
25: if s is a non-leaf then
26: for each child s0 node N do
27: s0:FILTER
28: end for
29: else
30: Update Khidi ; pi i

31: end if
32: else
33: break
34: end if
35: end procedure

The outputs of RDDfind are collected to return
Khi by the master node. Next, for each trajectory
candidate, the sum of Sup and Conf of its required
frequent activities could be computed when traversing
its inverted list (lines 9–21) in Algorithm 3. Afterward,
for the trajectory matching, the Sup and Conf are stored
in the list D (line 17). Finally, using Algorithm 4, the
best trajectory is returned as a final result, with the
details provided in Section 5.2.

Second case: This case is modeled when the
trajectory required is long. Their sub-trajectories are

326 Tsinghua Science and Technology, June 2019, 24(3): 317–332

Algorithm 4 Trajectory choice
1: procedure TRAJECTORY-CHOICE(List D)
2: for each Dn of D do
3: if (Sup(Dn/ > Sup.DnC1))&&(Conf (Dn/ >

Conf.DnC1)) then
4: if dis.Dn; q/ < dis.DnC1; q/ then
5: return Dn

6: end if
7: else
8: if (Sup(Dn/ > Sup.DnC1)) then
9: if dis.Dn; q/ < dis.DnC1; q/ then

10: return Dn

11: end if
12: else
13: return DnC1

14: end if
15: end if
16: end for
17: end procedure

belonged to multiple partitions. Let i and j be the
partitions, where i ¤ j (line 17 of Algorithm 2).

Denoting R-Treeij D .R-Treei ; R-Treej / the trees
overlapping S and E, respectively. To select the
nodes that should be visited in R-Treeij , the distance
between q and R-Treeij should be equal or no
more than bd . Therefore, the distance formula could
be written as dis.q;R-Treeij / D dis.S;R-Treei /C
dis.R-Treej ; E/ 6 Od . If the distance is well verified, the
sub-trajectories are returned from R-Treeij by invoking
RDDfind as described in line 19 of Algorithm 2.

The process of this RDD is similar as explained in
the first case. Then, for each sub-trajectory returned,
the master node processes the linked lists. This process
saves all the activities required in the first time, and
then removes the first one found in the sub-trajectory
candidate as in line 22. Afterward, the sum of Sup
and Conf of the frequent activities required in the sub-
trajectories is computed by traversing the inverted lists
of their points (lines 23–28). Then, based on the table
Result, all the sub-trajectories with their Sup and Conf
are returned (line 29), also the duplicated trajectories
are selected as candidates. Finally, Algorithm 4 is
invoked to sort the best trajectory. Its process will be
discussed in detail in Section 5.2.

5.2 Phase two

As we have mentioned in the previous sections, we
have implemented the Apriori algorithm on each R-Tree
partition. The results, including the frequent activities
and the strong rules between the activity set with their

supports and confidences, are stored in the inverted list
in the HDFS files. This phase aims to sort the shortest
frequent trajectory candidates with the best support
and confidence of the frequent activity set. Assuming
that traji D ftraj1; traj2; : : : ; trajng are the trajectory
candidates returned after collecting the linked list khi
of the previous phase. Each point p of traji contains
Sup and Conf of its activities. Therefore, the support
and the confidence of each trajectory are computed as
follows:

Sup.traj/ D
Pn
iD1 Sup.pn/,

Conf.traj/ D
Pn
iD1 Conf.pn/:

Algorithm 4 uses the TRAJECTORY-CHOICE
procedure. The previously returned list D is used as
the input of the procedure. The algorithm begins by
traversing D to compare the trajectories. If Conf exists,
then we sort the shortest trajectory as the best trajectory
corresponding to q, where its Sup and Conf are higher
(lines 3–5). Otherwise, each single activity appears
in different points of the trajectory, based on its Sup,
we sorted the best trajectories where the Sup of the
frequent activity set is higher (lines 7–10).

For the query activity q:A D fA1; A2; : : : ; Ang,
where Ai denotes the activities included in the
trajectory candidates list D, and the comparison time
between trajectories of D is O.n/.

6 Performance Evaluation

In this section, we evaluate and test the performance
of the DMTR-Tree index and trajectory query-
processing algorithm. All the algorithms proposed
are implemented using Spark in memory computing
framework.

6.1 Experimental settings

The algorithms are implemented on Spark-1.6, using
the HDFS (version 2.6.0) with Hadoop (version 2.6.0)
to store the input datasets, the distributed R-Tree
indexes, and the different inverted lists (MIL). All
experiments were conducted on a cluster of three
machines, with each featuring a 32 GB (4�8 GB) RAM,
64-bit quad-core i7 processor, and four 7200 rpm SATA
Disks (4�1 TB). The computing cores are all running
on UBUNTU (version 14.02) and Java 1.8 with Maven
(3.0.4).

6.2 Datasets

In our experiments, to obtain a large dataset, we used
two historical datasets with different features obtained

Amina Belhassena et al.: Trajectory Big Data Processing Based on Frequent Activity 327

from Microsoft web (http://research.microsoft.com/).
The first one (https://www.microsoft.com/en-us/
download/details.aspx?id=52367) contains 17 621
trajectories with an average total distance of about
1.2�106 km. The second one (https://www.microsoft.
com/en-us/research/publication/t-drive-trajectory-data-
sample/) contains 10 357 trajectories with 1�106

points, and the total distance of the trajectories reaches
9�106 km.

As these data contain no frequent activity, we
modified them using database managemen tools, such
as MySQL and PHPMyAdmin, to add the activity row.
Thus, we obtained the dataset rows in the form of (id,
latitude, longitude, and activity set). To fill the activity-
set rows, we utilized another dataset (frequent itemset
mining dataset) crowd from the net. The following is
an example of such trajectory point: 7105, 116.42456,
39.86968, [r z h k p z y x].

6.3 Speed performance analysis

To process the frequent trajectory query algorithm,
we started by managing the huge data into different
distributed indexes. Then, we implemented the frequent
mining algorithm for each point in the index. Based on
the results obtained during the experiments, we tested
the performance and the speedup of the algorithms
proposed.

To test the scalability of the DMTR-Tree index and
its speedup to manage the massive trajectory data, we
started by measuring the changing time with the dataset
size and the core numbers in each machine to construct
the R-Tree indexes. In addition, the performance of the
Apriori algorithm was implemented for all the points of
each index before constructing the inverted file MIL.

To test the scalability of the DMTR-Tree, we fixed
the node number to three and varied the dataset sizes.
Here, the dataset was replicated twice and thrice to
allow testing of the scalability of the experiments on
the DMTR-Tree. Figure 4 shows the scalability of
the distributed indexes. Notably, the time to construct
the distributed R-tree slowly increases in the Hadoop
compared with the implementation of the indexes in
Spark because the MapReduce involves reusing data
across multiple operations. Therefore, the Hadoop
stores data in the file system at the end of each
iteration and then reads them in the following iteration,
resulting in high cost. However, the Spark handles the
limitations of MapReduce by reusing data across the
iteration in memory and without writing nor reading
the information from the file system. Moreover, the

Fig. 4 Scalability of distributed indexes.

Spark Shared Variable (similar to broadcast variables)
includes sharing the data between the workers in
memory without obtaining them from the file system
nor requesting them from the master node in each
iteration, thus reducing the communication between
nodes and the running time spent in I/O.

This condition is also the same for the
implementation of the distributed Apriori algorithm in
Spark. As noted in Fig. 5, the Apriori implementation
in Spark is faser than MRApriori, which is a standard
Apriori implemented on the Hadoop.

However, as our work aimed to find the frequent
trajectories including the massive activities, the Apriori
process will slow down with the increasing activities.
Figure 6 illustrates the performance comparison
between Apriori and FP-Growth in Spark. According to
Fig. 6, FP-Growth is more efficient than Apriori when
data size increases. This result is attributed to the large
activity candidate set problem that is solved with FP-
Growth[36] by avoiding the candidate generation step.

6.4 Query processing

This work is designed to process the massive trajectory

Fig. 5 Apriori performance in SPARK.

328 Tsinghua Science and Technology, June 2019, 24(3): 317–332

Fig. 6 Apriori vs FP-Growth.

based on frequent activity set. The query aims to find the
frequent trajectories required by the users including the
most frequent activities within a predefined distance. To
evaluate the performance of the query, we analyzed the
speedup of the query results based on several impacts,
such as trajectory length, distance threshold, activities,
and the support, and the confidence of the frequent
activity set.

6.4.1 Impact of the distance threshold
To test the effectiveness of the distance threshold, we
fixed the activity number to 4, and varied the distance
threshold from 5 km to 30 km. As noted in Fig. 7, the
number of visited trajectories increases with increasing
distance, as there are a large number of trajectories
(including both types of trajectories) which are more
likely to be candidates with considerable distance.

Moreover, as the query process requires visiting a
large number of nodes in the trees, it traverses more R-
tree partitions. Consequently, the process requires more
time to answer the query when the distance is increased
(as shown in Fig. 8).

6.4.2 Impact of activity set
To test the effectiveness of the activity set, we fixed the
distance threshold to 10 km and varied the number of
activities from 4 to 10. As noted in Fig. 9, the number of

Fig. 7 Number of trajectory query based on distance
threshold.

Fig. 8 Distance query performance.

Fig. 9 Number of trajectory query based on activity
number.

visited trajectory decreases with the increasing activity
number because a few trajectories cover all the intended
activities.

Furthermore, as noted in Fig. 10, the query
processing consumes substantial running time when the
activity number increases, as the query process initially
requires visiting numerous indexes to obtain the sub-
trajectories, which are then collected and returned to the
trajectories as results.

6.4.3 Impact of the confidence of the frequent
activity set

To test the impact of the confidence, we fixed
the distance to 10 km and varied the confidence

Fig. 10 Activity query performance.

Amina Belhassena et al.: Trajectory Big Data Processing Based on Frequent Activity 329

threshold from 0.3 to 0.8. As depicted in Fig. 11,
the number of the trajectories increases when the
confidence decreases, as the frequent itemset algorithm
returns a large number of activities as results when
their confidences are greater than the confidence
threshold. Consequently, the search becomes less
pruned. Therefore, the trajectories are more likely to be
candidates in this case.

6.4.4 Results correctness
To test the correctness of the trajectory data results,
which are returned by Algorithm 2 in Section 5, we have
tested the direction of the trajectories that are stored in
the list D through the query q. As the trajectory traj is
presented by a set of POIs .POI1;POI2; : : : ;POIn/. traj
can be presented as a collection of vectors,

�������!
POI1POI2;

�������!
POI2POI3; : : : ;

�������!
POIkPOIn. Table 4 illustrates the

analysis of the trajectory results.
As depicted in the table, the system returns “zero

trajectory” when the distance measured between the
query q and traj equals to zero. In this situation, the
user has inputted the wrong query points. For example,
he/she has inputted the final point as his/her start point.
As the query in this example lies in the same location,
the distance will be zero.

Further, the system can eliminate the trajectories
that are similar to q, but their directions are different

Fig. 11 Activity query performance based on the confidence
threshold.

Table 4 Data correctness results.
Distance
d.q; TD/

Result Remark

0 O trajectory The same points
20 25 trajectories –

30
55 trajectories,
5 trajectories

filter out

The 5 trajectories are similar
to q, but they are in the

opposite direction

(line 3 in Table 4). Figure 12 presents an example
of such scenario, where two trajectories are close to
each other. The similarity here is based on the frequent
activities and the minimal distance between trajectories.
However, this assumption may be incorrect when two
trajectories overlap, and their distance will be zero,
indicating their different directions (Fig. 12b).

Based on these analyses, we conclude that the
proposed method is useful and yields good results.

Comparison In addition, to analyze and compare
the trajectory data to find the frequent objects that have
moved in a similar way, an efficient clustering algorithm
for trajectory dataset can be useful. Therefore, the
proposed idea of this paper can be adopted using the
trajectory clustering method based on the TRACLUS
framework[35]. This framework aims to discover the
common sub-trajectories across the clustering process;
these sub-trajectories are very useful to analyze regions
for special interests, such as POI, in the trajectory.

TRACLUS is based on two phases: partitioning
and grouping. The first phase aims to partition the
trajectory into a set of line segments using a Minimum
Description Length (MDL). The second phase aims to
group the similar line segments using the density-based
line-segment clustering algorithm. Figure 13 depicts an
example of the framework.

To process TRACLUS, two parameters should be
feed in, � and MinLns. � is the maximum distance

P21

P22 P23

P14

P13
P12

T2

(a) (b)

T1 P13P12

P11 P11

T1

P14
P22

P23
P21

Fig. 12 Trajectory direction example.

Fig. 13 An example of the partition-and-group
framework[35].

330 Tsinghua Science and Technology, June 2019, 24(3): 317–332

determining the neighbor of one line segment, and
MinLns is the minimum number of line segments
required to construct a cluster.

To process our query, we have modified the algorithm
to cluster not only the trajectory points but also the
activities. However, we need to know which cluster the
trajectory query could be belonged to. Therefore, we
cannot directly process the query after the clustering.

To adopt our query through this framework, we have
implemented an easy method to process the algorithm,
as our query is determined by the start and the final
points, S and E, respectively, a set of desired activities
ai , and a distance threshold bd . Our method aims
to cluster the query based on the location of S and
E. Therefore, q can be presented as a single segment
formed by S and E.

However, the partition phase in TRACLUS should
achieve two desirable properties, which are preciseness
and conciseness. The preciseness is defined by the
difference between a trajectory and its partitions, which
should be as small as possible. While the conciseness
is defined by the number of trajectory partitions, which
should also be as small as possible. The preciseness and
conciseness are contradictory to each other. Therefore,
if only S andE of q are selected as characteristic points
(the characteristic points are the points on which the
behavior of a trajectory changes rapidly), conciseness
is maximized, but preciseness might be minimized.
Therefore, we cannot cluster q as a single long segment.

Given a trajectory query q with S and E, d.S;E/ is
the distance measured between S and E. We suppose
� as the length of trajectory segment. We divide
q based on � where � D d.S;E/=2, which is the
midpoint measured between S and E, d.�; S/ > � and
d.E; �/ > � .

First, we obtained two segments which are
segment1 D .S; �/ and segment2 D .�; E/. Then, we
restarted the process in order to find � of the segment1
and segment2. We continue the process until the
distance measured between the points in the segment
does not exceed � . Figure 14 presents an example of
the query partition.

However, in our proposed method, if all points

S E

Seg1 Seg2 … …

MidPoint MidPointMidPoint

Seg8

Fig. 14 An example of trajectory query partition.

of q, including all � , are selected as characteristic
points, then preciseness is maximized, but conciseness
is minimized. Therefore, we have adopted the MDL
principle as in Ref. [35] to maximize the conciseness
based on its component L.H/. The other component
L.DjH/ D 0 is not used because the preciseness is
maximized.

Based on Euclidean distance, denoting len.�j ; �jC1/
as the length of a line segment of �j�jC1,L.H/ aims to
define the sum of the length of all trajectory partitions,
as presented in the following equation:

L.H/ D
Ppr�1
jD1 log2.len.�j ; �jC1//:

Based on these modifications, we have processed
the approximate trajectory partitioning as in Ref. [35].
Furthermore, in order to group the trajectory query into
clusters, the density-based clustering algorithm based
on DBSCAN was used as in the original papers[35, 37].
We have continued the process of TRACLUS as in Ref.
[35]. Finally, based on the trajectory query segments
including the points S and E, we have obtained the
common sub-trajectories close to q.

However, we have observed that the framework
exhibits low efficiency, especially when the query
arrives. Thus, the framework should be segmented into
clusters based on two parameters � and minLns. These
two parameters are sensitive. Further, user should have
enough information about these parameters, implying
that we should feed in the right values of the parameters
to help the users. However, if the wrong pair of
parameters is feed in, the final clustering results may be
valueless, and thus, nothing can be generated. However,
as q is varied from user to user, so we cannot know
which query will be used by the user. Thus, efficiently
generating these parameters presents difficulty. As in
our proposed index and the trajectory query algorithm,
the user needs not to feed in any parameters nor possess
any knowledge about the process to obtain real results.
Hence, our study features efficiency and usefulness.

Moreover, in order to compare the analyses of the
performance between TRACLUS and our study, we
have evaluated the computation time based on the
dataset size. Figure 15 shows the comparison results
between two studies. As noted, these studies yield a
similar running time with that of small data. However
as noted in the figure, our study required a short running
time, especially in the case of large datasets. Therefore,
we have ensured that our work achieves a good rapidity
and efficiency.

Amina Belhassena et al.: Trajectory Big Data Processing Based on Frequent Activity 331

Fig. 15 Performance comparison.

7 Conclusion

An efficient method was used in this paper to handle
the problem of the frequent trajectory query. This
method is based on the distance and frequent activities
holding each POI. To handle this problem efficiently, we
proposed the DMTR-Tree index, which organizes the
massive amount of trajectory points with their frequent
activities. To achieve a good speedup and scalability of
the index, we implemented the index in a distributed
platform using the Apache Spark and MapReduce
model. Furthermore, based on the Apriori algorithm, we
extracted the frequent activities and constructed their
association rules. To accelerate the Apriori processing,
we implemented it on each trajectory point stored
in the leaves of each distributed small index instead
on the whole data. Experimental results show the
good scalability of the index, and the query-processing
algorithm is efficient and achieves a rapid response from
the users. In the future, we plan to handle terabyte-
sized datasets by adding more machines to the cluster
and implementing another version of Apriori algorithm
to outperform the classical one.

Acknowledgment

This paper was partially supported by the National
Natural Science Foundation of China (Nos. U1509216
and 61472099), the National Sci-Tech Support Plan (No.
2015BAH10F01), the Scientific Research Foundation for
the Returned Overseas Chinese Scholars of Heilongjiang
Provience (No. LC2016026), and MOECMicrosoft Key
Laboratory of Natural Language Processing and Speech,
Harbin Institute of Technology.

References

[1] H. H. Aung, L. Guo, and K. L. Tan, Mining sub-trajectory

cliques to find frequent routes, in Proc. 13th Int. Symp.
Advances in Spatial and Temporal Databases, Munich,
Germany, 2013, pp. 92–109.

[2] K. Zheng, S. Shang, N. J. Yuan, and Y. Yang, Towards
efficient search for activity trajectories, in Proc. 29th Int.
Conf. Data Engineering, Brisbane, Australia, 2013, pp.
230–241.

[3] C. Zhang, J. W. Han, L. D. Shou, J. J. Lu, and T. La
Porta, Splitter: Mining fine-grained sequential patterns in
semantic trajectories, Proc. VLDB Endow., vol. 7, no. 9,
pp. 769–780, 2014.

[4] W. Chen, L. Zhao, J. J. Xu, G. F. Liu, K. Zheng, and
X. F. Zhou, Trip oriented search on activity trajectory,
J. Comput. Sci. Technol., vol. 30, no. 4, pp. 745–761, 2015.

[5] R. Agrawal and R. Srikant, Fast algorithms for mining
association rules in large databases, in Proc. 20th Int. Conf.
Very Large Data Bases, Santiago de Chile, Chile, 1994, pp.
487–499.

[6] R. J. Jr. Bayardo, Efficiently mining long patterns from
databases, ACM SIGMOD Rec., vol. 27, no. 2, pp. 85–93,
1998.

[7] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li,
Parallel algorithms for discovery of association rules, Data
Min. Knowl. Disc., vol. 1, no. 4, pp. 343–373, 1997.

[8] H. J. Qiu, R. Gu, C. F. Yuan, and Y. H. Huang, YAFIM:
A parallel frequent itemset mining algorithm with spark,
in Proc. 28th Int. Parallel & Distributed Processing Symp.
Workshops, Phoenix, AZ, USA, 2014.

[9] A. Guttman, R-trees: A dynamic index structure for
spatial searching, in Proc. 1984 ACM SIGMOD Int. Conf.
Management of Data, Boston, MA, USA, 1984, pp. 47–57.

[10] J. Dean and S. Ghemawat, MapReduce: Simplified
data processing on large clusters, in Proc. 6th Conf.
Symp. Operating Systems Design & Implementation, San
Francisco, CA, USA, 2004.

[11] A. Eldawy, L. Alarabi, and M. F. Mokbel, Spatial
partitioning techniques in Spatial Hadoop, in Proc. 41st
Int. Conf. Very Large Data Bases, Kohala Coast, HI, USA,
2015, pp. 1602–1605.

[12] H. C. Yang, A. Dasdan, R. L. Hsiao, and D. S. Parker,
Map-reduce-merge: Simplified relational data processing
on large clusters, in Proc. ACM SIGMOD Int. Conf.
Management of Data, Beijing, China, 2007, pp. 1029–
1040.

[13] H. Z. Wang and A. Belhassena, Parallel trajectory search
based on distributed index, Inf. Sci., vols. 388&389, pp.
62–83, 2017.

[14] R. Agrawal and R. Srikant, Mining sequential patterns,
in Proc. 11th Int. Conf. Data Engineering, Taipei, China,
1995.

[15] M. Morzy, Prediction of moving object location based on
frequent trajectories, in Proc. 21st Int. Conf. Computer
and Information Sciences, Istanbul, Turkey, 2006, pp. 583–
592.

[16] M. Morzy, Mining frequent trajectories of moving objects
for location prediction, in Proc. 5th Int. Conf. Machine
Learning and Data Mining in Pattern Recognition,
Leipzig, Germany, 2007, pp. 18–20.

332 Tsinghua Science and Technology, June 2019, 24(3): 317–332

[17] E. Masciari, G. Shi, and C. Zaniolo, Sequential pattern
mining from trajectory data, in Proc. 17th Int. Database
Engineering Applications Symp., Barcelona, Spain, 2013,
pp. 162–167.

[18] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti,
WhereNext: A location predictor on trajectory pattern
mining, in Proc. 15th ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining, Paris, France, 2009.

[19] N. Li, L. Zeng, Q. He, and Z. Z. Shi, Parallel
implementation of apriori algorithm based on
MapReduce, in Proc. 13th ACIS Int. Conf. Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, Kyoto, Japan, 2012, pp.
236–241.

[20] M. Y. Lin, P. Y. Lee, and S. C. Hsueh, Apriori-based
frequent itemset mining algorithms on MapReduce, in
Proc. 16th Int. Conf. Ubiquitous Information Management
and Communication, Kuala Lumpur, Malaysia, 2012.

[21] J. Guo and Y. G. Ren, Research on improved a priori
algorithm based on coding and MapReduce, in Proc. 10th
Web Information System and Application Conf., Yangzhou,
China, 2013, pp. 294–299.

[22] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, New
algorithms for fast discovery of association rules, in Proc.
3rd Int. Conf. Knowledge Discovery and Data Mining,
Newport Beach, CA, USA, 1997.

[23] N. Li, L. Zang, Q. He, and Z. Z. Shi, Parallel
implementation of apriori algorithm based on MapReduce,
Int. J. Netw. Distrib. Comput., vol. 1, no. 2, pp. 89–96,
2013.

[24] W. Tong, C. Rudin, D. Wagner, and R. Sevieri, Learning to
detect patterns of crime, in Proc. European Conf. Machine
Learning and Knowledge Discovery in Databases, Prague,
Czech Republic, 2013, pp. 515–530.

[25] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica, Spark: Cluster computing with working
sets, in Proc. 2nd USENIX Conf. Hot Topics in Cloud
Computing, Boston, MA, USA, 2010.

[26] S. Rathee, M. Kaul, and A. Kashyap, R-Apriori: An
efficient apriori based algorithm on spark, in Proc.
8th Workshop on Ph.D. Workshop in Information and
Knowledge Management, Melbourne, Australia, 2015, pp.
27–34.

[27] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger,
The R�-tree: An efficient and robust access method for

points and rectangles, in Proc. 1990 ACM SIGMOD Int.
Conf. Management of Data, Atlantic City, NJ, USA, 1990,
pp. 322–331.

[28] R. Hariharan, B. Hore, C. Li, and S. Mehrotra, Processing
spatial-keyword (SK) queries in geographic information
retrieval (GIR) systems, in Proc. 19th Int. Conf. Scientific
and Statistical Database Management, Banff, Canada,
2007.

[29] D. X. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung,
and M. Kitsuregawa, Keyword search in spatial databases:
Towards searching by document, in Proc. 25th Int. Conf.
Data Engineering, Shanghai, China, 2009, pp. 688–699.

[30] W. Chen, L. Zhao, J. J. Xu, K. Zheng, and X. F.
Zhou, Ranking based activity trajectory search, in Proc.
15th Int. Conf. Web Information Systems Engineering,
Thessaloniki, Greece, 2014, pp. 170–185.

[31] C. Du Mouza, W. Litwin, and P. Rigaux, SD-Rtree: A
scalable distributed R-tree, in Proc. 23rd Int. Conf. Data
Engineering, Istanbul, Turkey, 2007, pp. 296–305.

[32] A. Eldawy and M. F. Mokbel, A demonstration of Spatial
Hadoop: An efficient MapReduce framework for spatial
data, Proc. VLDB Endow, vol. 6, no. 12, pp. 1230–1233,
2013.

[33] L. Wang, B. Chen, and Y. H. Liu, Distributed storage and
index of vector spatial data based on HBase, in Proc. 21st
Int. Conf. Geoinformatics, Kaifeng, China, 2013, pp. 1–5.

[34] J. Yu, J. X. Wu, and M. Sarwat, GeoSpark: A cluster
computing framework for processing large-scale spatial
data, in Proc. 23rd SIGSPATIAL Int. Conf. Advances
in Geographic Information Systems, Seattle, WA, USA,
2015.

[35] J. G. Lee, J. W. Han, and K. Y. Whang, Trajectory
clustering: A partition-and-group framework, in Proc.
2007 ACM SIGMOD Int. Conf. Management of Data,
Beijing, China, 2007, pp. 593–604.

[36] J. W. Han, J. Pei, and Y. W. Yin, Mining frequent
patterns without candidate generation, in Proc. 2000 ACM
SIGMOD Int. Conf. Management of Data, Dallas, TX,
USA, 2000, pp. 1–12.

[37] M. Ester, H. P. Kriegel, J. Sander, and X. W. Xu, A density-
based algorithm for discovering clusters in large spatial
databases with noise, in Proc. 2nd Int. Conf. Knowledge
Discovery and Data Mining, Portland, OR, USA, 1996,
pp. 226–231.

Hongzhi Wang is a professor and
doctoral supervisor at Harbin Institute of
Technology. He received the PhD degree
in computer science from Harbin Institute
of Technology in 2018. He is a recipient
of the outstanding dissertation award of
CCF, Microsoft Fellow, and IBM PhD
Fellowship. His research area is data

management, including data quality, XML data management,
and graph management. He has published more than 100 papers
in refereed journals and conferences.

Amina Belhassena received the PhD
degree in computer science from Harbin
Institute of Technology, China in 2018. She
received the master degree of Technology
in computer science from Abou bakr
belkaid Tlemcen University, Algeria in
2012. Her research interest includes
massive data computing, data mining,

large-scale data management, and data indexing.

