
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 01/10 pp249–261
DOI: 10 .26599 /TST.2018 .9010069
Volume 24, Number 3, June 2019

Scalability Analysis of Request Scheduling in Cloud Computing

Chao Xue, Chuang Lin�, and Jie Hu

Abstract: Rapid advancement of distributed computing systems enables complex services in remote computing

clusters. Massive applications with large-scale and disparate characteristics also create high requirements for

computing systems. Cloud computing provides a series of novel approaches to meet new trends and demands.

However, some scalability issues have to be addressed in the request scheduling process and few studies have

been conducted to solve these problems. Thus, this study investigates the scalability of the request scheduling

process in cloud computing. We provide a theoretical definition of the scalability of this process. By modeling the

scheduling server as a stochastic preemptive priority queue, we conduct a comprehensive theoretical and numerical

analysis of the scalability metric under different structures and various environment configurations. The comparison

and conclusion are expected to shed light on the future design and deployment of the request scheduling process

in cloud computing.

Key words: cloud computing; request scheduling; scalability; model evaluation

1 Introduction

With the rapid advancement of distributed systems and
the demands on computing ability, placing computing
tasks in remote computing clusters has become a
trend[1]. The traditional general-purpose stand-alone
computing paradigm is shifting toward a heterogeneous,
transparent, and scalable one[2]. The development of the
definition of cloud computing and its industry structure
has transformed the service paradigm[3]. Although
SaaS, PaaS, and IaaS technologies make applications
convenient, an important issue in cloud computing is
how to achieve uneven conditioning services or users
and enable users to select their desired service level via
devices or platforms available to them[4]. Focusing on
the capability of the cloud computing platform to ensure

�Chao Xue, Chuang Lin, and Jie Hu are with Tsinghua National
Laboratory for Information Science and Technology (TNList)
& Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China. E-mail:
xuec11@mails.tsinghua.edu.cn; chlin@tsinghua.edu.cn;
j-hu11@mails.tsinghua.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2017-04-20; revised: 2017-06-15;
accepted: 2017-06-16

proper evaluation and improvement is necessary.
Scalability is one of the foremost issues that

designers should take into consideration seriously in
cloud computing[5–7]. Scalability is used to determine
whether a cloud system can handle a large number
of application requests simultaneously[8]. Hwang et
al.[9] emphasized the importance of IaaS scalability
in cloud computing. Chen et al.[10] discussed the
scalability issues in video streaming technique in
a multi-cloud environment. Anandhi and Chitra[11]

provided the scalability analysis of the consistency
attribute in a cloud database. Cáceres et al.[12] and
Gao et al.[13] conducted service and SaaS scalability
analyses, respectively. Tian et al.[14] also considered
energy consumption as a bottleneck metric to evaluate
the performance scalability of cloud computing via
a stochastic service decision net model. However,
no effective uniform formal model exists to consider
the scalability challenge in previous works. In the
present study, we address the scalability issues from the
perspective of the request scheduling process in cloud
computing.

We propose a stochastic preemptive priority queue
model that builds the scalability evaluation system for

250 Tsinghua Science and Technology, June 2019, 24(3): 249–261

the request scheduling in cloud computing and conducts
an essential theoretical derivation and numerical
analysis on it. We discuss the scalability in different
structures and environment configurations. We also
provide valid conclusions that may be helpful in the
design and optimization of the request scheduling
process in cloud computing.

The rest of this paper is organized as follows. Section
2 introduces the service architecture and the related
work on scalability issues in typical distributed systems.
The scalability of request scheduling process is also
discussed. The formulation of our scalability evaluation
model is proposed in Section 3. Section 4 discusses
the scalability in three fundamental structures based on
our scalability evaluation model. Section 5 provides
a numerical analysis of the variation of scalability in
different configurations and environments. Scalability
comparison of different structures is also performed
based on our understanding. Conclusion and future
work are presented in Section 6.

2 Background and Preliminary

2.1 Request scheduling in cloud computing

As cloud computing environments need to scale to a
large number of users and tasks, designing a scheduling
mechanism that can efficiently distribute the tasks and
resources becomes a key point for research[15]. In
cloud computing, clients generate their requests for
various resources such as computing and storage
access. The request type of a given device depends
on its access mode and may differ from the requests
of other devices. The request type may be broadcast
in a wireless environment or be unicast/multicast in
a configured LAN. For convenience of analysis, we
focus on the unicast request mode with the view that
a broadcast/multicast can be virtually equivalent to a
group of unicast requests from some isomorphic virtual
devices. A client may be managed by one or more
servers in the request scheduling layer to describe
different environments. For example, a given broadcast
request may be regarded as this device is managed
by all the servers in the request schedule layer and
always delivers the requests to them simultaneously.
Considering diversity link delay to different servers
and other environmental factors, we assume that this
broadcast request can also be equivalent to a group of
devices managed by only one server.

Virtual servers in the cloud or cluster deliver

responses to clients, providing intensive computing
service and virtual resource management. After request
scheduling, clients obtain relative optimal virtual
servers to fetch computing and storage services
according to their need. At the same time, every virtual
server updates its status to request a scheduling layer.
When a status report is missed for a given time, the
request scheduling system regards this condition as
a passive timeout report, which implies failure of a
unique virtual server. The virtual server will trigger
live migration according to the virtual management
requirement or as proposed by the request scheduling
layer. The former usually occurs due to load and power
management issues. However, the latter is supervised
by the request scheduling layer to reconstruct the
distribution of the resource to fit the clients demand or
a higher performance.

2.2 Related scalability issues

Scalability is always an essential topic in every
large-scale distributed service system to evaluate the
relationship between cost and efficiency. Many studies
have been conducted on this topic for each unique
system, but few of them addressed the general
definition of scalability itself. Armbrust et al.[16]

divided scalability into scale-up elasticity and scale-
down elasticity; the former is not a cost optimization
but an operational requirement that integrates large-
scale computing, storage, and network resource
to achieve user demands[17], and the latter allows
the steady-state expenditure to closely match the
steady-state workload usually in small- and medium-
sized enterprises and organizations that have limited
computing resources[18]. Eager et al.[19] provided
the scalability of multiprocessor systems defined by
efficiency based on speedup. Execution time on a
system with size n and k processors is expressed
by Time.k; n/, and the corresponding speedup and
efficiency is defined by Speedup.k; n/ D Time.1; n/

Time.k; n/ and

Efficiency.k/ D Speedup.k; n/
k

, respectively. Jogalekar
and Woodside[20] evaluated the scalability of distributed
computing systems and defined f .k/ as the quality
of service for requests, �.k/ as the throughput, and
C.k/ as the cost of the entire distributed system
where k represents the system scale. Based on the
productivity defined by F.k/ D �.k/�f .k/

C.k/
, the relative

scalability metric 	.k1; k2/ D F.k1/=F.k2/, which
can be written as 	.k1/, as k2 is always a given
value. Hu et al.[21] presented an integrated scalability

Chao Xue et al.: Scalability Analysis of Request Scheduling in Cloud Computing 251

model based on previous studies on the control plane
of software defined network and evaluated the average
distance between controllers.

2.3 Scalability of request schedule layer

Similar to Arpacioglu and Zygmunt[22], we analyze
the parameters, environment, and metrics of scalability
on the request scheduling process in cloud computing.
The issue is whether the defined metrics can be
stable or better as the parameters vary under a
given environment. The environment is supposed to
be fixed. The parameters in the request scheduling
process include request characteristics, complexity of
the request scheduling system, and capability of the
server to deal with request scheduling.

Request character contains the number of clients,
average request load, burstiness, and communication
technique such as unicast, multicast, and broadcast.
Complexity refers to scale, distribution, and
synchronism. In this study, we mainly discuss the
scalability of the request scheduling process with the
variation of the clients’ number, amount, and network
structure of the servers.

The request scheduling process is the basic function
of cloud computing. We use a metric vector m.p/ to
express the scalability metrics with the parameter vector
p. The scalability is described by a comprehensive
expression ˚.m.p// that combines various metrics.

Hu et al.[21] and Woodside[23] followed the evaluation
philosophy mentioned. We fit this approach into
the evaluation of the request scheduling process.
Furthermore, we bring synchronization distance into the
consideration of complexity. The scalability semantic
of the request scheduling layer is defined as follows.

Definition 1 The request scheduling layer of
a cloud computing system is scalable in a given
environment, if the comprehensive expression ˚.m.p//
is approximately the same as the change of parameter
vector p.

3 Problem Formulation

3.1 System model

The entire system is described by a stochastic
model that contains four components (clients, request
scheduling network, virtual servers, and network OS)
included in a cloud environment, as explained in the
following.

3.1.1 Service request
Let T

ij
c be the time interval of two consecutive

independent complete operation requests from client i
to the target scheduling server j . Our stochastic model
assumes that this random variable is independent and
subject to exponential distribution with average value
�c .

3.1.2 Request scheduling
We assume that the time interval random variable T jvs ,
which is the time between two consecutive status update
reports to servers in a request scheduling layer, is
subject to exponential distribution with an average value
of �vs .

The details of this process are illustrated in Fig. 1.
1
 A client sends a request for a unique service.
2
 Servers in the request scheduling layer receive this

request and make the decision. 3
 Clients generate
real service requests. 4
 A target virtual server serves
the client with corresponding resource response 5
 and
service response 6
. A service request represents a
whole that may contain many parts and trigger requests
only once. Thus, the time interval between the two
scheduling request to the request scheduling layer is
also T ijc from the client i to virtual server j and subject
to Poisson distribution.

3.1.3 Request scheduling layer
We model this layer on a node with sufficient memory
and I/O ability. Parameters are process rate �b1; update
rate �b2; node set V with amount v numbered by
f0; 1; 2; :::; v � 1g; and edge set E with amount e.
Both the process time and update time of the CPU of
a given server are assumbed as exponential distribution.
The scale of the status table stored on each server in
the virtual server layer is q. We define the average
complexity to work out a response to the client as
�1.V;E; q/. Therefore the average execution time is
�1.V;E; q/=�b1. We define the average complexity

Fig. 1 Request scheduling process of cloud computing.

252 Tsinghua Science and Technology, June 2019, 24(3): 249–261

to update a table entry as �2.V;E; q/. Therefore, the
average update time is �2.V;E; q/=�b2. A status table
maintained by the request schedule server can be part
of the servers it manages or the whole servers in
the virtual server network. This condition causes the
differences in the request scheduling process. Let T k

b

be the response time of request schedule server k, Qk
b

be the queuing time of request scheduling server k
with respect to the scheduling request, and T ksync be
the duration of synchronization process handling the
status update request. Then, we have the following two
kinds of response time. The status update request has
a higher priority. All status update requests should be
done before the scheduling requests’ start.

(1) If the server maintains a status table covering the
whole virtual server layer network, i.e., q is the whole
table, then the server will make the request scheduling
decision after a synchronization process; thus, it deals
not only with the status update requests from the virtual
servers it manages but also with requests from other
servers.

T kb D Q
k
b C

�1.V;E; q/

�b
C T ksync (1)

(2) If the server maintains a status table covering the
part of servers managed by it only, i.e., q is the partial
table, then the server will make the request scheduling
decision locally. If the virtual server requested is not
in its management, then the server will hand over the
request to the neighbor request scheduling server for
execution. The synchronization process only contains
the status update request from the virtual server it
manages.

T kb D Q
k
b C

�1.V;E; q/

�b
C T ksync C T

k0

b (2)

For a request, the request scheduling server should
find the most appropriate one to serve the client
and only needs to find the best one. Therefore,
the complexity to finish this job is O.q/. To
illustrate our computation and comparison, our
model uses �1.V;E; q/ D ˛ � q where ˛ represents
a constant. Correspondingly, hash can be applied to
the status update process to make the complexity
O.1/. Thus, we have �2.V;E; q/ D ˛ proportionable
with �1.V;E; q/. According to the conclusion that
the sum of independent Poisson distributed random
variables is also subject to Poisson distribution, the
aggregated arrival of requests to a given server in
the request scheduling layer is subject to the Poisson
distribution. We model each server in this layer as

a preemptive priority queue. The priority is intuitive
because if we have done all the status updates, the
accuracy and effectiveness of the request scheduling
improve. The O.1/ complexity of the status updating
operation means that the priority duration is not
extremely long.

The topology implementation of the request schedule
layer has three typical structures: centralized,
decentralized, and hierarchical, as illustrated
respectively in Fig. 2. The centralized structure contains
only one server in the request scheduling layer. The
decentralized structure has multiple servers with peer-
to-peer relationship. The hierarchical structure contains
different types of servers at different management
levels logically. Calculations of the aggregated arrival
rates of scheduling requests on different structures
differ from each other and are according to the server
management relationship. The detailed computation is
presented in Section 4.

3.2 Scalability definition

We use a comprehensive metric to provide the
scalability evaluation. This metric inherits the
productive base and introduces synchronization. We
also use throughput, average response time, and
complexity to evaluate this metric. Number of clients is
the most important variable. The scalability definition
in this work is as follows.

Definition 2 Scalability metric of request
scheduling layer with topology .V;E/ is defined
as

˚.N1; N2/ D
�.N1/

�.N2/
�
T .N2/

T .N1/
�
C.N2/

C.N1/
(3)

The scalability definition is a relative ratio form
metric, which represents the scalability of request
scheduling layer with a given structure when the total
number of the clients scales from N2 to N1. �.N /
represents the throughput, which is the average number
of scheduling requests completed in a unit time. T .N /
represents the average response time for each request.

 Client

...

...

...

...

...

...

 RS-server Computing Resource Storage Resource Hybrid Resource

Scheduling
Network

Scheduling
Network

Scheduling
Network

Delivery

Network

Delivery

Network

Delivery

Network

(a) Centralized structure (b) Decentralized structure (c) Hierachical structure

Fig. 2 Three structures of request scheduling layer.

Chao Xue et al.: Scalability Analysis of Request Scheduling in Cloud Computing 253

C.N/ indicates the complexity to deploy and maintain
the servers to confirm the validity of the request
scheduling layer.

Variables in Eq. (3) are stochastic mean. The
complexity is calculated by C.N/ D v=.dsync C 1/

where dsync indicates the farthest synchronization
distance and varies depending on the different structures
deployed. Similarly, we use dij to denote the shortest
distance from request scheduling server i to j .

4 Scalability Evaluation

Our work entails evaluating and comparing the
scalability of different structures of the request
scheduling process in cloud computing. Moreover,
we analyze how the changes in environment and
structure configurations will influence the scalability
metric. In this section, we calculate the components
of the scalability metric for different structures. For
the centralized structure, the metric can be calculated
directly. For the decentralized structure, each request
scheduling server has the same role in the scalability
metric. For the hierarchical structure, the expression
varies according to the function of different request
scheduling servers.

4.1 Queue model of one node

We deduce the core computation of our model
called “preemptive priority queue” in this subsection.
Consider an aggregated scheduling request arriving
�1 and an aggregated status updating request arriving
�2. Their corresponding executing rates are noted
by �1 D �b1 D �b=�1.V;E; q/ and �2 D �b2 D �b=
�2.V;E; q/. As the two arriving rates are subject to
Poisson distribution and the two executing rates are
subject to exponential distribution, we can represent
the queuing process by a 2-dimensional Markov
chain. Notably, the priority of the status updating
requests means that �1 works when and only when
j D 0. Let pij be the probability when there are i
scheduling requests and j status updating requests
in the queue. Let �1 D �1=�1 and �2 D �2=�2
denote the virtualized utility of the two virtualized
queue. We can calculate the average response time of
the aggregated scheduling request and obtaining the
following equation.

EfT kb g D
1

1 � �2

�
1

�1
C

�1�2 C �2�1

�1�2.1 � �1 � �2/

�
(4)

Applying the matrix geometric method proposed by
Neuts[24], Miller[25] provided an iterative solution to the
steady-state probabilities of this 2-dimensional Markov

chain. Based on the method, we can determine the
average response time of the scheduling request by
solving the average queue length and using Little’s Law.

4.2 Centralized structure

In a centralized structure, the average arrival rate of
requests is �C1 D N�c , and that of updating requests
is �C2 DM�vs , where M denotes the total number
of the virtual servers. Both types of requests have a
Poisson distribution. The processing time of the server
in the request scheduling layer is a stochastic variable
that is subject to the exponential distribution; it is
the reciprocal of the average processing rate. Only
one request schedule server exists in this situation, as
shown in Fig. 2a, so table q maintained on this server
covers all virtual servers, i.e., q DM . The farthest
synchronization distance is dsync D 0. The executing
rates are �C1 D �b=�1.V;E;M/ D �b=.˛M/ and
�C2 D �b=�2.V;E;M/ D �b=˛. Therefore, the
average response time of a scheduling request can be
calculated as follows:

TC D
˛M

�b�˛M�vs

�
1C

˛.MN�c C �vs/

�b�˛M.N�cC�vs/

�
(5)

The complexity is CC .N / D v=.dsync C 1/ D 1.

4.3 Decentralized structure

We assume a decentralized structure to be a symmetric
one with isomorphic view from an arbitrary node.
This assumption is also our understanding of the
decentralized and peer-to-peer concepts. As mentioned
in the previous section, the status table maintained by
a request scheduling can be of two types. Thus, two
strategies exist in the decentralized structure for the
request scheduling process, namely, full table as the
first and partial as the second. The first one generates
a higher demand for storage space. As the number
of servers is v, we assume that each server manages
its clients equitably with the same number N=v and
manages the virtual servers with the same amountM=v.
4.3.1 First strategy
A request scheduling server can process all requests
generated by clients under its management. We also
have the table scale q D M similar to the centralized
structure.

For a given request scheduling server, the average
arrival rate of scheduling requests is �D1

1 D N�c=v,
and the average arrival rate of the status updating
request is �

D1

2 DM�vs=v � v DM�vs . The reason
for the latter is that each update is sent to
every server once to maintain the corresponding

254 Tsinghua Science and Technology, June 2019, 24(3): 249–261

table entry. Table q is also the whole one such
that q DM . The variable dsync depends on a
different topology. �

D1

1 D �b=�1.V;E;M/ D �b=

.˛M/, �D1

2 D �b=�2.V;E;M/ D �b=˛. Therefore,
the average response time of a scheduling request is
calculated as follows:

TD1
D

˛M

�b�˛M�vs

�
1C

˛.MN
v
�c C �vs/

�b�˛M.
N
v
�cC�vs/

�
(6)

The complexity is CD1
D v=.dsync C 1/ D v.

4.3.2 Second strategy
A request scheduling server can only process the
scheduling requests target to the virtual servers it
manages. As mentioned in the previous section, the
server will hand over the request to the request
scheduling server nearby for follow-up process.
We assume that the probability distribution of the
destination of a request is uniform in the view of
request scheduling servers. That is, a request has an
equal probability 1=M �M=v D 1=v to make each
request scheduling server as a target to work out
the virtual server under its management. Considering
the symmetry assumption, we can first calculate the
response time on every request scheduling server under
the aggregate requests, and then probabilistically sum
up the response time along the handover trace as the
final average response time.

A request scheduling server i receives the scheduling
request from the clients it manages and the request
from the request scheduling server j with a shortest
distance dij . The equivalent arrival rate from request
scheduling server j ¤ i to request scheduling server
i can be calculated by the probability expression .1 �
1=v/N�c=v. Thus, we can calculate the average arrival
rate of the aggregate scheduling request on request
scheduling server i as follows:

�
Di

2

1 D

�
1C

X
j¤i

�
1 �

1

v

��
�
N�c

v
D

�
1 �

1

v
C

1

v2

�
N�c (7)

It is also the aggregate scheduling request arrival
rate of the other request scheduling servers for

symmetric reason, i.e., 8i 2 V , �D2

1 D �
Di

2

1 . If the
decentralized structure is not symmetric, we can also
calculate the aggregate arrival rate node by node,
but a uniform expression may not exist. While the
aggregate status updating request arriving rate is �D2

2 D

M�vs=v. The table q is the partial one that q DM=v.

�
D2

1 D �bv=.˛M/, �D2

2 D �b=˛. Response time is as
follows:

T
D2

b
D

˛M

v�b�˛M�vs

�
1C

˛.M�
D2

1 C v�vs/

v�b�˛M.�
D2

1 C�vs/

�
(8)

If a scheduling request generated by i has a proper
target under j ’s management, the response time
becomes .dij C 1/ � T

D2

b
.N / with a probability 1=v.

Knowing the distribution of target virtual server is a
uniform one, i.e., 1=M �M=v D 1=v. We can calculate
the average response time of a scheduling request in this
strategy based on Eqs. (7) and (8) as follows:

TD2
D

v�1X
jD0

d0j C 1

v
� T

D2

b
(9)

4.4 Hierarchical structure

In hierarchical structure, request scheduling servers
play different roles. They can manage both request
scheduling servers and virtual servers or only manage
virtual servers as previous structures. In our context, it
means “maintain the status table”. We divide request
schduling in two types strictly in this structure named
by the layer number k and expressed by Lk . L0
nodes locate at the bottom of the structure and only
maintain the status of servers directly under their
management; the status table becomes q.L0/. Similarly,
when k > 0, an Lk request scheduling server manages
several Lk�1 virtual servers and shares their status
table q.Lk/ D

S
2 q.Lk�1/ where 2 indicates the

management relation. For analysis convenience, we
assume that the total number of Lk�1 request
scheduling servers under the management of an Lk
request scheduling server is the same denoted by
mk when k > 0, i.e., q.Lk/ D mk � q.Lk�1/ when
k > 0. Let h be the height of the hierarchical structure
and there is only one virtual server in Lh, then we
have the total number in Lk , n.Lk/ D

Qh
lDkC1ml .

Intuitively, n.L0/ D
Qh
lD1ml , the number of virtual

servers managed by each L0 request scheduling server
is m0 DM=n.L0/ DM=.

Qh
lD1ml/. We also have the

basic equation on the total number of request scheduling
servers as follows:

v D

hX
iD0

n.Li / D

hX
iD0

hY
jDiC1

mj (10)

For an L0 request scheduling server, the status
table is q.L0/ D m0 DM=.

Qh
lD1ml/. The aggregate

arrival rate of scheduling requests from clients it
manages is �H0

1 D N�c=n.L0/ D N�c=.
Qh
lD1ml/.

Chao Xue et al.: Scalability Analysis of Request Scheduling in Cloud Computing 255

The aggregate arrival rate of status updating requests
from virtual servers it manages is �H0

2 D m0�vs D

M�vs=.
Qh
lD1ml/. The average execution rates are

�
H0

1 D �b=�1.V;E; q.L0// D �b
Qh
lD1ml=.˛M/

and �
H0

2 D �b=�2.V;E; q.L0// D �b=˛,
respectively. Then we can calculate the response time
on each L0 request scheduling server by Eq. (4).

Thus, for an Lk request scheduling server where
k > 0, only when a scheduling request is missed in all
layersL<k canLk finally arrive layer by layer. Treating
1=n.Ll/ D 0 when l < 0 , the aggregate arrival rate of
scheduling requests is as follows:

�
Hk

1 D

�
1 �

1

mk

�
�
N

nk
� �c (11)

A status updating request will always be delivered
to the upper layer if the management relationship
exists. Thus, the aggregate rate of updating requests
is �Hk

2 D M�vs=n.Lk/. The average execution rate is
�
Hk

1 D �b=�1.V;E; q.Lk// D �b
Qh
lDkC1ml=.˛M/

and �Hk

2 D �b=�2.V;E; q.Lk// D �b=˛, which is
the same form as the update rate in L0. Then, Eq. (4)
can be used to calculate the response time on each Lk
request scheduling server. Overall, denoting n.Lk/ as
nk , we obtain THk

b
.N / as follows:

T
Hk

b
.N /D

˛M

nk�b�˛M�vs

�
1C

˛.M�
Hk

1 Cnk�vs/

nk�b�˛M.�
Hk

1 C�vs/

�
(12)

The destination decides which layer a scheduling
request needs to climb to. The probability that a
scheduling request will reach Lk is 1=nk � 1=nk�1.
Response time to reach Lk is

Pk
lD0 T

Hk

b
. Thus, the

average response time of the scheduling requests in
hierarchical structure is as follows:

TH D

hX
kD0

�
1

nk
�

1

nk�1

� kX
lD0

T
Hk

b
D

hX
kD0

�
1

nh
�

1

nk�1

�
T
Hk

b
(13)

5 Numerical Analysis

In this section, we numerically analyze the scalability
under different structures and provide insights into
the parameters that may influence the scalability.
We should first clarify the specific structures and
parameters. ˛ as a coefficient, M as the scale of the
virtual server layer, and dsync as the synchronization
characteristic vary in different situations; they are

discussed in a separate subsection. We set the parameter
�c D 50 s�1 as the same in a datacenter. Similarly, we
set �vs D 5 s�1 with the understanding that the status
update can be slower than the scheduling request. The
processing rate or the computing ability of a request
scheduling server is �b D 4 � 109 s�1.

The decentralized structure includes three symmetric
conditions illustrated in Fig. 3. They have different
fdij g sets. For computation convenience, we set v as
an even number. Then, we have the following equation
for j D 1; : : : ; v � 1.8̂̂<̂

:̂
da0j D minfj; v � j g;

db0j D 1;

d c0j D minfj; v � j; 1C jj � v=2jg

(14)

5.1 Service capacity

A server can not serve infinite clients, thus, the steady
state in our stochastic model needs preconditions. For a
given request scheduling client, 1 � �1 � �2 > 0 must
be satisfied, otherwise it will never reach the steady
state and the response time of the scheduling request
will be infinite. Considering this constraint, we can
first analyze the service capacity in our stochastic
model. We can determine the inequations in the
centralized, decentralized, and hierarchical structures
correspondingly as follows:

NC <
�b � ˛M�vs

˛M�c
(15)

ND1
<
�b � ˛M�vs

˛M�c
� v (16)

ND2
<

�b � ˛M�vs=v

˛M�c.1 � 1=v C 1=v2/
� v (17)

NH <
nk.nk�b � ˛M�vs/

˛M�c
Qk�1
lD0 .1 � 1=nl C 1=nl�1/

(18)

By changing the total number v, we can obtain the
N -curve in Fig. 4. We set ˛ D 100 and m D 4. The
centralized structure has the lowest service capacity
because only one server is in use. The two decentralized
structures have nearly the same service capacity. In

 RS-server

(a) Ring structure (b) Complete structure (c) Semi-complete structure
Structure

Fig. 3 Three conditions of decentralized structure.

256 Tsinghua Science and Technology, June 2019, 24(3): 249–261

0 500 1000 1500
Total number of service nodes v

104

106

108

1010

1012

N
um

be
r o

f c
lie

nt
s N

Centralized
Decentralized - Full table
Hierarchical - Lower bound
Hierarchical - Upper bound
Decentralized - Partial table

Fig. 4 Service capacity of different structures.

fact, they are different; the partial table structure has
a slightly stronger service capacity than the whole
table structure as its denominator is smaller while the
numerator is larger in Eq. (17) than in Eq. (16). The
lower bound of the hierarchical structure is close to
the service capacity of the centralized structure. This
result may be due to two reasons. First, our hierarchical
structure deploys only one request scheduling server
at the top and the destination distribution is uniform.
Thus, whatever the lower structure deploys, .1�1=mh/
of total requests will reach the top, thereby causing
a bottleneck. Second, the total number of servers
not only includes the servers manage virtual servers,
which may cause a horizontal movement to the left
in a .mh0 � 1/=.m0 � 1/ scale. At the same time,
the upper bound of the hierarchical structure is larger
than that of the decentralized one, as they are derived
from the lower level and only manage requests from
fewer clients. Notably, this approach only considers
capacity without regard to the response time. As the
1 � �1 � �2 condition is in the denominator, the value
of the equation becomes infinite if the number of clients
approaches the service capacity limit.

5.2 Parameter analysis

In this subsection, numerical analysis is conducted on
the influence of some parameters on the scalability.

5.2.1 Task size
Task size ˛ is an important parameter that represents
the complexity to finish a single operation in our
request scheduling process. We also set M D 4096. In
the decentralized structure, we set v D 1024, while
in the hierarchical structure, we set mk D 4 and
h D 4. The influence of ˛ on the scalability metric
in different structures is illustrated in Figs. 5–8. In
Fig. 5, by fixing ˛, the scalability metric is increasing

100 101 102 103 104 105

Number of clients N

0

1

2

3

4

5

6

7

8

Sc
al

ab
ili

ty
 Φ

(N
,1

) (
×1

03)

α1=1
α2=100.5

α3=101
α4=101.5
α5=102

α 1

 5
α3

α2

α4

Fig. 5 Scalability metric ˚̊̊ (N, 1) as a function of the number
of clients N for various task size, ˛̨̨ , values under centralized
structure (˚̊̊ c – ˛̨̨).

100 102 104 106 1080

1

2

3

4

5

6

7

8

Number of clients N

Sc
al

ab
ili

ty

(N
,1

) (
×1

06)

5
3

2

4

α1=1
α2=100.5

α3=101
α4=101.5
α5=102

1

Fig. 6 Scalability metric ˚̊̊ (N, 1) as a function of the
number of clients N for various task size, ˛̨̨ , values under
decentralized structure with the first strategy (˚̊̊ d1– ˛̨̨).

100 102 104 106 1080

1

2

3

4

5

6

7

8

Number of clients N

Sc
al

ab
ili

ty

(N
,1

) (
×1

06)

α1=1
α2=100.5

α3=101
α4=101.5
α5=102

5
3

 2

1

4

Fig. 7 Scalability metric ˚̊̊ (N, 1) as a function of the
number of clients N for various task size, ˛̨̨ , values under
decentralized structure with the second strategy (˚̊̊ d2– ˛̨̨).

with the number of clients increasing at the very
beginning, then the scalability metric decreases. This
phenomenon leads to a “best” scalability metric value
under specific ˛ coordinate with an appropriate N and
this point is representative. Curves with similar shape
are illustrated in Figs. 6–8 under the 2 decentralized

Chao Xue et al.: Scalability Analysis of Request Scheduling in Cloud Computing 257

1050

2

4

6

8

10

12

Number of clients N

Sc
al

ab
ili

ty

 (N
, 1

) (
×1

03)

α1=1
α2=100.5

α3=101
α4=101.5
α5=102

5
3

2

1

4

100
101 104102 103

Fig. 8 Scalability metric ˚̊̊ (N, 1) as a function of the number
of clients N for various task size, ˛̨̨ , values under hierarchical
structure (˚̊̊ h– ˛̨̨).

structures and the hierarchical structure. By fixing
the number of clients N , we can conclude that the
scalability metric is negatively correlated with ˛ in all
the three structures. Furthermore, the multiplication
of ˛ decreases the scalability metric ˚ in order
of magnitudes. This conclusion conforms to our
intuition. As a complex request always needs
more time to be complete, the response time T

increases and the scalability ˚ decreases. The next
conclusion we can obtain from these figures is that
the change of ˛ almost does not influence the shape
of the scalability curve. Specifically, Figs. 6 and 7
shows that the scalability metric values under two
decentralized strategies are almost the same with
task size ˛ and the number of clients N: Part of
that is because large scale request routing layer
configuration v D 1024 thus 1 � 1=v C 1=v2 � 1, and
� D 4 � 109 s�1 � �c > �vs thus �b � ˛M�vs �

�b � ˛M�vs=v. Furthermore, the scalability metric
values are also the same even when the detailed
structure is changed from Figs. 3a to 3c. The reason
is that the difference fdij g is hidden by the ratio form
expression of ˚ and in ˚.N; 1/, N and 1 share the
same detailed structure.

5.2.2 Resource scale
Resource scale M is the total number of the virtual
servers in the virtual server layer, which is below the
request scheduling layer. Intuitively, the increase of M
increases the performance in the virtual server layer.
However, as Figs. 9 and 10 illustrate, a larger M
decreases our scalability metric. To a larger N , the
influence ofM is also larger. The environment contains
v D 1024. This result can be derived from the equation
from the previous theoretical analysis as M and N as
always the product relation minus �b . From the system

2 8 10
(×105)

0

50

100

150

200

4 6

Number of virtual servers M

(
Sc

al
ab

ili
ty

 N
,1

)

N1 = 50

N2 = 100

N3 = 150

N4 = 200

N4

N3

N2

N1

Fig. 9 Scalability metric ˚̊̊ (N, 1) as a function of the number
of virtual servers M for various numbers of clients, N, under
centralized structure (˚̊̊ c– M).

0 2 4 6 8 10
(×106)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Number of virtual servers M

Sc
al

ab
ili

ty

(N
,1

) (
×1

04)

N1=10 000

N2=15 000

N3=20 000

N3

N2

N1

Fig. 10 Scalability metric ˚̊̊ (N,1) as a function of the
number of virtual servers M for various numbers of clients,
N, under decentralized structure (˚̊̊ d – M).

itself, the larger M means the larger state information
should be stored and maintained, which influences the
scalability of the request scheduling servers in request
scheduling layer.

5.2.3 Scheduler scale
Similar to M , v D jV j is the total number of request
scheduling servers. By configuring M D 4096, h D 6,
mk D 4; and i D 1; : : : ; 4, we obtain the relationship
between v and the scalability in Figs. 11 and 12
for the decentralized and hierarchical structures. The
centralized structure is a naive situation where v � 1.
In both figures, we can see that the scalability increases
with the increase of v but approaches an upper bound.
The reason is that the number of clients N is fixed and
when v is large enough, the response time decreases to
a lower bound while the throughput does not increase.
A larger N follows the scalability curves in Fig. 5
that increases the scalability before a special value and
then decreases the metric. For example, the scalability
metric with N5 D 18 000 is larger than N6 D 20 000

one. We also explore the influence of the ratio v=N

258 Tsinghua Science and Technology, June 2019, 24(3): 249–261

10
0

10
1

10
2

10
3

10
4

0

0.5

1.0

1.5

2.0

Number of service nodes v

S
ca

la
bi

li
ty

 Φ
 (N

,1
) (

×1
04)

Fig. 11 Scalability metric ˚̊̊ (N,1) as a function of the
number of service nodes v for various numbers of clients, N,
under decentralized structure (˚̊̊ d – v).

100 101 102 103 104

2

4

6

8

10

Number of service nodes v

Sc
al

ab
ili

ty

(N
,1

) (
×1

03)

N1=10 000

N2=12 000

N3=14 000

N4=16 000

N5=18 000

N6=20 000

Fig. 12 Scalability metric ˚̊̊ (N, 1) as a function of the
number of service nodes v for various numbers of clients, N,
under hierarchical structure (˚̊̊ h–v).

on the scalability as illustrated in Fig. 13 under the
decentralized structure with ˛ D 100. We can see that
the scalability metrics in different N begin to rise and
approach to the upper limit almost at the same ratio
value. As v follows the increase of N , the scalability
will always increase without reaching a bound.

5.2.4 Complexity
We regard the complexity metric C.N/Dv=.dsyncC1/

10-2 10-1 100 101 102

Ratio v/N

102

103

104

105

106

107

Sc
al

ab
ili

ty
 Φ

(N
,1

)

N1 = 100

N2 = 1000

N3 = 10 000

N4 = 100 000

Fig. 13 Scalability metric ˚̊̊ (N, 1) as a function of the ratio
v/N for various numbers of clients, N, under decentralized
structure (˚̊̊ d – v/N).

as the structure’s attribute. Here, we determine the
influence of synchronization on the response time T in
different structures based on the decentralized structure
with the second strategy. The distance can be calculated
by Eq. (14). We set M D 4096, v D 100, and ˛ D
100 and obtain the response time curves in Fig. 14. In
this figure, the response time of the ring structure is
the largest and that of the complete structure is the
smallest. This result can be obtained intuitively from
the expression of the response time. At the same time,
the complexity is the largest in the complete structure
which suffers a larger management cost.

5.2.5 Rate of request and update
The influence of the request and update rate on the
scalability metric is illustrated in Figs. 15 and 16. In this
case, v D 342,M D 4096,N D 10 000, ˛ D 1, h D 4,
and mk D 4 for k D 1; : : : ; 4. Decentralized structures
with different strategies are both strong enough for the
increase of the two �s, the hierarchical structure is
weaker, and the centralized structure is the weakest or
the most sensitive to the variation of the request rate.

21 1
81.0

0
10

--1

100

101

102

103

104

105

Total number of clients N

R
es

po
ns

e
tim

e
T

dsync1 = 1, C = 2048

dsync2 = 50, C = 80.31

dsync3 = 25, C = 157.54

21 1
81.0

2

21 1
81.0

4

21 1
81.0

8

21 1
81.1

0

21 1
81.1

2

21 1
81.0

6

Fig. 14 Response time T as a function of the number of
clients N for various farthest synchronization distance, dsync,
values under decentralized structure with the second strategy
(Td2 – dsync).

1 11 21 31 41 51 61 71 81 91
2

3

4

5

6

7

8

9

10

11

c

Sc
al

ab
ili

ty

(N
,1

) (
×1

03)

Centralized
Decentralized First
Hierarchical
Decentralized Second

Fig. 15 Scalability metric ˚̊̊ (N, 1) as a function of the
Poisson request input with rate ���c for various structure
configurations under different structures (˚̊̊ –���c).

Chao Xue et al.: Scalability Analysis of Request Scheduling in Cloud Computing 259

100 102 1046.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

vs

Sc
al

ab
ili

ty

(N
,1

) (
×1

03) Centralized
Decentralized First
Decentralized Second
Hierarchical

Fig. 16 Scalability metric ˚̊̊ (N, 1) as a function of the
Poisson update input with rate ���vs for various structure
configurations under different structures (˚̊̊ –���vs).

We can also obtain the conclusion that the scheduling
request rate �c can influence the system more than the
status updating request �vs .

5.3 Width and height

If servers are used to construct the request scheduling
system in the hierarchical structure, we should decide
whether the shape should be a lanky one or a short and
fat one. The comparison is made in Fig. 17. We set ˛ D
1, M D 4096, and for computation convenience, we
give allmk the same valuem. In this figure, a smallerm
will hold the greater scalability when the total number
v is the same or nearly the same. The height h has an
opposite conclusion with m.

5.4 Crosswise and lengthwise

Scalability means scaling up to meet the increase of
requests and the necessity of burst. This task can
be acomplished in two ways. One is to increase the
computation ability of the computation module which
is similar to the evolution history of computers and
we call it the lengthwise one. The other one increases

102 103 104 1050

0.5

1.0

1.5

2.0

Total number of clients N

Sc
al

ab
ili

ty

 (
 N
,1

) (
×1

04)

m = 2, h = 4, v = 31
m = 5, h = 2, v = 31
m = 5, h = 3, v = 156
m = 12, h = 2, v = 157
m = 4, h = 4, v = 341
m = 18, h = 2, v = 343

Fig. 17 Scalability metric ˚̊̊ (N, 1) as a function of the
number of clients N for various structure configuration
values under hierarchical structure (˚̊̊ h– (m, h)).

the number of the computation modules and we call
it the crosswise one. Figure 18 shows that the most
efficient way is lengthwise although we know that in
real life, increasing the computation ability to keep
in step with the necessity and scale is difficult. The
decentralized structure with a whole status table in each
server is the most scalable structure in the crosswise
ones. The hierarchical structure is the weakest as the
bottle neck of the sole peak. The centralized structure
in this figure contains the computation ability �C

b

341 times as the other �bs in the other different
structures correspondingly. However the rest contains
a total number v D 341 which is also the 341 times
to the centralized structure. Parameters are set as
follows: M D 4096, ˛ D 1, h D 4, and mk D 4 for
k D 1; : : : ; h.

6 Conclusion and Future Work

In this paper, we presented a formal scalability
definition of the request scheduling process in
cloud computing. Considering the deployment request
and state update request, we model each request
scheduling service node as a priority queue. By
solving the 2-dimensional Markov chain of this
queue, we present a theoretical evaluation and
comparison of the scalability of the request scheduling
process in three basic structures. Furthermore, we
numerically analyze the influence of some structural
parameters to the response time and scalability metric,
including the synchronization distance and shape
of different structures. Using the configuration of
different structural parameters, we finally analyze the
scalability of different decentralized topologies and
obtain useful conclusions. Our analysis, comparisons,
and conclusions can provide a valuable reference for the
design and implementation of the request scheduling

100 101 102 103 104 105104

106

108

1010

1012

Total number of clients N

Sc
al

ab
ili

ty
 m

et
ric

 (N

 ,
1)

Centralized Lengthwise
Decentralized First
Decentralized Second (a)
Decentralized Second (b)
Decentralized Second (c)
Hierarchical

Fig. 18 Scalability metric ˚̊̊ (N, 1) as a function of the
number of clients N for various structure configurations
under different structures (˚̊̊– structure).

260 Tsinghua Science and Technology, June 2019, 24(3): 249–261

process in cloud computing.
Some future works could still be explored in

structural analysis. A uniform formal description of
the optimal structure is the ultimate goal to be
achieved. Evaluating the hybrid structure composed of
the three structures discussed in this paper is a possible
approach. Meanwhile, trustworthiness issue[26] in cloud
computing is also an important aspect to be considered
in future scalability studies.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (No. 61472199) and Tsinghua
University Initiative Scientific Research Program (No.
20121087999).

References

[1] S. Akhshabi and C. Dovrolis, The evolution of layered
protocol stacks leads to an hourglass-shaped architecture,
in Dynamics on and of Complex Networks, A. Mukherjee,
M. Choudhury, F. Peruani, N. Ganguly, and B. Mitra, eds.
New York, NY, USA: Springer, 2013, pp. 55–88.

[2] R. Buyya, C. S. Yeo, and S. Venugopal, Market-oriented
cloud computing: Vision, hype, and reality for delivering
it services as computing utilities, in Proc. 10th IEEE Int.
Conf. High Performance Computing and Communications,
Dalian, China, 2008, pp. 5–13.

[3] B. Hayes, Cloud computing, Commun. ACM, vol. 51, no.
7, pp. 9–11, 2008.

[4] Y. Gao, Y. X. Zhang, and Y. Z. Zhou, Performance
analysis of virtual disk system for transparent computing,
in Proc. 9th IEEE Int. Conf. Ubiquitous Intelligence and
Computing and 9th Int. Conf. Autonomic and Trusted
Computing (UIC/ATC), Fukuoka, Japan, 2012, pp. 470–
477.

[5] T. Banditwattanawong and P. Uthayopas, Improving cloud
scalability, economy and responsiveness with client-side
cloud cache, in Proc. 10th IEEE Int. Conf. Electrical
Engineering/Electronics, Computer, Telecommunications
and Information Technology, Krabi, Thailand, 2013, pp.
1–6.

[6] R. K. Chandrahasan, S. Kalaichelvi, S. Priya, and L.
Arockiam, Research challenges and security issues in
cloud computing, Int. J . Comput. Intell. Inf. Sec., vol. 3,
no. 3, pp. 42–48, 2012.

[7] Z. H. Li, Y. Zhang, and Y. H. Liu, Towards a full-stack
devops environment (platform-as-a-service) for cloud-
hosted applications, Tsinghua Sci. Technol., vol. 22, no. 1,
pp. 1–9, 2017.

[8] S. K. Garg, S. Versteeg, and R. Buyya, A framework for
ranking of cloud computing services, Fut. Gener. Comput.
Syst., vol. 29, no. 4, pp, 1012–1023, 2013.

[9] K. Hwang, X. Y. Bai, Y. Shi, M. Y. Li, W. G.
Chen, and Y. W. Wu, Cloud performance modeling with

benchmark evaluation of elastic scaling strategies, IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 1, pp. 130–143,
2016.

[10] W. Chen, J. W. Cao, and Y. X. Wan, QoS-aware virtual
machine scheduling for video streaming services in multi-
cloud, Tsinghua Sci. Technol., vol. 18, no. 3, pp. 308–317,
2013.

[11] R. Anandhi and K. Chitra, A challenge in improving the
consistency of transactions in cloud databases-scalability,
Int. J . Comput Appl., vol. 52, no. 2, pp. 12–14, 2012.

[12] J. Cáceres, L. M. Vaquero, L. Rodero-Merino, Á. Polo,
and J. J. Hierro, Service scalability over the cloud, in
Handbook of Cloud Computing, B. Furht and A. Escalante,
eds. Boston, MA, USA: Springer, 2010, pp. 357–377.

[13] J. Gao, P. Pattabhiraman, X. Y. Bai, and W. Tsai, SaaS
performance and scalability evaluation in clouds, in Proc.
IEEE 6th Int. Symp. on Service Oriented System, Irvine,
CA, USA, 2011, pp. 61–71.

[14] Y. Tian, C. Lin, Z. Chen, J. X. Wan, and X. H. Peng,
Performance evaluation and dynamic optimization of speed
scaling on web servers in cloud computing, Tsinghua Sci.
Technol., vol. 18, no. 3, pp. 298–307, 2013.

[15] Z. F. Zhong, K. Chen, X. J. Zhai, and S. G. Zhou,
Virtual machine-based task scheduling algorithm in a cloud
computing environment, Tsinghua Sci. Technol., vol. 21,
no. 6, pp. 660–667, 2016.

[16] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
et al., A view of cloud computing, Commun. ACM, vol. 53,
no. 4, pp. 50–58, 2010.

[17] D. Tao, Z. W. Lin, and B. X. Wang, Load feedback-
based resource scheduling and dynamic migration-based
data locality for virtual hadoop clusters in openstack-based
clouds, Tsinghua Sci. Technol., vol. 22, no. 2, pp. 149–159,
2017.

[18] D. G. Cao, P. D. Liu, W. Cui, Y. H. Zhong, and B. An,
Cluster as a service: A resource sharing approach for
private cloud, Tsinghua Sci. Technol., vol. 21, no. 6, pp.
610–619, 2016.

[19] D. L. Eager, J. Zahorjan, and E. D. Lazowska, Speedup
versus efficiency in parallel systems, IEEE Trans. Comput.,
vol. 38, no. 3, pp. 408–423, 1989.

[20] P. Jogalekar and M. Woodside, Evaluating the scalability of
distributed systems, IEEE Trans. Parallel Distribut. Syst.,
vol. 11, no. 6, pp. 589–603, 2000.

[21] J. Hu, C. Lin, X. Y. Li, and J. W. Huang, Scalability of
control planes for software defined networks: Modeling
and evaluation, in Proc. IEEE 22nd Int. Symp. of Quality
of Service, Hongkong, China, 2014, pp. 147–152.

[22] O. Arpacioglu and H. J. Zygmunt, On the scalability
and capacity of planar wireless networks with
omnidirectional antennas, Wireless Communications
and Mobile Computing, vol. 4, no. 3, pp. 263–279, 2004.

[23] C. M. Woodside, Throughput calculation for basic
stochastic rendezvous networks, Performance Eval., vol.
9, no. 2, pp. 143–160, 1989.

Chao Xue et al.: Scalability Analysis of Request Scheduling in Cloud Computing 261

[24] M. F. Neuts, Markov chains with applications in
queueing theory, which have a matrix-geometric invariant
probability vector, Adv. Appl. Probabil., vol. 10, no. 1, pp.
185–212, 1978.

[25] D. R. Miller, Computation of steady-state probabilities for

M/M/1 priority queues, Operat. Res., vol. 29, no. 5, pp.
945–958, 1981.

[26] C. Lin and C. Xue, Multi-objective evaluation and
optimization on trustworthy computing, Sci. China Inf.
Sci., doi: 10.1007/s11432-015-0856-7.

Chao Xue received the BEng degree
from Tsinghua University in 2011. He is
currently working toward the PhD degree
in the Department of Computer Science
and Technology at Tsinghua University.
His research interests are in modeling,
simulation and performance analysis
of computer systems, and computing

paradigms.

Jie Hu received the BS degree from
Xi’an Jiaotong University in 2011. He
is currently a PhD candidate in the
Department of Computer Science and
Technology at Tsinghua University. His
research interests are in modeling and
performance analysis of SDN.

Chuang Lin is a professor of the
Department of Computer Science and
Technology at Tsinghua University. He
received the PhD degree from Tsinghua
University in 1994. His current research
interests include computer networks,
performance evaluation, network security
analysis, and Petri Net theory and its

applications. He has published more than 300 papers in research
journals and IEEE conference proceedings and has published
five books. He is a member of the Steering Committee for the
International Petri Net Community, a member of ACM Council,
a senior member of the IEEE, and the Chinese delegate in TC6 of
IFIP. He serves as the associate editor of IEEE Transactions on
Vehicular Technology, and the area editor of Computer Networks
and Journal of Parallel and Distributed Computing.

