TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 06/11 pp183-194
DOI: 10.26599/TST.2018.9010043
Volume 24, Number 2, April 2019

Multiple Deep-Belief-Network-Based Spectral-Spatial Classification of

Hyperspectral Images

Atif Mughees™* and Linmi Tao

Abstract: A deep-learning-based feature extraction has recently been proposed for HyperSpectral Images (HSI)
classification. A Deep Belief Network (DBN), as part of deep learning, has been used in HSI classification for
deep and abstract feature extraction. However, DBN has to simultaneously deal with hundreds of features from
the HSI hyper-cube, which results into complexity and leads to limited feature abstraction and performance in the
presence of limited training data. Moreover, a dimensional-reduction-based solution to this issue results in the
loss of valuable spectral information, thereby affecting classification performance. To address the issue, this paper
presents a Spectral-Adaptive Segmented DBN (SAS-DBN) for spectral-spatial HSI classification that exploits the
deep abstract features by segmenting the original spectral bands into small sets/groups of related spectral bands
and processing each group separately by using local DBNs. Furthermore, spatial features are also incorporated
by first applying hyper-segmentation on the HSI. These results improved data abstraction with reduced complexity
and enhanced the performance of HSI classification. Local application of DBN-based feature extraction to each
group of bands reduces the computational complexity and results in better feature extraction improving classification
accuracy. In general, exploiting spectral features effectively through a segmented-DBN process and spatial features
through hyper-segmentation and integration of spectral and spatial features for HSI classification has a major effect
on the performance of HSI classification. Experimental evaluation of the proposed technique on well-known HSI

standard data sets with different contexts and resolutions establishes the efficacy of the proposed techniques,

wherein the results are comparable to several recently proposed HSI classification techniques.
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1 Introduction

Advancements in optical technology have enabled
HyperSpectral Image (HSI) acquisition sensors to
acquire reflectance in hundreds of different wave-
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lengths from the Earths’ surface, ranging from visible to
infrared spectra, in the form of hundreds of continuous,
narrow spectral bands. Each band in HSI is a two-
dimensional (2-D) spatial map with varying spectral
radiance. As a result, each pixel in HSI is a vector
of measurement of the spectral characteristics of a
particular spatial position in the image!!!. Such a
wide range of spectral information is extremely useful
in many applications, such as mineral detection!®!,
precision farming!®!, urban planning, environmental
monitoring and management!*!, and target detection
and surveillance®. However, such abundance of
information in HSI comes with more challenges,
cost of complexity and undesirable statistical and
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geometrical properties'®!, which require advanced
techniques!’). High dimensionality in the spectral
domain!® coupled with the curse of dimensionality!®!
and a limited number of labeled samples makes HSI
classification a challenging problem!'?.

High dimensionality of hyperspectral data is a major
problem. Handling hundreds of features at the same
time lead to complexity and error, and deprives Deep
Belief Network (DBN) from extraction of more abstract
and deep features. As for each pixel in HSI, more
than 200 spectral values exist and therefore an equal
number of input nodes are implemented at the input
layer to handle these spectral values. The internal
parameters of the learning and training phases, as
a result of a large number of spectral values, are
also enormous and complex. Moreover, an increase
in the spectral feature space requires the increase in
sampled training data at the same rate. However, the
availability of sampled data is a major bottleneck in
HSI. The imbalance between the high-dimensional data
and limited number of training samples leads to Hughes
phenomena!’.

In general, HSI classification performance depends
on the efficient use of high-dimensional data in the
presence of a limited amount of sampled data as
each band in hyperspectral cube presents valuable
information on each class in HSI. Two main
dimensional reduction approaches are commonly
used to handle high dimensionality, Feature Selection
(FS) and Feature Extraction (FE). FS also known
as band selection, involves the selection of lesser
number bands of the hypercube to represent the
entire image cube!'" 2!, In contrast, the FE approach
achieves dimensional reduction by projecting the
original information to a lower-dimensional feature
space, through principal component analysis!!3,
independent component analysis!'¥, and maximum
noise fraction!!!. FE transforms the data into the feature
space and seeks a subset of effective and appropriate
features in the feature space!'® 7). However, the major
disadvantage of dimensional reduction techniques is
the loss of important, valuable information as each
spectral band among hundreds of bands contains
a significant information concerning the material.
Hence, dimensionality-reduction technique results in
compromising the classification performance of HSI.

Recently, Deep Learning (DL) architectures have
demonstrated their capability in effective feature
extraction of HSI data. These architectures have
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produced encouraging performance in image, speech,
and language classification!'2!l, The deep-learning
architecture is the latest advancement in neural
networks with multiple processing layers capable of
extracting more abstract and deep invariant features that
results in improved classification performance. Some
DL models have recently been implemented on HSI.
A deep-learning based Stacked Auto-Encoder (SAE)
is proposed in Ref. [8], and DBN was proposed in
Ref. [22]. These methods extract deep features. In
recent years, there is a growing interest in integrating
spatial features along with the spectral features, as
it has recently been demonstrated that combining
spectral and spatial features significantly improves the
classification results?>7!, In Ref. [28], the integration
of spatial information through morphological profiles
and original spectral information is performed. Loopy
belief propagation was used to exploit the spectral and
spatial features in Ref. [29]. Spatial-spectral kernel
sparse representation is exploited for HSI classification
in Ref. [30]. Incorporation of spatial information
before the classifier?”>3!1 in the classifier, and after
the classification through majority voting!?® 32! is also
analyzed. Many classifiers have been investigated
for HSI classification. Traditional HSI classification
methods are mainly spectral feature-based methods
such as logistic regression®3! Bayesian classifier,
random forests, neural networks, K-Nearest-Neighbor
classifier (K-NN), Conditional Random Fields (CRFs),
sparse coding, and Support Vector Machine (SVM).
The SVM performes well due to its ability to handle
high-dimensional data. However, these techniques also
pose some limitations. A full and complete connection
between the different hidden layers makes the deep-
learning based HSI feature extraction very complex
as HSI comprises hundreds of spectral bands and
hidden units are required to evaluate the input and
estimate the parameters of all the available spectral
bands that are concurrently in the same activation
function. This complex connection leads to a lack of
proper abstraction. Moreover, the full connection of
layers also demands more training data to train the
parameters, which is a major limitation in HSI as
limited training data is available for HSI. Thus, SAE
and DBN are unable to extract the spatial information
efficiently as fixed-sized window is used to extract the
spatial information, which may contain multiple classes
or subsets of the same class.

Here, we propose a Spectral-Adaptive Segmented



Atif Mughees et al.:  Multiple Deep-Belief-Network-Based Spectral-Spatial Classification of Hyperspectral Images 185

DBN (SAS-DBN) that performs spectral segmentation
to efficiently reduce and divide the complexity,
and fully exploits the available spectral and spatial
information for better feature extraction in the presence
of a limited number of available sampled data. This
paper introduces the segmented-DBN technique, where
local DBNs are applied to each segment of the
spectral channels. It consists of two main steps: First,
adaptive boundary adjustment-based segmentation is
performed to exploit spatial information. Second,
spectral segmentation is performed, where similar
spectral contiguous bands are grouped together and
DBN is applied seperatley to each spatial-spectral
segmented group of bands. Locally applying DBN-
based feature extraction to each group of bands reduces
the computational complexity and simultaneoulsy
results in better features, improving the classification
accuracy. The main contributions of this study are listed
as follows:

e Spectral information in each channel is fully
utilized. Spectrally similar contiguous bands are
grouped together, and DBN is applied to these
segments of the spectrum for efficient feature
extraction that divides and reduces the complexity
and allows the local extraction of features in the
presence of limited training data, resulting in
improved classification accuracy.

e Spatial information is fully exploited by replacing
the fixed-sized spatial window with hyper-

segmented structures that adaptively change the
size and shape according to the actual structure in
the HSIL.

The main focus of this work is the efficient
utilization of all the valuable information provided
in the spectral channels without compromising the
computational complexity for HSI classification and
without reducing the dimension of the hyperspectral
data. The organization of the rest of the paper is as
follows. A brief overview of DBN and proposed SAS-
DBN is described in Section 2. Section 3 describes the
experimental analysis on real and standard HSIs while
concluding remarks are drawn in Section 4.

2 Spectral-Adaptive Segmented DBN for
HSI Classification

This paper proposes exploiting spectral features through
adaptive spectral segmentation-based DBN to enhance
the DBN process, where highly correlated bands
are grouped together and fed into a local DBN to
extract more abstract features. A general flowchart of
the proposed framework is shown in Fig. 1. Feature
extraction process should consider the following
spectral-spatial factors:

e There is a high probability that HSI pixels with
identical spectral signatures contribute to the same
class label.

e Neighboring pixels in spatial domain that
are highly relevant in spectral signatures also

Yi
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Fig.1 Framework of the SAS-DBN process.
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contribute to the same class label.

It is evident from the factors mentioned that pixels
with high spectral and spatial correlations share the
same class with a high probability. To effectively
employ the mentioned factors, we improved the
DBN to exploit spectral-spatial features by replacing
the conventional, fixed-sized spatial window with an
adaptive structural window, and by dividing similar
spectral channels for higher HSI classification. The
framework of the proposed technique is shown in Fig. 1.
In the first phase, the spatially adaptive segmentation
approach is applied® to segment the image into
spatially similar regions. In the second phase, HSI
spectral channels are grouped into different spectrally
similar segments, and then in the third and final phases,
the DBN is applied to each spectrally segmented group
of channels with spatially similar regions.

2.1 Hyper-segmentation-based feature

extraction

spatial

As discussed above, considering the spatial information
can result in improved classification performance.
According to some researchers!®!, two facts must be
considered for effective HSI classification: (1) It
is highly possible that pixels with similar spectral
features share the same class and (2) It is highly
possible that spatially neighboring pixels with similar
spectral signatures share the same class. To consider
these, effective segmentation plays an important role as
segmentation leading to a grouping of spatially similar
pixels.

In Ref. [35], the authors exploited the spatial
information for HSI classification by using a static
window size. However, the use of the static window size
limits the exploitation of the spatial information, which
degrades performance, as the window may contain
more than one class or it may contain a sub-part of
one class as shown in Fig. 2. In hyper-segmentation,
neighboring pixels with similar spatial characteristics

(a) Fixed size window (b) Adaptive boundary

Fig. 2 Spatial region selection by (a) fixed-square window
and (b) adaptive boundary adjustment-based segmentation.
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are grouped together. Adaptive boundary adjustment-
based approach®¥ is utilized to effectively segment
the HSI into spatially similar regions. Hence, spatial
consistency is ensured using the hyper-segmentation
approach®*! that segments the HSI using local spatial
regularity, where the size and shape of a structure is
adaptively adjusted based on the actual boundaries. The
main steps for hyper-segmentation are as follows:

(1) Divide the HSI into m initial hexagonal

segments.

(2) Iterate over the following steps until no pixel

goes into a different segment.

e Calculate the major class of each initial
segments.

e Calculate the gradient of current boundary pixels
of each segment.

o Calculate the straightness factor of each segment
boundary.

e Based on the energy function, calculate the
measure of similarity, between centroid of each
class and its edge.

e Evolve the boundary based on the similarity
measure.

(3) For each channel group, assign a weight to

each boundary pixel according to certain criteria to

award pixels that reflect an actual boundary.
The detailed procedure of the hyper-segmentation is
illustrated in Fig. 3.

2.2 Spectral-spatial feature extraction by
segmented DBN
2.2.1 DBN

A deep belief net is a formation of generative neural
network-based learning modules, each of which is a
Restricted Boltzmann Machine (RBM) that consists
of an input layer to receive data and a hidden layer
that learns to distinguish features that capture higher-
order correlations in the input data, as shown in
Fig. 4. The two RBM layers are connected by a
matrix of symmetrically weighted connections, w,
with no visible-visible or hidden-hidden connections.
This restriction makes the hidden units conditionally
independent. A combined formulation of the energy for
hidden unit # and input units x is given by[22

E(x,u,@)z—Z(x]_b) Za Uj—

=1 i=1
ZZw,l uj (1)
j=1li=1

where 8 = (a;, b;, wj;), w;; is the weight between the
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Fig.3 Framework of segmentation!3.

Fig. 4 Framework of the DBN based pixel-wise
classification.

visible and hidden units, and b; and a; are bias
terms of visible and hidden units, respectively. The
joint distribution is given by

P(x,u,0) = Nc(le)

where N(0) is the normalizing constant. The network
assigns a probabilistic value to each input vector
through E (x, u, @). The conditional distribution is given
by

exp(—E(x,u,0)) 2)

n
P(uilx:0) =g ijixj +a; (3)
j=1

m
P(xilu;O) =N (Zwﬁuiaf—l—bj) 4)
i=1

where o is the standard deviation of a Gaussian visible
unit, and N(-) is the Gaussian distribution. The weights
are learned by Constrastive Divergence (CD)!*®! and are
updated by

Awij = 1p(xiuj data — XilUj reconstruction) )
where ¥ is the learning rate, and x; and u; are the input
and the hidden units, respectively.

The strength of the RBM is in the restoration of
the original information. In the reconstruction phase,
the information in the hidden units is employed.
The learned parameters are considered efficient if the
framework can regain the original data. It employs that
hidden units have preserved enough information of the

original data. A single hidden layer is not enough to
extract features in the given HSI data. Therefore, after
training one RBM layer, learned features can be used as
an input to the second RBM layer. In this way, the RBM
layers are stacked together and trained in a greedy way
to form the DBN. The entire process can be summarized
as follows:

(1) The dataset is used to pre-train a single layer of

DBN. CD% s used to train the RBM.

(2) The output of the first layer is used as input to

the second layer, which is trained as a second RBM.

(3) Repeat Steps 1 and 2 for the desired number of

layers.

(4) Fine tune all learned parameters with the

available labeled training samples.

(5) In this paper, we used SVM as classifier to

classify the features obtained as output from the last

DBN layer.

In summary, we first utilize the hyper-segmented
spatial region and the spectral information as an input.
A DBN is then applied to learn deep and abstract
features from the inputs through multi-layer DBN.
Finally, SVM is utilized to classify and label the pixels
based on the learned features as shown in Fig. 5. For
each channel group, spectral and spatial information is
fed into the network as shown in Fig. 5.

2.2.2 Segmented DBN

In traditional application of DBN in HSI, all spectral
bands are treated equally and concurrently.  This
enhances complexity because the hidden units in the
first layer are bombarded with the original feature
dimension, which consists of a hundred of channels.
Moreover, the correlation among different spectral
regions of the HSI is not considered. Therefore,
DBN can be employed in parts, in different segments
of the spectral channels. This concept of applying
a particular algorithm into different segments is
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Fig. 5 Framework of spectral-spatial classification.

introduced and successfully used in other FE methods,
such as segmented PCT?’! and other comparable
modifications! !,

A detailed description of the proposed segmented
DBN is presented in Fig. 1, where the original number
of spectral channels x is segmented into S different
regions x5, s € [1, S] and then DBN is independently
applied to each segmented region of spectral channels.

As the local DBNs deal with a small subset of
the original spectral channels, they utilize a reduced
number of hidden units. Hence SAS-DBN employs a
number of DBNs that are however simpler than the ones
utilized in the traditional applications. Moreover, more
abstract and deep features are extracted in an easier
way. Finally, the reduced features from the local regions
ys are integrated ( Zle F; = F) to form a reduced
feature vector.

To segment HSI data channels, a correlation matrix
among the spectral bands is exploited. The correlation
matrix can be effectively employed to compute the
correlation among different channels. High correlation
segments!'3 from correlation matrix can be utilized
to define the SAS-DBN segments. The correlation
matrix is formulated based on a covariance matrix.
Mathematically, the covariance matrix can be defined
as

Cov = E{(¢— E(@)q— E(@)"} (6)
where E{-} is the expectation operator, ¢ is a random
variable. Based on this, each element in the correlation

matrix can be defined as
Cov(r,
Corr(r,c) = ov(r.©) (N
v/ Cov(r, r)Cov(c,c)
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where Cov(r,r) and Cov(c,c) represents the
covariance of the r-th and c-th channels, respectively.
Therefore, Corr(r,c) represents the correlation
among the r-th and c-th spectral channels in the
HSI dataset. Hence, the complete correlation matrix
offers a correlation among the spectral channel in the
HSI dataset. Hence correlation information can be

effectively employed to define the regions.

3 Experimental Results and Performance
Comparisons

To validate and evaluate the performance of the
proposed technique, several experiments were
conducted on real-world urban and natural-scene
hyperspectral image datasets. The detailed description
of each dataset is given in the following subsections.

3.1 ROSIS urban scene: Pavia University dataset

The Pavia University Scene was collected by the
Reflective Optics System Imaging Spectrometer
(ROSIS) sensor over the urban area of Pavia University,
Italy. The Pavia scene comprises a spatial resolution
of 610 x 340pixels and a spectral resolution of
115 channels. The spatial resolution of the scene is
1.3 m/pixel and the spectral range is 0.43 — 0.86 um.
A total of 12 noisy bands were removed due to water
absorption with 103 remaining bands. Nine standard
classes are utilized for Pavia scene classification. The
false-color composite and reference ground truth are
shown in Fig. 6.

3.2 AVIRIS scene: Houston image

The Houston database was acquired over the University
of Houston and neighboring urban region. The database
consists of 144 spectral channels with a spectral
resolution of 380 to 1050nm and a spatial area of
349x1905 pixels. It also consists of 15 different ground
cover classes as shown in the false-color composite and
ground truth in Fig. 7.

3.3 Experimental setup

The experiments were conducted on a 4.0-GHz
processor with NVIDIA GeForce GTX 970 on a
Windows 7 operating system. Theano was used for code
implementation. A conventional DBN can be employed
in different ways. The conventional DBN delivers the
best performance with 2 — 6 layers and 20 — 60 hidden
units as suggested in Ref. [22]. The hidden units of
the deepest layer are equal in number to the features
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(a) Pavia University false color

(b) Pavia Univeriy ground truth and classes

Fig. 6 Hyperspectral image datasets of Pavia University.

(a) Houston University

(b) Ground truth and classes

Fig. 7 Hyperspectral image datasets of Houston University.

that are required. From these results, we employed
a two-layer DBN architecture with 40 hidden units in
each. In total, three layers from the Pavia University
and Houston University datasets were used with one
input and two hidden layers, with a configuration of
x —40--- — F, where x corresponds to the number of
channels as an input to the DBN, and F is the number
of the corresponding required features that are also

required as output. A greater number of hidden layers
or hidden units do not have a significant effect on the
classification performance, as specified in Ref. [22].
The proposed method first segments the spectral
data into different groups so that the DBN can be
applied to each group separately. The correlation
among spectral bands can be effectively exploited using
a Correlation Matrix (CM)!'. The CM is closely
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associated with a covariance matrix. A particular
value from CM represents the correlation between
the corresponding channels. For instance, CM(, j)
represents the corresponding relation between the i-th
and j-th bands of a particular HSI. The entire CM
delivers the association between every pair of bands
in the hyperspectral channels, which can be efficiently
utilized to define the spectral segmented groups, as can
be observed in Fig. 8. As recommended in Ref. [15],
the segmented group of channels can be derived from
the main correlation groups obtained as a result of CM.
Consequently, Table 1 presents the proposed groups of
spectral channels. The total number of features is also
divided (5, 10, 15, 20) evenly among the groups.

3.4 Spectral-spatial HSI classification

Experimental results of the proposed approach
were compared with those of well-known existing

(a) Correlation matrix ( white=1, black=0 )

(b) Selected regions

Fig. 8 Correlation matrix and corresponding band
grouping for the Pavia University dataset.
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Table1l Segmented-DBN configuration for Pavia University
and Houston University datasets.

Grouped Hidden-layer Reduced

Dataset Segment No.

channels units features
L =13
S tS; 1-22 1336
egment S L= F
Pavi L =13
W Geoment S, 23-60 ! 2367
University L, =F
L =14
Segment S3 61 — 103 ! 2467
Ly=F
L =13
Segment S|  1—76 ! 2476
Lr=F
Houst L =14
OUSON - qooment S, 77110 ! 1376
University 2=F
L =13
Segment S3 111 —144 ! 2363
L,=F

techniques, the SVMII  the recently developed
Recurrent Neural Network (RNN)P?! the DBN with
Logistic Regression (DBN-LR)??/, and the newly
developed deep CNN0l. In the case of the DBN-LR,
only spectral data is considered an input.

The following standard evaluation criteria are used to
access classification performance:

(1) Overall Accuracy (OA): OA represents the
number of HSI pixels correctly classified and
divided by the total number of test samples taken.
(2) Average Accuracy (AA): AA calculates the
mean of the classification accuracies of all classes.
(3) Kappa Coefficient (k): Kappa coefficient
determines the agreement between the final
classified map and the actual ground truth map.
It is generally classified as a more accurate
measurement as it takes into consideration the
agreement occurring by chancel*!.

The Houston University dataset is considered a
challenging dataset due to the presence of small spatial
regions. Only 10% of samples randomly chosen from
each class was used as training samples and 50 features
are used in each dataset for classification. Tables 2
and 3 shows the class-level accuracies of the Houston
University and Pavia University datasets respectively.

Tables 2 and 3 further show that the SAS-DBN
delievered better performance in OA, AA, and k among
all the four well-known existing techniques, although
the DBN-LR yielded better performance in classes 1
and 2. This is due to the availability of a very small
number of samples for those classes. The proposed
technique performed particularly well in classes with
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Table 2 Classification accuracy (%) of each class for
the Houston University dataset obtained by the SVMI38],
RNN™1 CNN“ DBN-LR™?, and proposed SAS-DBN.

Table 3 Classification accuracy (%) of each class for the
Pavia University dataset obtained by the SVM?8], RNN[31,
CNNM“1 DBN-LR??, and proposed SAS-DBN.

Class Training Test SVM RNN CNN DBN-LR SAS-DBN

Class Training Test SVM RNN CNN DBN-LR SAS-DBN

1 125 1126 97.47 82.53 81.20 99.20 98.80
2 125 1129 98.32 83.36 83.55 99.60 99.0
3 70 627 99.37 100.0 99.41 100.0 100.0
4 124 1120 98.01 90.53 91.57 99.60 99.60
5 124 1118 96.01 97.82 94.79 99.60 99.60
6 33 292 99.83 93.01 95.10 972 98.81
7 127 1141 91.23 7537 63.53 97.0 98.11
8 124 1120 86.23 42.36 42.64 97.8 98.0
9 125 1127 86.99 77.62 58.17 94.0 95.11
10 123 1104 91.42 57.63 41.80 974 97.75
11 124 1111 91.67 7742 7571 973 97.95
12 123 1110 87.05 69.74 84.15 952 96.05
13 47 422 78.16 66.32 40.00 88.0 90.55

14 43 385 97.42 100.0 98.79 100.0 100.0
15 66 594 99.49 9598 97.89 100.0 100.0
Overall Accuracy 93.06 89.85 8542 97.70 98.35
Average Accuracy 93.25 80.65 76.55 97.50 98.06
Kappa Coefficient 0.925 0.7606 0.7200 0.975 0.9805

small spatial regions. The over-all classification results
for both the datasets demonstrate that the proposed
SAS-DBN approach led to better performance than
existing state-of-the-art approaches.

The visual results of the classification maps for
all labeled samples of various existing classification
methods for Pavia University and Houston University
are presented in Figs. 9 and 10, respectively. From the
subsequent visual results, it is evident that incorporation
of spatial information along with extracted features
through the proposed technique improved the results.
Some existing techniques resulted in scattered and
noisy labeled points, where the proposed method

(a) SVM (b) RNN

(c) CNN

1 597 6034 97.50 84.45 87.34 87.37 89.11
2 1681 1697197.70 85.24 94.63 92.10 93.55
3 189 1910 78.53 54.31 86.47 85.57 87.50
4 276 2788 89.29 95.17 96.29 95.11 97.35
5 121 1224 98.77 99.93 99.65 99.74 99.19
6 453 4576 83.04 80.99 93.23 91.94 93.85
7 120 1210 64.58 88.35 93.19 92.21 93.55
8 331 3351 86.90 88.62 86.42 87.02 88.05
9 85 862 99.92 99.89 100.0 100.0 100.0

Overall Accuracy 92.04 88.85 92.56 91.18 93.15
Average Accuracy 88.47 86.33 93.02 92.34 93.06
Kappa Coefficient 0.903 0.8048 0.9006 0.8828  0.9105

overcame this deficiency.

4 Conclusion

In this paper, an HSI classification SAS-DBN
approach based on Deep Belief Networks and hyper-
segmentation was proposed by considering spectral and
spatial information. We proposed a deep-learning-
based SAS-DBN architecture by analyzing a DBN
and solving relevant concerns by spectral and spatial
segmentation. Despite its learning capability, tackling
hundreds of features at the same time leads to
complexity and affects the performance of the DBN.
We, thus, proposed a two-step classification approach
combining the use of segmented spatial data and
spectral segmentation, dividing the original spectral
domain into different correlated bands, and applying
DBN separately to each segment. Hence reducing the
complexity of the learning process and extracting local
features make it simpler for DBN to effectively extract

(d) DBN-LR (e) SAS-DBN

Fig. 9 Classification maps of various techniques for Pavia University.
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(a) SVM

(c) CNN

(e) SAS-DBN
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(b) RNN

(d) DBN-LR

Fig. 10 Classification maps of various techniques for the Houston University.

the spectral-spatial features. The proposed SAS-DBN
delivers better HSI classification performance.

Experiments indicated that the two-step classification
approach effectively combines spectral and spatial
features to capture the generalities and specific details
of datasets. Moreover, the multi-scale modules enhance
the level of classification without excessively increasing
the number of parameters.
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