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An Energy-Efficient Data Collection Scheme Using Denoising
Autoencoder in Wireless Sensor Networks

Guorui Li, Sancheng Peng�, Cong Wang, Jianwei Niu, and Ying Yuan

Abstract: As one of the key operations in Wireless Sensor Networks (WSNs), the energy-efficient data collection

schemes have been actively explored in the literature. However, the transform basis for sparsifing the sensed data

is usually chosen empirically, and the transformed results are not always the sparsest. In this paper, we propose

a Data Collection scheme based on Denoising Autoencoder (DCDA) to solve the above problem. In the data

training phase, a Denoising AutoEncoder (DAE) is trained to compute the data measurement matrix and the data

reconstruction matrix using the historical sensed data. Then, in the data collection phase, the sensed data of whole

network are collected along a data collection tree. The data measurement matrix is utilized to compress the sensed

data in each sensor node, and the data reconstruction matrix is utilized to reconstruct the original data in the sink.

Finally, the data communication performance and data reconstruction performance of the proposed scheme are

evaluated and compared with those of existing schemes using real-world sensed data. The experimental results

show that compared to its counterparts, the proposed scheme results in a higher data compression rate, lower

energy consumption, more accurate data reconstruction, and faster data reconstruction speed.
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1 Introduction

As one of the core components of cyber physical

systems, Wireless Sensor Networks (WSNs) have

gained much attention from both industrial and research

communities. A typical WSN is usually composed of

hundreds or even thousands of tiny, inexpensive sensor

nodes that can sense the surroundings and transmit the

sensed data back to the sink node. The representative
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applications of WSNs include environment monitoring,

intelligent transportation, industrial and agricultural

automation, smart home, and military surveillance[1].

Data collection is one of the core functions in

WSNs. All sensor nodes periodically perform sensing

and transmitting operations in a distributed and

cooperative manner to acquire the sensed information

of the surveillant area[2]. The sensed data collected

from the network exponentially grow with time.

The exponentially grown data exhibits prominent

characteristics of big data, such as high volume, high

velocity, and high variety. According to a report by

Oracle, the volume of data generated by WSNs is

expected to be in the order of petabytes. However,

the sensed big data are not efficiently managed,

especially in the data collection process[3]. Furthermore,

wireless sensor nodes are usually powered by batteries,

which are drained quickly and are hard or even

impossible to be replaced. The limited computational

and communication capacities of wireless sensor nodes
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further aggravate the difficulty of data collection.

Therefore, the design of energy-efficient data collection

schemes for big data still remains one of the key

research issues in WSNs.

Currently, several data collection schemes for

WSNs have been proposed in Ref. [4]. Based on the

underlying techniques adopted in the schemes, state-

of-the-art data collection schemes can be classified

into four categories: signal processing-based scheme,

routing-based scheme, information theory-based

scheme, and compressed sensing-based scheme. Of

these data collection schemes, the compressed sensing-

based scheme has attracted the most attention from

researchers, and it has gradually become the research

focus of the data collection schemes for WSNs.

Compressed Sensing (CS), also known as

compressive sampling, is a new suite of signal

processing theories and techniques that was introduced

by Donoho[5] in 2006 and Candes and Wakin[6] in

2008, respectively. It is based on the principle that

a sparse signal can be reconstructed from far fewer

samples than those required by the classical Shannon-

Nyquist sampling theorem by finding the sparsest

solution to the underdetermined linear systems. The

two essential conditions under the signal reconstruction

are sparsity and incoherence[7]. The compressibility

and computational asymmetry of the CS theory have

made data collection of resource-constrained WSNs

very practicable.

In recent years, several CS-based data collection

schemes have been proposed to minimize the volume

of transmitted data and prolong the lifetime of the

whole sensor network. Luo et al.[8] proposed the first

practical design of CS-based data collection scheme

by compressing the sensed data of each sensor node

and adding them along the data transmission routes

toward the sink. In Ref. [9], Luo et al. advocated

that the performance of the naively designed CS-based

data collection scheme is worse than that of non-CS-

based data collection scheme; thus, they proposed

a data collection scheme based on hybrid CS by

combining the traditional non-CS-based data collection

techniques with the CS theory. In Ref. [10], an adaptive

data collection scheme was introduced by integrally

fusing the autoregressive model with the CS theory

integrally. The inherent spatio-temporal correlation

among the sensed data of a whole sensor network

leads to the matrix completion technique, which is

a natural extension of the CS theory; this has also

been utilized to collect the WSNs sensed data. For

instance, Cheng et al.[11] proposed a spatio-temporal

compressed data gathering scheme based on the spatial

and temporal similarity and short-term stability of

the sensed data. Kong et al.[12] proposed a sensed

data matrix completion method by exploring the low

rankness and multiple attributes correlation of the

sensed data in WSNs. Xiang et al.[13] proposed a dual-

level data reconstruction algorithm by combining the

matrix completion with a fine-tuned CS technique.

However, the researchers in the CS community

usually ignored an important problem. It is well known

that most natural signals are not sparse in their original

forms; therefore, they should not be sparsified through

a predefined basis transformation. The usually chosen

transform bases include Discrete Cosine Transform

(DCT) basis, discrete fourier transform basis, and

discrete wavelet transform basis[14]. The chosen process

of the transform basis is usually empirical, and the

transformed signal under the selected transform basis

is not always the sparsest.

To obtain the sparsest transformed signal and

consequently reduce the amount of transmitted data

within the network, we designed a Data Collection

scheme based on Denoising Autoencoder (DCDA) in

this study. The proposed DCDA scheme includes two

correlated phases: the data training phase and the data

collection phase. In the data training phase, a data

measurement matrix and a data reconstruction matrix

are obtained by training the Denoising AutoEncoder

(DAE) using the historical surveillant data. The

obtained data measurement matrix can be regarded as

the trained sparse transform basis, which is suitable

for the subsequent sensed data. In the data collection

phase, a data collection tree is built, and all sensed

data are collected in a hybrid and cooperative manner.

By comparing the DCDA scheme with the well-known

DCT basis and other state-of-the-art data collection

schemes based on numerical experiments, we detailedly

evaluated and analyzed the performance of the proposed

scheme in this study.

The rest of this paper is organized as follows. In

Section 2, we introduce the basic concepts of Artificial

Neural Networks (ANNs) and autoencoders, and in

Section 3, we describe the proposed scheme. In Section

4, we demonstrate the experimental results which

include the data compression performance and the data

reconstruction performance. In Section 5, we state our

conclusions.
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2 Artificial Neural Network and
Autoencoder

Artificial neural networks, also known as connectionist

systems, are key tools that have been widely used

in machine learning. They can extract meaningful

features and solve certain problems that are usually

difficult or even impossible to explicitly program. The

prevalent deep learning is also built upon ANNs

with deep architectures. Typical applications of ANNs

include computer vision, speech recognition, machine

translation, autonomous driving, and recommendation

systems.

An ANN is composed of many neurons that are

arranged in different layers. The first and last layers

are called input and output layers, respectively, and

the intermediate layers are called hidden layers. Each

neuron takes an .nC 1/-dimensional vector x D fx0;

x1; � � � ; xng as its input and multiplies it with an (nC1)-

dimensional weight vector w D fw0; w1; � � � ; wng to

compute the pre-activation result wTx, where x0 is fixed

to 1, and w0 is usually called bias. Then, the pre-

activation result wTx is fed into a nonlinear activation

function f W R ! R to compute the neuron activation

f .wTx/. The available nonlinear activation functions

include sigmoid function, tanh function, and rectified

linear units function.

The commonly designed ANNs are usually organized

in several layers, where the outputs of the neurons

in one layer are fed into the neurons in the next

layer as inputs. A three-layer ANN is shown in

Fig. 1. For convenience, we describe the network

parameters of an s-layer ANN as a series of weight

matrixes fW.1/; W.2/; � � � ; W.s/g, where W
.l/

ij is the

Fig. 1 A three-layer artificial neural network.

weight associated with the connection between neuron

j in layer l and neuron i in layer l C 1. Thus, the

activation of neuron i in layer l , i.e., a
.l/
i , can be

represented as

a
.l/
i D f

 n.l�1/X
kD0

w
.l�1/

ik
a

.l�1/

k

!
(1)

where n.l�1/ is the number of neurons in layer l�1, and

the layer index l D 2; : : : ; s. Furthermore, the entire

output of ANN in layer l , i.e., a.l/, can be represented

as

a.l/ D f
�

W.l�1/a.l�1/
�

(2)

The lowest output a.1/ is actually the input vector x of

the network.

To train an ANN, a forward propagation process is

first executed by computing the output of an ANN

from the bottom-up until the output layer is reached.

Then, the output of the network is compared with the

desired output by a predefined loss function, and the

error is gradually propagated back to the input layer.

Meanwhile, the corresponding weights are also updated

by the well-known back propagation method[15]. After

a certain number of iterations, the trained ANN can

approximate the mapping relationship between the

input and output layers with a high accuracy[16].

Autoencoders are an unsupervised learning

framework in ANNs[17]. Their main function is to

learn a low-dimensional representation of the original

high-dimensional data and compress them through

dimensionality reduction. First, an autoencoder maps

the input data x 2 Œ0; 1�nC1 to a hidden representation

y 2 Œ0; 1�mC1 with an encoder, that is,

y D f .Wx/ (3)

where m is less than n in most cases. Then, the latent

representation y is mapped back to a reconstructed databx 2 Œ0; 1�nC1 with a decoder, that is,

bx D f .W 0y/ (4)

Therefore, the network parameters of an autoencoder

include two weight matrixes: fW; W 0g. When the

reverse mapping weight matrix W 0 D WT, the weight

matrixes of the autoencoder are usually referred as tied

weights.

In an autoencoder, the difference between x and bx
can be utilized to build the loss function. By minimizing

the loss function with training iterations, the hidden

representation y can be regarded as a compressed

form of original data x that captures its inherent main

features. It has been proved that an autoencoder has the
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same feature extraction performance as the principal

component analysis method when the activation

function f is linear. Moreover, if the activation function

f is nonlinear, an autoencoder can capture the multi-

modal aspects of the input data[18].

In recent years, several variations of autoencoders

have been proposed in the literature. The representative

variations include DAE[19], sparse autoencoder,

contractive autoencoder[20], and variational

autoencoder[21]. Among the proposed autoencoder

variations, DAE has been proved most capable of

learning robust features from the input data. Moreover,

it is also easily implemented by simply injecting some

random corruptions to the training data. We utilize

DAE in our proposed data collection scheme, and in

the next section we describe it in detail.

3 Data Collection Scheme Based on
Denoising Autoencoder

The DCDA scheme includes two correlated phases: the

data training phase and the data collection phase. In the

data training phase, we train the DAE with the historical

sensed data. Then, the weight matrixes in the encoder

and decoder can be utilized to compress the subsequent

sensed data and reconstruct the original sensed data,

respectively. In the data collection phase, each sensor

node compresses the sensed data and forward the

compressed data to the sink along the data collection

tree in a hybrid and cooperative manner. Then, the

original sensed data are reconstructed in the sink using

the decoder part of the DAE.

3.1 Data training phase

In the data training phase, we train the DAE with the

historical surveillant data in an off-line mode. The core

idea behind the DAE is to discover more robust features

of the input data from its corrupted version. In WSNs,

the collected sensed data are usually influenced by all

sorts of noise or even a poor wireless connectivity.

Hence, we try to recover the uncorrupted sensed data

or the missing data from the corrupted data which were

collected in the sink.

Essentially, a DAE can be seen as a stochastic

variation of an autoencoder. An instance of DAE is

shown in Fig. 2. First, the input data x is normalized and

then converted to a corrupted version Qx by randomly

masking some entries of x to 0. The degree of

corruption is controlled by the corruption level � . The

larger the � is, the more sensed data are set to 0.

Fig. 2 An instance of the denoising autoencoder.

After that, the encoder part of the DAE compresses

the corrupted data Qx to a lower-dimensional data y with

the weight matrix W; that is, y D f .WQx/. Then, the

decoder part of the DAE reconstructs the original high-

dimensional data Ox from the compressed data y with the

weight matrix W 0, that is,bx D f .W 0y/.

In the proposed DCDA scheme, we use the well-

known sigmoid function as the nonlinear activation

function.

f .z/ D 1

1C e�z
(5)

Meanwhile, the squared error loss function is utilized

to measure the data reconstruction performance of the

DAE.

L.x; Ox/ D 1

2
kx � Oxk2 (6)

By repeatedly executing the mini-batch stochastic

gradient descent algorithm[22], the difference between

the original sensed data x and the reconstructed

sensed data Ox decreases gradually. Meanwhile, the

corresponding network parameter fW; W 0g of the DAE

is also adjusted accordingly.

The trained DAE is separately utilized to compress

and then reconstruct the WSNs sensed data.

Specifically, the weight matrix W can be regarded

as the data measurement matrix and utilized to

compress the sensed data in each sensor node. After

collecting all the compressed data, the weight matrix

W 0 can be regarded as the data reconstruction matrix

and utilized to reconstruct the original sensed data in

the sink node. In the next subsection, we describe the

data collection phase in detail.

3.2 Data collection phase

In the data collection phase, a data collection tree

should first be built. Currently, several data collection

tree-building algorithms have been proposed in the
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literature. In this study, we collected the sensed data

by using the group-based data collection tree which

we proposed in Ref. [23]. Specifically, we can divide

the whole sensor network into several data correlated

groups by the refined ı-grouping algorithm. Then, each

sensor node i transmits its sensed data xi to its parent

pi which is appointed in the grouping process. Thus,

the sensed data of the whole sensor network can be

collected progressively in the sink node by following

the parent indicator of each sensor node.

In non-compression data collection schemes, each

sensor node transmits its sensed data as well as the

sense data received from its children to its parent in the

data collection tree. Although the whole data collection

operations are easily implemented, the energy and

bandwidth consumptions of the sensor nodes that are

closer to the sink are remarkably higher than those of

other sensor nodes. In other words, the sensor nodes

adjacent to the sink usually run out of energy faster than

other sensor nodes.

To reduce the amount of transmitted data and avoid

the aforementioned energy depletion problem, we

designed a data collection algorithm based on DAE.

Each sensor node runs the algorithm distributedly and

compresses the sensed data in a hybrid and cooperative

mode. Its pseudo code is described in Algorithm 1.

In the above algorithm, each sensor node sends a

tuple (label, data) to its parent. If the label is set to

0, the sensed data are transmitted in an uncompressed

form; otherwise, the sensed data are transmitted in a

compressed form. The data collection operation of

the leaf node is rather simple. Its only function is to

transmit the uncompressed sensed data xi as well as the

corresponding label 0 to its parent pi (line 2). For the

non-leaf node, there are two different situations. After

Algorithm 1 Data collection algorithm based on denoising
autoencoder

1: if i is a leaf node then
2: send .0; xi / to pi

3: else
4: receive f.l

c1
i
; x

c1
i
/; � � � ; .l

ck
i

; x
ck

i
/g from its children

5: if k < m � 1 then
6: send .0; fxi ; x

c1
i
; � � � ; x

ck
i
g/ to pi

7: else

8: send

 
1; xi Wi C

kP
jD1

��
1 � l

c
j

i

�
x

c
j

i

W
c

j

i

C l
c

j

i

x
c

j

i

�!
to pi

9: end if
10: end if

receiving the sensed data f.lc1
i
; xc1

i
/; � � � ; .lck

i
; xck

i
/g

from its children fc1
i ; � � � ; ck

i g (line 4), sensor node

i sends the combined sensed data to its parent pi .

When the number of children k is less than m � 1,

sensor node i only needs to send its sensed data xi

combined with those of its children fxc1
i
; � � � ; xck

i
g

to pi in an uncompressed form (line 6); otherwise,

sensor node i computes the compressed data xiWi CPk
jD1

��
1 � l

c
j

i

�
x

c
j

i

W
c

j

i

C l
c

j

i

x
c

j

i

�
and sends it to pi

(line 8), where Wi is the i -th column of weight matrix

W. The above compressed data are composed of three

parts. The first part xiWi is the compressed sensed data

xi of node i . The second part
Pk

jD1

�
1 � l

c
j

i

�
x

c
j

i

W
c

j

i

is the compressed sensed data sent from node i children.

The last part
Pk

jD1 l
c

j

i

x
c

j

i

is the already compressed

sensed data sent to node i .

An instance of the DCDA algorithm is shown in

Fig. 3. The number of nodes in the hidden layer m

is set to 4. Therefore, non-leaf nodes 3 and 15 send

their sensed data as well as those received from their

children to their parents in an uncompressed form. On

the contrary, non-leaf nodes 7, 12, 8, and 16 send their

sensed data and those of their children to their parents in

a compressed form. Finally, the sink receives all sensed

data of the whole sensor network in a compressed form,

i.e.,
P16

jD1 xj Wj .

Only few vector additions and scalar multiplications

of vector are required in the non-leaf nodes, and there

is neither non-linear activation nor data decompression

in the resource-constrained wireless sensor nodes.

Meanwhile, the number of transmitted data in each

sensor node is less than or equal to m, which is the

Fig. 3 An instance of the data collection algorithm based on
denoising autoencoder.
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number of nodes in the DAE hidden layer. Therefore,

the energy consumption for each sensor node is quite

low.

When the sink node receives all the compressed data

from its directly connected children, it can compute

the compressed data z of the whole sensor network by

adding them together, that is,

z D
Xn

iD1
xiWi (7)

It is the same as the pre-activation result WTx in the

encoder part of the DAE. Thus, we can easily compute

the reconstructed sensed data Ox by inputting z into

the activation function f and then decoding it with

the decoder part of the DAE. In other words, the

reconstructed sensed data of the sensor network can be

simply computed as follows:

Ox D f
�
W 0f .z/

�
(8)

In the CS theory, the data reconstruction process

involves several iterations in all proposed data

reconstruction algorithms. For example, the support

set of the original signal can only be found by

successive iterations in the Orthogonal Matching

Pursuit (OMP) algorithm[24]. However, in the data

reconstruction process of our proposed DCDA scheme,

many iterations are not needed, and only one matrix-

vector multiplication and two non-linear activation

functions are required for computing. Therefore, the

computational complexity and data reconstruction

speed of our proposed scheme are superior to those of

CS-based data collection schemes.

4 Experiments and Analysis

To evaluate the performance of our proposed scheme,

we carried out several numerical experiments based on

a real-world sensed dataset. The experimental results

are reported and analyzed as follows.

4.1 Experiment settings

We used the Intel Berkeley Research Lab WSN

dataset[25] in the experiments. The temperature,

humidity, and light intensity of 54 Mica2Dot sensor

nodes were collected between February 28, 2004 and

April 5, 2004 on a 30-second cycle. We excluded

five sensor nodes from the experiments because of

malfunction or energy depletion.

We used the following energy consumption model,

which was also adopted in Ref. [26] and other related

researches, to evaluate the consumed energy in wireless

sensor nodes.

ET .k; d/D
(

k.ET x C d 2EAmp/; if d < dTI
k.ET x C d 4EAmp/; if d � dT

(9)

ER.k/ D kERx (10)

In Eq. (9), ET .k; d/ represents the energy consumed

in transmitting k (bits) data to a receiver d (meters)

away. If the distance between transmitter and receiver is

less than the predefined distance threshold dT , the free

space power loss channel mode is utilized; otherwise,

the multiple path fading power loss channel model is

utilized. In the experiments, the distance threshold dT

was set to 75 m. Moreover, ET x and EAmp represent

the energy consumed by the transmitting circuit and the

power amplifying circuit, respectively, to process 1 bit

data in the data transmission process. Their values were

set to 100 nJ/bit and 0.01 nJ/(bit�m2), respectively. In

Eq. (10), ER.k/ represents the energy consumed to

receive k (bits) data from the transmitter. The energy

consumed to receive 1 bit data from the transmitter is

ERx , and its value was set to 120 nJ/bit.

In the data training phase, the Theano framework

0.9.0 was utilized to train the DAEs. The elements

in the encoder matrix W and the decoder matrix

W 0 were different. Their initial values were set as

random numbers drawn from U Œ�b; b� where b Dp
6=.Hk CHk�1/ and Hk is the number of neurons

in the k-th layer. In the data collection phase, the

TOS Msg structure of the TinyOS was adopted to

encapsulate the sensed data of each sensor node.

Specifically, extra 7 bytes of data (address: 2 bytes,

type: 1 byte, group: 1 byte, length: 1 byte, cyclic

redundancy check: 2 bytes) are required to transmit in

addition to the sensed data which occupies 2 bytes.

4.2 Data training experiments

In the data training experiments, we selected a

subset of original temperature data at an interval of

5 min to reduce the total number of sensed data.

Then, the chosen sensed dataset was divided into the

training dataset, the validation dataset, and the testing

dataset with proportions of 50%, 25%, and 25%,

respectively. A subset of the original temperature data

is demonstrated in Fig. 4.

In DAE, the number of neurons in the hidden layer m

is a very important parameter. It reflects the dimensions

of the key features in the input data. Obviously, the

smaller the m, the larger the compression rate DAE

can provide. Thus, it is equivalent to the sparsity of
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Fig. 4 A subset of the original temperature data.

the signal in the CS theory. The average reconstructed

temperature errors at different numbers of hidden nodes

and sparsity are presented in Fig. 5. The DCT was

utilized to sparsify the sensed data, and the sparsity

was obtained by discarding some small coefficients

of the transformed result. Then, we reconstructed the

temperature data by applying the inverse DCT on the

truncated signal. The average data reconstruction error

of the DAE was less than that of DCT when the number

of hidden nodes or sparsity was above 3 (Fig. 5);

meanwhile, the average reconstructed temperature error

was less than 0.6ıC under the same condition. In other

words, compared to the DCT, more sparse features can

be extracted by using the DAE with the same acceptable

data reconstruction accuracy.

To measure the data reconstruction performance of

the DAE without considering the scale of the input data,

we utilized the following Signal-to-Noise Ratio (SNR)

measurement.

SNR D 10 log10

kxk2
2

kx � Oxk2
2

(11)

Fig. 5 Average reconstruction error of the denoising
autoencoder and discrete cosine transform.

The SNRs of the DAE at different numbers of hidden

nodes and training times (Fig. 6) show that the SNR of

the DAE increased with the data training times. Thus,

more accurate data reconstruction result can be obtained

by increasing the data training times. Furthermore, the

SNR of the DAE increased with the number of hidden

nodes and then gradually stabilized. Therefore, we can

reduce the number of hidden nodes to increase the data

compression rate of the DAE.

4.3 Data collection experiments

The numbers of transmitted data of the proposed

DCDA scheme, Compressive Data Gathering (CDG)

scheme[8], and non-compression scheme for one round

of data collection operation are shown in Fig. 7. The

corresponding average energy consumption of sensor

node is also shown in Fig. 8. First, we can see that

the number of transmitted data and the average energy

consumption of each sensor node increased with the

number of hidden nodes in the DCDA scheme or with

the sparsity in the CDG scheme. The reason behind this

Fig. 6 SNR of the denoising autoencoder.

Fig. 7 Number of transmitted data in one round of data
collection.
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Fig. 8 Average energy consumption of sensor node in one
round of data collection.

phenomenon is clear. The larger the number of hidden

nodes or sparsity, the more data are transmitted within

the network, and then each sensor node consumes more

energy. On the contrary, the number of transmitted data

and the average energy consumption are invariant in the

non-compression data collection scheme because the

sensed data are not compressed in the data collection

process. Furthermore, the number of transmitted data

and the energy consumption of the DCDA scheme are

the lowest among the three data collection schemes.

In other words, the data compression performance and

the energy efficiency of the proposed DCDA scheme

are superior to those of the compressive sensing-based

scheme CDG and non-compression data collection

scheme.

In the proposed DCDA scheme, the sensed data

can be reconstructed by the decoder part of the DAE.

To measure the data reconstruction performance, we

compared it with the OMP algorithm[24] and the

Iterative Hard Thresholding (IHT) algorithm[27]. The

OMP and IHT algorithms are data reconstruction

algorithms in the CS theory, and they should be

combined with the CDG scheme to build a complete

CS-based data collection scheme. The SNRs of the

DCDA scheme, OMP algorithm, and IHT algorithm

(Fig. 9) show that the data reconstruction accuracy of

our proposed DCDA scheme was higher than those

of the other two algorithms. Meanwhile, the data

reconstruction performance of these three schemes

(or algorithms) improved with the number of hidden

nodes or sparsity. In other words, the smaller the data

compression rate, the better the data reconstruction

performance these three schemes (or algorithms) can

Fig. 9 SNR of the DCDA scheme, OMP algorithm, and IHT
algorithm.

provide.

To further clarify the data reconstruction performance

of the DCDA scheme, we show the data reconstruction

error of the temperature data in Fig. 10 and the

reconstructed temperature data in Fig. 11. When

training the DAE, the numbers of hidden nodes and data

training operations were 5 and 10 000, respectively. The

Fig. 10 Reconstruction error of the temperature data.

Fig. 11 Reconstructed temperature data.
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temperature data reconstructed by the DAE was close

to the original sensed data (Fig. 11). Meanwhile, most

of the reconstruction errors were equal to or near 0ıC,

and the maximum reconstruction error was less than

1ıC. Therefore, the data reconstruction performance

of the proposed DCDA scheme is acceptable in most

WSN applications. Meanwhile, some reconstruction

errors were generated by the DAE, which are visible

as the raised peaks in Fig. 10. When the sensed data

changes intensively, the DAE cannot precisely represent

the sensed data, and then the data reconstruction error

would increase.

Furthermore, the data reconstruction time of the

DCDA scheme for one round of temperature data

was 0.0006 s. It is much smaller than those of the

OMP algorithm (0.32 s) and IHT algorithm (0.17 s).

Therefore, the data reconstruction speed of the

proposed DCDA scheme is much faster than that of

the data reconstruction algorithms in the CS theory.

This is evidently because only simple matrix-vector

multiplication and nonlinear activations are computed

in the data reconstruction process of the DCDA scheme.

On the contrary, cycles of complex iterations are

required in the data reconstruction algorithms of the CS

theory.

5 Conclusion

In this paper, we propose a DCDA scheme in WSNs,

in which a DAE is trained with the historical sensed

data, and its encoder and decoder parts are utilized

to compress the sensed data and reconstruct the

original data, respectively. In addition, a tree-based

data collection algorithm was designed to collect the

compressed data in a hybrid and cooperative mode. The

experimental results show that our proposed method

is superior to the existing CS-based data collection

schemes and non-compression scheme in terms of data

compression rate, average energy consumption, data

reconstruction accuracy, and data reconstruction speed.

In the future, we will focus on further improving the

data compression and reconstruction performance of the

proposed data collection scheme by introducing a time

series prediction model.
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