
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 07/11 pp 65– 76
DOI: 10 .26599 /TST.2018 .9010003
Volume 24, Number 1, February 2019

FPC: A New Approach to Firewall Policies Compression

Yuzhu Cheng, Weiping Wang�, Jianxin Wang, and Haodong Wang

Abstract: Firewalls are crucial elements that enhance network security by examining the field values of every

packet and deciding whether to accept or discard a packet according to the firewall policies. With the development

of networks, the number of rules in firewalls has rapidly increased, consequently degrading network performance.

In addition, because most real-life firewalls have been plagued with policy conflicts, malicious traffics can be allowed

or legitimate traffics can be blocked. Moreover, because of the complexity of the firewall policies, it is very important

to reduce the number of rules in a firewall while keeping the rule semantics unchanged and the target firewall

rules conflict-free. In this study, we make three major contributions. First, we present a new approach in which a

geometric model, multidimensional rectilinear polygon, is constructed for the firewall rules compression problem.

Second, we propose a new scheme, Firewall Policies Compression (FPC), to compress the multidimensional firewall

rules based on this geometric model. Third, we conducted extensive experiments to evaluate the performance

of the proposed method. The experimental results demonstrate that the FPC method outperforms the existing

approaches, in terms of compression ratio and efficiency while maintaining conflict-free firewall rules.

Key words: firewall; firewall policy; network security; firewall rules compression

1 Introduction

Firewalls are critical components of network security

and are deployed at all the entrances between a private

network and the Internet to monitor all incoming and

outgoing packets. The function of a firewall is to

examine the field values of every packet and decide

whether to accept or discard a packet according to the

firewall policies. The policy is specified as a sequence

�Yuzhu Cheng is with the School of Information Science and

Engineering, Central South University, Changsha 410083,

and the School of Software, Changsha Social work College,

Changsha 410004, China. E-mail: peter cheng@csu.edu.cn.

�Weiping Wang and Jianxin Wang are with the School

of Information Science and Engineering, Central

South University, Changsha 410083, China. E-mail:

wpwang@mail.csu.edu.cn; jxwang@mail.csu.edu.cn.

�Haodong Wang is with the Department of Electrical

Engineering and Computer Science, Cleveland State

University, Cleveland, OH 44115, USA. E-mail:

hwang@eecs.csuohio.edu.

�To whom correspondence should be addressed.

Manuscript received: 2017-07-13; accepted: 2017-08-07

of rules, each of which has a predicate over some

packet header fields and a decision to be performed

upon the packets that match the predicate. A packet

can be viewed as a tuple with a finite number of

the fields such as the source Internet Protocol (IP)

address, destination IP address, source port number,

destination port number, and protocol type. When a

packet arrives at a firewall, the firewall searches for

the first (i.e., the highest priority) rule with which the

packet matches, and executes the decision of the rule. In

general, the decision of a rule is accept or discard. Two

firewalls are semantically equivalent to each other if and

only if they have the same decision for every possible

packet. In this paper, we consider the enhanced Firewall

Policies Compression (FPC) problem: Given a firewall

f, generate another firewall f ’ that is semantically

equivalent to f but has fewer conflict-free rules.

In high-speed firewalls, filtering is performed by

special hardware (i.e., Ternary Content Addressable

Memory (TCAM)[1]), which is not only expensive

but also constraints on the size of firewall rule

sets. Thus, a natural optimization criterion for firewall

66 Tsinghua Science and Technology, February 2019, 24(1): 65–76

rule sets is to minimize their sizes while maintaining

the semantic equivalence. This will also reduce the

maximum delay in the sequential rules evaluation

by the firewalls. Another optimization criterion is to

ensure the rules are conflict-free based on the following

two points[2]: First, because of the conflicts among

rules and the resulting order sensitivity, firewall rules

are logically entangled, and the correct ordering is

critical but difficult. The semantics of any rule in

a firewall cannot be correctly understood without

examining previously listed rules. Second, if a firewall

administrator unintentionally swaps any two conflicting

rules, wrong actions may be performed, resulting in

irreparable or tragic consequences.

In Ref. [2], Cheng et al. presented an approach

for designing firewalls based on a multidimensional

matrix. In their proposed method, a Firewall Design

Matrix (FDM) is first designed. Then, a construction

algorithm and a generation algorithm are applied in the

FDM to generate and compress the target firewall rules,

which are disjoint and non-conflicting. However, we

find that the rules can be further compressed when rules

with the same decision are allowed to overlap; here,

the overlapping does not affect the semantics of the

rules. Figure 1 illustrates an example of this instance.

Assuming there are three firewall rules r1: F12[1,2] ^

Fig. 1 A compressing example, r1 WF12 [1, 2]^F22 [4, 7] !
accept, r2: F12 [3, 4]^F22 [2, 8]!accept, and r3: F12 [5, 7]^
F22 [4, 7] ! accept.

F22[4,7]! accept, r2: F12[3,4]^ F22[2,8]! accept,
and r3: F12[5,7] ^F2 2[4,7] ! accept, as shown in

Fig. 1a, since these rules have the same decision, and

are allowed to overlap, they can be further compressed

to two rules: r1: F12[1,7] ^F22[4,7] !accept, and r2:

F12[3,4] ^F22[2,8] !accept, as shown in Fig. 1b.

On the other hand, rectilinear polygons frequently

arise in Very Large Scale Integration (VLSI) layout and

artwork analyses as well as computer graphics[3]. Often,

functions are more easily performed on a rectilinear

polygon by considering the polygon as being composed

of several rectangles. A set T of rectangles is said

to cover the polygon P if P is the union of T. If the

rectangles in T are disjoint, then we call the set T to be

a partition of P.

A Minimal Overlapping Cover (MOC) of a rectilinear

polygon P is defined as the cover of P that has

the fewest number of rectangles. A Minimal Non-

overlapping Cover (MNC) of a rectilinear polygon P is

defined as a partition of P with the minimum number

of rectangles[4]. Figures 2a and 2b show a rectilinear

polygon P with jMNC(P)j = 3 and jMOC(P)j = 2,

respectively.

As defined in Ref. [2], the FDM method can be

seen as the MNC problem of a multidimensional

rectilinear polygon, and the target firewall rules are

disjoint and conflict-free. However, if overlapping is

allowed, it can be regarded as an MOC problem

in a multidimensional space. In general, jMOC(P)j
is less than jMNC(P)j[4], as shown in Fig. 2. This

means if the firewall rules compression problem is

transformed into an MOC problem, the number of

rules can be further reduced with a higher degree

compared with the FDM method. In this paper, we

propose a new method to transform the firewall

rules compression and a novel algorithm that solves

Fig. 2 Rectangular covers of a rectilinear polygon. (a)
Non-overlapping cover (size = 3) and (b) overlapping cover
(size = 2).

Yuzhu Cheng et al.: FPC: A New Approach to Firewall Policies Compression 67

the corresponding MOC problem. This is our main

innovation compared to prior researches[2, 5–9] on the

firewall rules compression. However, to the best of

our knowledge, current studies of the MOC problem

are concentrated on a two-dimensional space[9–13].

Therefore, we need to consider how to deal with this

problem in a multidimensional case, which has been

proved to be NP-hard[5].

The main contributions of this study can be

summarized as follows:

(1) We present a new approach in which a geometric

model is first constructed to transform the firewall rules

compression problem into a multidimensional MOC

problem.

(2) We propose a heuristic algorithm, FPC, to solve

the multidimensional MOC problem, which is totally

different from prior methods.

(3) We evaluated the performance of our approach

by conducting extensive experiments on synthetic

firewalls with different sizes. The experimental

results demonstrate that FPC outperforms the existing

approaches, in terms of compression ratio and

efficiency, while maintaining conflict-free firewall

rules.

The rest of this paper is organized as follows. Related

works are presented in Section 2. In Section 3, we

define terms related to our approach and present the

algorithm for compressing the original firewall rules. In

Section 4, we give the compression results of synthetic

firewall rules. Finally, conclusion is drawn in Section 5.

2 Related Work

In this study, we convert the FPC problem to an

MOC problem in a multidimensional space. To our

knowledge, except several special cases, this problem

in the general setting has never been studied in prior

works. The optimal polynomial time algorithms for a

one-dimensional case have been developed in Ref. [14].

In addition, a two-dimensional rules compression

problem has been proved to be NP-hard[6]. Applegate

et al.[5] proposed an optimal polynomial time algorithm

for a two-dimensional problem when there are only two

decisions and all rules must be strip rules, and then with

this result, they created an approximation algorithm for

the general two-dimensional problem. However, it is

not clear how to apply their ideas to a space with more

than two dimensions.

Daly et al.[7] presented Diplomat to address the

multidimensional access control rules compression

problem, where, the key idea is to transform higher-

dimensional target patterns to lower-dimensional

patterns by dividing the original pattern into a series of

hyper-planes. Two adjacent planes are then selected,

and their differences are resolved by adding rules to

specify where the two planes differ. After resolution,

the two planes are compatible and can be merged

into a single plane. In this approach, each difference

between two adjacent planes requires specification by

additional rules. Therefore, the compression ratio is

largely affected by the differences among the rules.

Cheng et al.[2] presented the FDM approach for

designing firewalls. In their proposed method, the

original firewall rules are mapped into a set of unit

spaces in a multidimensional matrix. These unit spaces

are disjoint from each other, and this approach can

be seen as an MNC problem[4] of a multidimensional

space. Based on this research, we transform the task

of firewall rules compression to a multidimensional

MOC problem. Given a rectilinear polygon P, the MOC

problem requires determining the minimum number of

axis-parallel rectangles whose union covers P. For the

MOC problem on a two-dimensional space, researchers

have proposed several distinguished schemes[5, 9–13].

However, only little has been done for cases with over

two dimensions, and real-life firewalls are typically

five-dimensional. In this paper, we propose a heuristic

approach for the first time to cover the multidimensional

rectilinear polygon with the minimum number of

rectilinear hyper-rectangles.

3 Proposed Approach

In this section, we first define the relevant concepts of

our approach, and then we present our FPC algorithm.

Table 1 lists the notations used in this paper.

Table 1 Notations used in this paper.
Notation Description

f Firewall

FDM Firewall design matrix model

MOC Minimal overlapping cover

MNC Minimal non-overlapping cover

Fi i-th dimension

D.Fi / Domain of Fi

Mk A k-dimensional matrix

u,v Unit space

R(u,v,Fi) Spatial relation between u and v in Fi

ci Grid cell

REC Rectangle

P Polygon

Lk Linked list

68 Tsinghua Science and Technology, February 2019, 24(1): 65–76

3.1 Preliminaries

A firewall rule generally has the form hpredicatei !
hdecisioni, and any hpredicatei of the firewall rules has

the form “F1 2 D.F1/ ^ � � � ^ Fk 2 D.Fk/”. A field

Fi is a variable whose value is taken from a predefined

interval of non-negative integers, called the Fi domain

and denoted by D.Fi /. For example, the domain of the

source address in an IP packet is [0, 232–1].

FDM. An FDM over fields (F1, F2, . . . , Fk) is a k-

dimensional matrix Mk . Each dimensional coordinate

in Mk is represented by Fi , and the corresponding

value is within a range of Œ0; D.Fi /�; 1 � i � k. Any

of the firewall rules with the form hpredicatei !
hdecisioni can be formally represented as an Mk . In

other words, the predicate of each rule can be expressed

as a multidimensional rectangular region in Mk , and

the region value reflects the rule’s decision: value D 0

(if hdecisioni = discard/; or value D 1 (if hdecisioni D
accept).

Unit space. An Mk may have a set of

multidimensional rectangular regions with a value

of “1”, each of which can be represented by its low

vertex coordinates and the corresponding distance,

denoted as [(l1; l2; : : : ; lk/.d1, d2, . . . , dk/�; where li is

the vertex coordinate representing the lower bound of

D.Fi /, and di is the distance representing the size of

D.Fi /. These regions are referred as the unit spaces of

Mk .

The procedure of mapping a firewall rule ri to a k-

dimensional matrix Mk is presented in Ref. [4]. Figures

3a and 3b illustrate this process. Assuming there are

four firewall rules r1: F12[0, 2] ^ F22[0, 1]!discard,

r2: F12[3, 5] ^ F22[0, 1] !accept, r3: F12[5, 5] ^
F22[3, 5] !discard, and r4: F12[0, 5] ^ F22[1, 5]

!accept, and we map rule ri to Mk in reverse order,

while assigning the value of mapping region as “0” or

“1” based on if hdecisioni is discard or accept. Figure

3a shows the FDM to which rule r4 is mapped. There

is only one unit space in this figure, denoted as [(0,

1), (6, 5)]. Then after r3, r2 and r1 are mapped, the

resulting FDM is shown in Fig. 3b, and the final three

unit spaces are [(0, 2)(5, 4)], [(3, 0)(3, 2)], and [(5, 2)(1,

1)], corresponding to u1, u2, and u3, respectively.

For ease of representation, we define the spatial

relation between two unit spaces in a certain dimension.

Given any two unit spaces u and v, the spatial relation
between them in a certain dimension Fi can be

represented as R(u,v,Fi), where the value is an element

of adjacent, disjunct, crossed, covered, included, and

equivalent, as shown in Fig. 4.

Let uD .l.u/
1 ; � � � ; l.u/

k
)(d.u/

1 ; � � � ; d.u/

k
), vD .l.v/

1 ; � � � ;

l.v/

k
)(d.v/

1 ; � � � ; d.v/

k
),

(1) If l.u/
i C d.u/

i < l.v/
i kl.u/

i > l.v/
i C d.v/

i , R.u; v;

Fi / D disjunct;
(2) If l.u/

i C d.u/
i D l.v/

i k l.u/
i D l.v/

i C d.v/
i ; R.u; v;

Fi / D adjacent;
(3) If .l.u/

i < l.v/
i < l.u/

i Cd.u/
i < l.v/

i Cd.v/
i / k .l.v/

i <

l.u/
i < l.v/

i C d.v/
i < l.u/

i C d.u/
i /; R.u; v; Fi / D crossed;

(4) If l.v/
i < l.u/

i < l.u/
i C d.u/

i < l.v/
i C d.v/

i ; R.u; v;

Fi / D included;

(5) If l.u/
i < l.v/

i < l.v/
i C d.v/

i < l.u/
i C d.u/

i ; R.u; v;

Fi / D covered;

(6) If l.u/
i D l.v/

i & d.u/
i Dd.v/

i ; R.u; v; Fi /Dequivalent.
In general, given any two unit spaces u and v, if they

are disjunct in a certain dimension or are adjacent in two

or more dimensions, they are independent of each other.

Accordingly, any unit space in an independent unit

space set is independent of that in another independent

unit space sets.

Grid cell. In a certain dimension Fi , if two unit

spaces u and v satisfy R.u; v; Fi / Dincluded, then we

cut v into two or three sub-unit spaces, in which there

exists a sub-unit space v0 that satisfies R.u; v0; Fi / D
equivalent. A cutting operation is iteratively conducted

on all the unit spaces, until there are only disjunct

or adjacent spatial relations between any two sub-unit

spaces in all the k dimensions. We call these sub-unit

Fig. 3 An intuitive example of mapping and the corresponding grid cells, r1– r4.

Yuzhu Cheng et al.: FPC: A New Approach to Firewall Policies Compression 69

Fig. 4 Spational relation between two unit spaces u and v in dimension F1.

spaces grid cells.

For any grid cell, the following two properties are

satisfied:

Property 1. Given any two grid cells in a k-

dimensional space, if they are adjacent in a certain

dimension, then their coordinate values are identical in

the rest k � 1 dimensions.

Proof: Proof by contradiction. Given two grid cells

c1 and c2 in a k-dimensional space, they are adjacent in

the first dimension. Suppose their coordinate values are

not completely identical in the rest k � 1 dimensions;

for example, the coordinate value of c1 is less than

that of c2 in dimension Fi .1 � i � k/: According to

the definition of grid cell, we will let the coordinate

value of c1 be the secant to partition c2 in dimension

Fi . Then, at this time, c2 is equal to c1 in dimension

Fi after the partition. This contradicts the assumption

that the coordinate value of c1 is less than that of c2

in dimension Fi . Therefore, given any two grid cells

in k-dimensional space, if they are adjacent in a certain

dimension, then their coordinate values are identical in

the rest k � 1 dimensions.

Property 2. Given any grid cell ci in a k-dimensional

space, if it has an adjacent grid cell cj in a certain

dimension, then ci can be expanded to cj to form a

hyper-rectangle.

Proof: Given two grid cells ci and cj in a k-

dimensional space, if they are adjacent in the dimension

Ft , then their coordinate values are identical in the rest

k � 1 dimensions based on Property 1. Since the upper

coordinate value of ci is equal to the lower coordinate

value of cj in dimension Ft , these two grid cells can be

combined in dimension Ft to form a hyper rectangle.

For example, there are seven grid cells from c1 to c7

in Fig. 3c, which are partitioned from the unit spaces u1,

u2, and u3 (Fig. 3b). The dimension of these grid cells is

equivalent to that of the unit spaces, and each grid cell is

either disjunct or adjacent to each other. Taking the grid

cell c1 as an example, R(c1, c2, F2/ D adjacent and

R.c1; c2; F1/ D equivalent; therefore, these two grid

cells can be combined to form a rectangle c1- c2.

3.2 Methodologies

In this section, we formally describe our FPC method.

3.2.1 Problem description
First, a geometric model is first constructed to

transform the FPC problem into an MOC problem in

a multidimensional space.

Specifically, using the FDM method, we map

the firewall rules into a multidimensional matrix

to form a set of unit spaces, which constitute

several multidimensional rectilinear polygons. In the

multidimensional space, any firewall rule can be

described by a multidimensional rectangle. Therefore,

70 Tsinghua Science and Technology, February 2019, 24(1): 65–76

the firewall rules compression problem can be

transformed to use the minimum number of hyper-

rectangles to cover these rectilinear polygons (MOC).

As mentioned in Section 1, the MOC problem is NP-

hard in two or more dimensions[5], and to the best of our

knowledge, there are no heuristic algorithms on MOC

problems in a multidimensional case.

3.2.2 FPC heuristic algorithm
Considering that the solution of MOC problem in

multidimensional space is NP-hard, we propose a

heuristic method — FPC. The main idea of this method

is as follows:

(1) Use the FDM algorithm to map the firewall rules

into one or more multidimensional rectilinear polygons.

(2) Divide each multidimensional polygon into a set

of grid cells, so that these grid cells can be merged more

conveniently in the heuristic algorithm.

(3) Propose a heuristic algorithm based on a “greedy”

strategy. The core idea of the algorithm is to define a

multidimensional rectangle which covers as many grid

cells as possible in each step.

Step 1. Mark all grid cells white, and determine a

certain dimension Fi of the multidimensional polygon.

Step 2. Choose a grid cell c with the minimum

coordinate value in Fi . When there is a grid cell with

the right adjacent spatial relation with c, then merge as

many grid cells as possible in this dimension to form a

RECtangle (REC). Record REC (which corresponds to

a rule) and mark it gray. Then the convex part of the

gray area in the polygon is determined to be marked as

black.

Step 3. Remove the black area from the

multidimensional polygon, and then continue with

Step 2 in the remaining multidimensional polygons.

When all the polygons are marked in gray, output the

rectangles and corresponding rules.

The heuristic algorithm FPC possesses the following

two properties:

Property 3. In Step 2, REC always covers the region

starting from the convex, and the region contains the

most grid cells.

Property 4. The previous REC coverage process

does not result in a situation whereby the region in

the remaining multidimensional polygons, which can be

covered by a REC, has to be covered by multiple RECs.

Property 3 is obvious. We prove Property 4 as

follows:

Proof: Suppose k-multidimensional rectangles are

needed to cover the original multidimensional polygon

P. For example, P comprises five grid cells: c1, c2,

c3, c4, and c5, as shown in Fig. 5. According to

the algorithm implementation process, each time the

REC covers, the area that contains the initial grid cell

and covers the most grid cells is selected. Then, in

the multidimensional rectangles c1, c3, and c5 which

are formed in the REC coverage, we remove the

convex region (c1 and c5, which are represented by

the gradient-filled area in Fig. 5). At this point, the

problem is equivalent to proving that after the convex

region is removed, the remaining polygon P 0 can be

covered by a maximum of k � 1 multidimensional

rectangles. In a multi-dimensional polygon P, at least

one multidimensional rectangle is needed to cover the

convex region. Moreover, based on the property of

the MNC problem, the gray region in Fig. 5 allows

repeated coverage; therefore, the rest regions of a

multidimensional polygon can be covered by up to k�1

multidimensional rectangles.

According to the properties of FPC algorithm, in

the algorithm implementation process, the REC always

covers the region that contains the most grid cells. The

algorithm embodies the greedy idea and achieves the

local optimal coverage.

3.2.3 Steps and analyses of FPC algorithm
Our algorithm comprises the following four steps:

(1) Map the firewall rules f to an FDM;

(2) Divide the rectilinear polygon into grid cells;

(3) Perform FPC on the multidimensional polygon;

(4) Generate the resulting firewall rules f 0 from the

derived rectangles.

Step 1: Map the firewall rules f to an FDM.

Given a firewall f, we map the rules into a

multidimensional matrix to form a set of unit spaces.

The procedure of mapping a firewall rule ri to a k-

dimensional matrix Mk is presented in Ref. [2]. Then,

we derive the independent unit space sets, each of which

can be used to constitute a multidimensional rectilinear

Fig. 5 An example of rectangle covering process.

Yuzhu Cheng et al.: FPC: A New Approach to Firewall Policies Compression 71

polygon. Suppose the number of rules is n, the time

complexity is O.kn/, where k is the dimension.

Let us consider an intuitive example to show the

process of this approach, supposing there are five

original user specified rules.

Given the firewall f shown in Fig. 6 as input, we can

obtain three unit spaces [(0, 4)(3, 4)], [(2, 2)(1, 2)], and

[(3, 2)(1, 3)] after the mapping procedure, which can

constitute a rectilinear polygon, as shown in Fig. 7a.

Step 2: Divide the rectilinear polygon into grid cells.

In this step, the multidimensional rectilinear polygon

(which consists of unit spaces) is divided into grid cells.

For any two unit spaces u and v, if they satisfy these

two conditions: (1) in dimension Fx , R.u, v, Fx/ D
adjacent, and (2) in any other dimension Fy , R.u, v,

Fy/ D included or R.u, v, Fy/ D crossed, we let the

coordinate value of u in dimension Fy to be the secant,

then cut u into two or three sub-unit spaces. This

operation on unit spaces is iteratively conducted in

a certain dimension until all the k dimensions are

completed.

In the worst case, n unit spaces need to be cut for

.k � 1/n.n � 1/ times in a k-dimensional space. The

r1 W F1 2 Œ0; 4� ^ F2 2 Œ5; 5� ! acceptI
r2 W F1 2 Œ0; 2� ^ F2 2 Œ2; 4� ! acceptI
r3 W F1 2 Œ5; 5� ^ F2 2 Œ3; 5� ! discardI
r4 W F1 2 Œ0; 2� ^ F2 2 Œ0; 1� ! discardI
r5 W F1 2 Œ2; 5� ^ F2 2 Œ0; 4� ! accept:

Fig. 6 An example of firewall f with five rules.

time complexity is O.kn.n � 1//; and the number of

grid cells is nC .k � 1/n.n � 1/: Here n is the number

of unit spaces. However, when all the unit spaces are

independent of each other in k dimensions, the number

of unit spaces is the same as the number of grid cells.

Figure 7 illustrates an example of this step. Given

unit spaces u1, u2, and u3 as the input, since R(u3, u1,

F1/ D adjacent, and R.u3; u1; F2/ D included, we use

the upper coordinate of u3 in dimension F2 as the secant

to cut u1 into two sub-unit spaces u11 and u12, which is

represented by the gradient-filled area in Fig. 7b. Then

this cutting operation is iteratively conducted on all the

grid cells, and finally, we obtain seven grid cells from

c1 to c7 (as shown in Fig. 7c). Here all the grid cells

have the same degree of dimensions.

Step 3: Perform FPC on the multidimensional

polygon.

(1) To conveniently cover the grid cells, we designed

a directed graph structure on the spatial relations among

these grid cells. To describe the spatial relations, we

consider each grid cell as a vertex in the digraph. If two

grid cells are adjacent in a certain dimension, we use a

directed line segment which connects these two vertices

to describe their adjacency relationship.

Taking the grid cells in Fig. 7c as an example,

R.c1; c4; F1/ D adjacent, R.c4; c7,F1/ D adjacent, and

R.c1; c2; F2/ D adjacent, their spatial relations can be

represented as the digraph as shown in Fig. 8. Here, Dim

F1 and Dim F2 are the abbreviations of dimensions F1

and F2, respectively. For a k-dimensional case, we can

Fig. 7 An intuitive example of cutting unit spaces into grid cells.

Fig. 8 An example of digraph for the spatial relations of the grid cells in Dim F1 and Dim F2, respectively.

72 Tsinghua Science and Technology, February 2019, 24(1): 65–76

construct k digraphs, and in each digraph, each vertex

only appears only once.

(2) Based on this digraph, we first choose an initial

grid cell. Suppose there are k dimensions from F1 to

Fk , we list all the grid cells which has the minimum

coordinate value in the first dimension F1. Then, we

search these grid cells for the one that has the minimum

coordinate value in the second dimension F2. The

search operation is iteratively conducted in all the k
dimensions until the initial grid cell c is found. Let N
be the number of grid cells; then, the time complexity

of choosing the initial grid cell is O.N logN /.

For simplicity, we illustrate this method using a two-

dimensional case. As shown in Fig. 8a, c1 and c2 have

the smallest coordinate value in Dim F1 among all the

grid cells. In addition, the coordinate value of c1 is

smaller than that of c2 in Dim F2, as shown in Fig. 8b.

Therefore, c1 is the initial grid cell.

(3) First, we search for the linked list lk whose first

vertex is c in the k-th digraph; suppose there are lk
vertex (c1 � clk

) in the list, then in the (k � 1/-th

digraph, we traverse all the lk linked lists whose starting

points are from c1 to clk
. Let lk be the length,

and let the shortest chain length of the traversed lk
linked lists be the width of the rectangle, we can

obtain a two-dimensional rectangle. The operation

is iteratively conducted from the k-th digraph to the

first digraph until a k-dimensional hyper-rectangle is

obtained. Then, we remove all the convex vertexes cv

from the k digraphs. In a certain dimension Dim Fi ,

we can identify that the grid cells constitute convex

vertexes in the k-dimensional space, and remove them

from the k digraphs if they satisfy the following two

conditions: (1) Each grid cell is the starting or the

ending vertex of the linked list in this dimension Fi ; (2)

One or more (k � 1/-dimensional convex polygons in

the other dimensions are exclusively composed of these

grid cells. The above operation is iteratively conducted

until all the vertices are removed.

Let N be the number of grid cells, to compute the time

complexity. We first give the following observations:

(1) In the k dimensions, all grid cells can form k
digraphs, and in each digraph, each vertex appears only

once.

(2) In each round of covering process, we start from

the initial grid cell. Then, we separately perform the

traversal operation on the k dimensions to find the

largest multidimensional rectangle. Because each grid

cell is covered at most once in each round, the traversal

operation does not exceed the number of grid cells that

needs to be covered in this round.

(3) In each round of covering process, we remove the

convex vertices after the multidimensional rectangles

are formed. Because in each round, more than one

convex vertex will be removed. The number of grid cells

required to be covered in the t round is not more than

N � t C 1, where 1 � t � N .

According to the above consideration, the time

complexity of grid cells covering in the worst case is
PN

tD1.N � tC1/, that is O.N2), while in the best case,

the grid cells are independent of each other, and the time

complexity is O.N).

Taking Fig. 8 as an example, since c1 is the initial

grid cell, we first search with the initial grid cell c1

for the linked list and find c1- c2 (Fig. 8b). Then, we

use c1- c2 as the edge of rectangle and extend the edge

to the maximum in Dim F1; then, we can obtain the

rectangle c1- c2- c4- c5, as shown in Fig. 8a. Since c1

and c2 are the starting points of simultaneously linked

lists in Dim F1, and they constitute a linked list which

does not contain any other vertex in Dim F2, it means c1

and c2 are convex grid cells in Dim F1. Similarly, c5 is

a convex grid cell in Dim F2. After all the convex grid

cells have been removed, we find the initial grid cell

c3 among the rest grid cells. The covering operation is

recursively conducted until we get the second rectangle

c3- c4- c6- c7. At this time, these four grid cells c3, c4,

c6, and c7 are all convex. When we removed them, no

any grid cell is left, and the algorithm ends. According

to the above implementation process, we can finally

obtain two rectangles c1- c2- c4- c5 and c3- c4- c6- c7

after two rounds of covering operation.

Figure 9 shows the corresponding rectilinear polygon

covering process. Given the polygon P shown in Fig.

7c as input, it has seven grid cells from c1 to c7. In

the first round of covering, c1 is the initial grid cell,

and the maximal rectangle c1- c2- c4- c5 is added to the

cover T. Here, the gradient-filled area represents the

already covered area, as shown in Fig. 9a. Next, we

remove the convex grid cells c1, c2, and c5, which are

represented by the shaded area shown in Fig. 9b. Now

the contracted polygon in Fig. 9b has the initial grid

cell c3, and the rectangle c3- c4- c6- c7 is added to T in

this iteration, as shown in Fig. 9c. Finally, following

the contraction, all the grid cells are removed and the

algorithm terminates normally, as shown in Fig. 9d.

Step 4: Generate the resulting firewall rules f 0 from

the derived rectangles.

Yuzhu Cheng et al.: FPC: A New Approach to Firewall Policies Compression 73

Fig. 9 An example of rectilinear polygon covering in the two-dimensional space. (a) To cover c1, c2, c3, and c4 with c1 as the
initial grid cells; (b) Remove the convex grid cells c1, c2, and c5; (c) To cover c3, c4, c6, and c7 with c3 as the initial grid cells; and
(d) Remove all the convex grid cells.

In this step, the resulting firewall rules are generated

from the derived rectangles. We first calculate the unit

spaces which are formed by those rectangles. Then,

we sort them in a descending order according to their

regional sizes. The corresponding ordered firewall rules

are generated from these ordered unit spaces. Finally,

since all the unmarked regions denote the discard

condition, a default firewall rule “F1 2D.F1/ ^ F2 2
D.F2/^� � �^Fk2D.Fk/ ! discard ” is fixed for the last

rule to ensure the completeness of the firewall rules.

For REC1 D fc1, c2, c4, c5g and REC2 D fc3, c4, c6,

c7g, we can obtain the corresponding unit spaces:

fŒ.0; 4/.3; 4/�; Œ.2; 2/.3; 3/�g: Based on our rules-

generating algorithm, the resulting firewall rules

are r1: F1 2 [0, 2]^F2 2 [4, 7]! accept, r2: F1 2 Œ2; 4�

^F2 2 [2, 4]! accept, and the default rule r3: F1 2
[0, 5]^ F2 2 [0, 5]!discard.

In this step, we calculate the regional sizes of those

hyper-rectangles, and then sort them in a descending

order. Let N be the number of grid cells; then, in the

worst case, the number of hyper-rectangles is N, and

the time complexity is O..k C logN /N /:

Through comprehensive analysis and evaluation, we

can derive that the time complexity of our algorithm as

O.Tbest/ D O.cknCkn.n�1/Ckn2C.kClogn/n/ D
O.kn2/ in the best case and O.Tworst/ D O.ckn C
kn.n � 1/C kn4 C .k C 2logn/n2/ D O.kn4/ in the

worst case.

4 Experimental Results

In this section, we evaluate the effectiveness and

efficiency of the FPC algorithm.

4.1 Effectiveness

Theorem 1: The proposed FPC heuristic approach

can certainly reduce the number of rules with a higher

degree compared to the FDM method.

Proof: As defined in Ref. [2], the FDM method can

be seen as the MNC problem of a multidimensional

rectilinear polygon, while the FPC approach can be

regarded as an MOC problem in a multidimensional

space. For FDM, the resulting number of compressed

rules is jMNCj, while the resluting number of rules in

FPC is jMOCj. As proved in Ref. [4], jMOCj < jMNCj
� 2jMOCj � 1. This result demonstrated that by using

an MOC versus an MNC, we can reduce the number of

rectangles in the cover by a factor of at most two.

(1) Compression ratios. To evaluate the effectiveness

of the firewall rules compression algorithm, we first

define the compression ratio metric. Given a firewall f,
we use FPC to represent our proposed FPC approach.

Let FPC.f / be the firewall produced by applying

algorithm FPC, and jf j be the number of rules in

firewall f . The compression ratio of FPC over f is
jFPC.f /j
jf j :

(2) Experimental data. Firewall rules are considered

confidential because of various security concerns, thus,

it is not easy to get many real-life firewall rules for

evaluation. To circumvent this issue and effectively

evaluate the performance of the proposed approach,

we generated a set of 50 synthetic firewall rules,

comprising 20 to 5000 rules. We divided this set into

three smaller sets based on the number of rules. The

small set contains the 20 smallest classifiers, and the

middle set contains the next 15 larger classifiers, while,

the classifiers in the large set all have at least 500

rules, with the largest having 5000 rules. The predicate

of each rule has five fields: source IP, destination IP,

source port, destination port, and protocol type. We

generated these rules by ClassBench[15], which is a

well-known benchmark that provides classifiers similar

74 Tsinghua Science and Technology, February 2019, 24(1): 65–76

to real classifiers used in Internet routers and inputs

traces corresponding to the classifiers.

(3) Methodology. In our experiments, the rules set

was divided into five groups based on sizes, and each

group contained eight firewall rules with different rule

numbers. We addressed each rule in the five groups

by using the FDM, Diplomat, and FPC schemes.

The average value was obtained and considered as a

performance metric.

As shown in Fig. 10, the compression ratios of FDM,

Diplomat, and FPC are all slightly around the average

values, which indicates that the compression results are

fairly stable. Note that the time complexity of Firewall

Decision Diagram (FDD) construction is O.nk/[16]. For

the typical five-dimensional firewall rules, k is 5. As a

result, the time complexity of Diplomat, which includes

the steps of FDD construction, difference resolution,

etc., is not less than O.nk/. When the number of rules

were more than 1000, the algorithm execution time was

over 200 h. Therefore, in this study, no more than 1000

rules were tested for Diplomat.

The mean compression ratios for FDM, FPC, and

Diplomat on each set of classifiers (Table 2) show

Table 2 Compression ratios of firewall rules.

Rules set FDM (%) Diplomat (%) FPC (%)

Small (20–80) 51.13 54.94 46.88

Medium (100–400) 53.83 55.5 49.33

Large (500–5000) 63.47 63.0 61.15

Mean 56.14 57.81 52.45

that FDM offers little improvement over Diplomat, and

in many cases they provide equally good solutions.

However, FPC outperformed them on most of the 50

classifiers. Specifically, on the small and medium

sets, FPC resulted in improvements of 8.06% and

6.17% over Diplomat. On the large set, FPC moderately

outperformed FDM and Diplomat.

In general, if intersection conditions exist as shown in

Fig. 11, the compression ratio of FPC would be better

than those of FDM and Diplomat, and the resulting

compressed rules would be conflict-free.

4.2 Efficiency

The proposed algorithms were implemented in Java

JDK1.6, and we carried out experiments on a server

running Linux with Intel six CPU 2.0 GHz. The running

Fig. 10 Performance comparison of FDM, Diplomat, and FPC.

Yuzhu Cheng et al.: FPC: A New Approach to Firewall Policies Compression 75

Fig. 11 Rules compression example of FDM, FPC, and
Diplomat.

times of FPC and Diplomat (Fig. 12) show that FPC

executes more efficiently than Diplomat. Its execution

time is within a second on small rules sets, which

contain dozens of rules, between a second and a

minute on the medium sets, which contain hundreds

of rules, and up to a few hours for some large sets

containing thousands of rules. As stated above, the

time complexity of FPC in the worst case is O.n4/. In

fact, the execution time is close to the best case of

O.n2/I this is because most of the unit spaces maintain

disjunct spatial relations in the multidimensional space.

For Diplomat, the time complexity is O.n5/I when the

Fig. 12 Running time with different sizes of firewall rules.

number of rules increases, its execution time increases

dramatically.

5 Conclusion

In this paper, we propose a novel scheme FPC

to compress firewall rules into conflict-free rules

semantically identical to the original rules. First, a

geometric model is constructed to transform the firewall

rules compression problem into an MOC problem in a

multidimensional space, and then, the multidimensional

MOC problem is solved using the proposed FPC

scheme. We conducted extensive experiments to

evaluate the performance of the proposed method.

The experimental results show that FPC outperforms

FDM and Diplomat in terms of compression ratios.

Most of the time, FPC resulted in a high compression

ratio while maintaining conflict-free firewall rules. In

our future work, we will develop software-defined

networking applications[17] that utilize our compression

method, and evaluate the feasibility of our method with

corresponding experiments. In addition, we will apply

powerful techniques studied in computer science, such

as parameterized method[18–21], to our method.

Acknowledgment

This work was supported by the National Natural

Science Foundation of China (Nos. 61672543 and

61402542), Research Foundation of the Education

Department of Hunan Province (No. 17B022), and

Hunan Provincial Innovation Foundation for Postgraduate

(No. CX2014B081).

References

[1] C. R. Meiners, A. X. Liu, and E. Torng, Bit weaving: A

non-prefix approach to compressing packet classifiers in

tcams, IEEE/ACM Transactions on Networking (ToN), vol.

20, no. 2, pp. 488–500, 2012.

[2] Y. Cheng, W. Wang, G. Min, and J. Wang, A new approach

to designing firewall based on multidimensional matrix,

Concurrency and Computation: Practice and Experience
vol. 27, no. 12, pp. 3075–3088, 2015.

[3] D. A. Divekar and R. I. Dowell, Corner stitching: A

data-structuring technique for VLSI layout tools, IEEE
Transactions on Computer-Aided Design, vol. 3, no. 1, p.

87, 1984.

[4] S. Y. Wu and S. Sahni, Covering rectilinear polygons by

rectangles, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 9, no. 4, pp. 377–

388, 1990.

[5] D. A. Applegate, G. Calinescu, D. S. Johnson, H. Karloff,

K. Ligett, and J. Wang, Compressing rectilinear pictures

and minimizing access control lists, in Proc. 18th Ann.

76 Tsinghua Science and Technology, February 2019, 24(1): 65–76

ACM-SIAM Symp. Discrete Algorithms, New Orleans, LA,

USA, 2007, pp. 1066–1075.

[6] A. X. Liu, E. Torng, and C. R. Meiners, Firewall

compressor: An algorithm for minimizing firewall policies,

in Proc. 27th Conf. Computer Communications, Phoenix,

AZ, USA, 2008, pp. 176–180.

[7] J. Daly, A. X. Liu, and E. Torng, A difference resolution

approach to compressing access control lists, IEEE/ACM
Transactions on Networking, vol. 24, no. 1, pp. 610–623,

2016.

[8] R. P. Draves, C. King, S. Venkatachary, and B. D. Zill,

Constructing optimal IP routing tables, in Proc. 18th
Ann. Joint Conf. IEEE Computer and Communications
Societies, New York, NY, USA, 1999, pp. 88–97.

[9] J. Wang, P. Tan, J. Yao, Q. Feng, and J. Chen,

On the minimum link-length rectilinear spanning path

problem: Complexity and algorithms, IEEE Transactions
on Computers, vol. 63, no. 12, pp. 3092–3100, 2014.

[10] V. S. A. Kumar and H. Ramesh, Covering rectilinear

polygons with axis-parallel rectangles, in Proc. 31st Annu.
ACM Symp. Theory of Computing, Atlanta, GA, USA,

1999, pp. 445–454.

[11] P. Berman and B. DasGupta, Complexities of efficient

solutions of rectilinear polygon cover problems,

Algorithmica, vol. 17, no. 4, pp. 331–356, 1997.

[12] W. Liou, J. M. Tan, and R. C. Lee, Minimum rectangular

partition problem for simple rectilinear polygons, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 9, no. 7, pp. 720–733, 1990.

[13] R. M. Karp and A. Wigderson, A fast parallel algorithm for

the maximal independent set problem, J. ACM, vol. 32, no.

4, pp. 762–773, 1985.

[14] S. Suri, T. Sandholm, and P. Warkhede, Compressing

twodimensional routing tables, Algorithmica, vol. 35, no.

4, pp. 287–300, 2003.

[15] D. E. Taylor and J. S. Turner, Classbench: A packet

classification benchmark, IEEE/ACM Transactions on
Networking (ToN), vol. 15, no. 3, pp. 499–511, 2007.

[16] A. X. Liu and M. G. Gouda, Diverse firewall design, IEEE
Transactions on Parallel and Distributed Systems, vol. 19,

no. 9, pp. 1237–1251, 2008.

[17] M. Wang, J. Liu, J. Mao, H. Cheng, J. Chen, and C.

Qi, Routeguardian: Constructing secure routing paths

in software-defined networking, Tsinghua Science and
Technology, vol. 22, no. 4, pp. 400–412, 2017.

[18] X. Ye, Privacy preserving and delegated access control for

cloud applications, Tsinghua Science and Technology, vol.

21, no. 1, pp. 40–54, 2016.

[19] W. Li, Y. Cao, J. Chen, and J. Wang, Deeper local

search for parameterized and approximation algorithms

for maximum internal spanning tree, Information and
Computation, vol. 252, pp. 187–200, 2017.

[20] J. E. Chen, C. Xu, and J. X. Wang, Dealing with 4-

variables by resolution: An improved maxsat algorithm,

Theor. Comput. Sci., vol. 670, pp. 33–44, 2017.

[21] J. You, J. Wang, and Y. Cao, Approximate association via

dissociation, Discrete Applied Mathematics, vol. 219, pp.

202–209, 2017.

Weiping Wang received the BS degree

from Southeast University in 1991,

and MS and PhD degrees from Central

South University in 1994 and 2004,

respectively. She joined Central South

University in 1994. Currently, she is a full

professor and PhD adviser at Central South

University. Her research interests include

cyber security and privacy, network coding, and anonymous

communication. She has published more than 70 papers in

referred journals and conference proceedings. She has presided

over four National Natural Science Foundation Projects and

participated in more than ten other major scientific research

projects. Her teaching courses include computer network,

network security, and security of network and system.

Yuzhu Cheng received the BS degree

from Hunan University of Science and

Technology in 2002 and the MS degree

from Hunan University in 2005. He is a

faculty of Changsha Social Work College

and currently working toward the PhD

degree with Central South University,

Changsha, China. His research interests

include network security, privacy protection, and related areas.

Jianxin Wang received the BS and MS

degrees from Central South University

in 1992 and 1996, respectively, and

received the PhD degree from Central

South University in 2001. He is a

vice dean and a professor in School

of Information Science and Engineering

at Central South University, China. His

current research interests include algorithm analysis and

optimization, parameterized algorithm, bioinformatics, and

computer network. He has published more than 150 papers in

various international journals and refereed conferences. He is a

senior member of IEEE.

Haodong Wang is an associate professor

in the Department of Electrical

Engineering and Computer Science at

Cleveland State University. He received

the PhD degree in computer science from

College of William and Mary. His research

interests focus on information assurance in

cyber-physical systems, privacy preserving

and user access control in sensor networks, efficient information

storage, search and retrieval in pervasive computing, and mobile

system security and computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

