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Geospatial Data to Images: A Deep-Learning Framework for Traffic
Forecasting

Weiwei Jiang� and Lin Zhang

Abstract: Traffic forecasting has been an active research field in recent decades, and with the development of deep-

learning technologies, researchers are trying to utilize deep learning to achieve tremendous improvements in traffic

forecasting, as it has been seen in other research areas, such as speech recognition and image classification. In this

study, we summarize recent works in which deep-learning methods were applied for geospatial data-based traffic

forecasting problems. Based on the insights from previous works, we further propose a deep-learning framework,

which transforms geospatial data to images, and then utilizes the state-of-the-art deep-learning methodologies such

as Convolutional Neural Network (CNN) and residual networks. To demonstrate the simplicity and effectiveness of

our framework, we present a formulation of the New York taxi pick-up/drop-off forecasting problem, and show that

our framework significantly outperforms traditional methods, including Historical Average (HA) and AutoRegressive

Integrated Moving Average (ARIMA).
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1 Introduction

In recent years, smart city has been a new urban

development vision, in which information and

communication technologies are integrated with

all kinds of components in a city, including the

transportation systems. The success of the intelligent

transportation system and smart city heavily relies on

accurate traffic information as well as short-term traffic

forecasting. By forecasting the traffic volume, travel

speed, and occupancy of the next five to thirty minutes,

traffic can be scheduled and planned in advance, which

can alleviate traffic congestion and prevent traffic
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accidents.

The prerequisite of traffic forecasting is the

acquisition of accurate traffic information. Because

of the development of sensing technologies and the

popularity of smart devices, e.g., smart phones and

tablets, we can collect and store large amounts

of geospatial data, which include massive Global

Positioning System (GPS) traces, smart card data, cell

phone records, and users’ locations and trajectories

on social media, such as Facebook and Foursquare

check-ins. On the premise of privacy protection, more

datasets are being shared for research purposes, e.g.,

Geolife GPS trajectory dataset[1], Caltrans performance

measurement system database[2], and New York trip

record data[3].

The large volume of these open datasets necessitates

new processing methodologies. In recent years, deep

learning has been an outstanding research field,

because of the advent of new deep-learning models,

increased chip processing abilities (e.g., graphics

processing units), and widely available training

datasets. Deep-learning methods have been used to
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solve various problems, such as object recognition[4],

handwriting recognition[5], speech recognition[6], image

classification[7], and machine translation[8], and have

resulted in a significant improvement over traditional

methods.

Because large amounts of data can be processed

with deep learning, it has been applied to

various geospatial traffic forecasting problems,

which include bus ridership forecasting[9], crowd

flow forecasting[10, 11], extreme condition traffic

forecasting[12], human trajectories forecasting[13, 14],

supply-demand forecasting for online car-hailing

service[15], taxi destination forecasting[16, 17], traffic

accident forecasting[18], traffic accident severity

forecasting[19], traffic congestion forecasting[20], traffic

flow forecasting[21–28], traffic speed forecasting[29–33],

and travel time forecasting[34, 35]. In this study, we

summarize the previous works of deep-learning

applications to geospatial traffic forecasting problems

by investigating the geospatial datasets and deep-

learning models used in these works as well as the

traditional methods with which these models were

compared.

Based on insights from the previous works, we

further propose a deep-learning framework that

transforms geospatial data to images, and then utilizes

state-of-the-art deep-learning methodologies such as

Convolutional Neural Network (CNN)[36] and residual

network[37]. In our framework, geospatial data and

external factors, such as weather condition, wind speed,

and holiday information, are taken as inputs. Then we

conduct data transformation and image preprocessing

for the geospatial data and feature extraction for the

external factors. The processed data are fed into the

deep-learning models, which we then use to generate

desired predictions.

To demonstrate the simplicity and effectiveness of

our framework, we present a formulation of the New

York taxi pick-up/drop-off forecasting problem and

compare our framework with traditional models such as

Historical Average (HA) and AutoRegressive Integrated

Moving Average (ARIMA). We also investigate the

influences of different parameters, e.g., the length

of lookback window and the number of Residual

Network Units (RNUs). The experimental results

show that compared to the traditional methods, our

framework can achieve a remarkable improvement in

traffic forecasting.

In summary, our contributions in this study are as

follows:

� We review works in which deep-learning models

have been used to solve traffic forecasting problems.

� We propose a deep-learning framework which

transforms geospatial data to images before utilizing

the state-of-the-art deep-learning methodologies and

can be applied in different kinds of traffic forecasting

problems.

� We take the New York taxi pick-up/drop-off

forecasting problem as a case study and demonstrate

the simplicity and effectiveness of our framework over

traditional methods.

The rest of this paper is organized as follows:

Section 2 presents a short introduction to deep

learning basics and a summary of previous works

in which deep learning methodologies were applied

to traffic forecasting problems. Section 3 describes

the key components of our framework, including the

processes of transforming geospatial data to images

and the utilization of state-of-the-art deep-learning

methodologies. Section 4 presents the New York taxi

pick-up/drop-off forecasting problem as a case study

and shows how we applied our framework to this

problem. We present our conclusions in Section 5.

2 Related Work

2.1 Deep-learning basics

Deep learning is a class of machine learning techniques,

where many layers of information processing

stages in hierarchical supervised architectures are

exploited for unsupervised feature learning and pattern

analysis/classification. The essence of deep learning is

to compute hierarchical features or representations of

the observational data, where the higher-level features

or factors are defined from the lower-level ones[38].

In this section, we briefly introduce Artificial Neural

Networks (ANNs), CNNs, and Recurrent Neural

Networks (RNNs), which are basic and widely used

deep-learning concepts. A systematic introduction of

deep learning is given in Refs. [38–40].

2.1.1 Artificial neural network
Artificial neural networks are learning models inspired

by biological neural networks that approximate

functions that depend on a large number of inputs

(features or data representation)[41]. A computing unit

or an ANN neuron usually consists of two components:

the aggregation function, which calculates the sum of

the inputs, and the activation function, which generates
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the outputs. Popular choices of the activation function

include the logistic sigmoid, hyperbolic tangent (tanh),

and Rectified Linear Units (ReLU). A specific example

of ANNs is given in Fig. 1. If the neural network has the

same number of nodes in the input and output layers, it

is also called an autoencoder. The ANN shown in Fig. 1

is also an autoencoder.

A Deep Neural Network (DNN) is an ANN with

multiple hidden layers between the input and output

layers[42, 43]. A DNN can be trained with the standard

back-propagation algorithm[43], which is a method of

calculating the gradient of the loss function (to produce

the cost associated with a given state) and set the

weights iteratively. While DNNs can produce superior

results, they are prone to overfitting because of the

multiple hidden layers, and regularization methods are

applied to combat overfitting[44]. Added layers also

result in more training parameters, and various methods

to speed up computation have been applied, such as

batching (computing the gradient on several training

examples at once rather than individual examples)[45].

In addition, the increased chip processing abilities (e.g.,

GPUs) alleviate the computation problem, as the matrix

and vector computations required are well-suited for

GPUs[43].

2.1.2 Convolutional neural network
Convolutional neural networks[36] are designed for

processing two-dimensional images (and other two-

dimensional representations), and the convolutional

layer functions as a hidden layer, in which each group

of neurons (also called filters) performs a convolution

Fig. 1 An example of artificial neural network. Each circle
represents a neuron.

operation in the image and each neuron in a filter is

connected to a different region of the image but the

neurons share the same weights.

Because the input image may have a large resolution,

max-pooling[46] is often used in CNNs to reduce the

original size. Max-pooling applies a max filter to non-

overlapping regions of the initial image. The process

of applying convolution and max-pooling operations is

illustrated in Fig. 2.

2.1.3 Recurrent neural network
RNNs[48] are neural networks with loops. They

can be trained by the reverse mode of automatic

differentiation[49], or the back-propagation algorithm by

“unfolding” the network through time and constraining

some of the connections to always hold the same

weights[50].

Long Short-Term Memory (LSTM) networks[51] are

RNNs that solve the vanishing gradient problem[52],

when the gradients of some of the weights start to shrink

or enlarge if the neural network is unfolded too many

times. In an LSTM, the hidden layer is replaced by

recurrent gates called forget gates (Fig. 3). Compared

to RNNs, LSTM has been proved to generate superior

results in many problems.

2.2 Deep learning for traffic forecasting

2.2.1 Traditional methods
Short-term traffic forecasting has been an active

research area for over sixty years. Before the popularity

of deep learning, traffic forecasting-related problems

have been addressed with many models, which include

the following:

� Time-series models, such as ARIMA[54], in which

the future value of time series is a linear combination

of previous values and residuals, and differentiation is

used to obtain stationarity from the nonstationary

time series[55]; Vector AutoRegressive (VAR),

which captures the linear interdependencies among

interrelated time series[54]; and seasonal ARIMA,

which applies the additional seasonal difference to

seasonal time series before using ARIMA[56].

Fig. 2 Convolutional and max-pooling operations of a convolutional neural network using a 3 � 3 filter (adapted from a deep-
learning tutorial[47]).
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Fig. 3 Long short-term memory network (adapted from
Ref. [53]).

� State-space models, such as the spatiotemporal

random effect model[57], which use a set of inputs,

outputs, and state variables to describe a system by a

set of first-order differential equations.

� Non-parametric models, such as Bayesian

network[58] and spatialtemporal weighted k-nearest

neighbor[59], which are data-driven and approximate the

relationship between the dependent and independent

variables using a training dataset.

The traditional methods are adequately studied and

described in Ref. [60].

2.2.2 Summary of previous works

With the developments of deep learning and more

open geospatial datasets in recent years, deep-learning

models have been trained with big data and then applied

to different traffic forecasting problems. In Table 1,

we list some recent works in which deep-learning

Table 1 A summary of previous works.
Problem Dataset Deep-learning method Baseline method

Bus ridership

forecasting

Smart card data[9] DBN[9]

Crowd flow forecasting Taxicab GPS trajectory data[11],

NYC bike sharing data[11]

DNN[10], CNN[11], RNN[11] HA[11], ARIMA[10, 11],

SARIMA[10, 11], VAR[10, 11],

ANN[11], DNN[11], CNN[10]

Extreme condition

traffic forecasting

Traffic data collected by highway

loop detectors[12], accident data[12]

LSTM[12] ARIMA[12], RW[12], HA[12],

SARIMA[12]

Human trajectories

forecasting

Data usage detail records[13],

multi-object tracking datasets[14]

CNN[13], STAM[14] LSTM[14]

Supply-demand

forecasting for online

car-hailing service

Car-hailing service data[15],

weather data[15], traffic data[15]

RNN[15] HA[15], LASSO[15], GBDT[15],

RF[15]

Taxi destination

forecasting

Taxicab GPS trajectory data[16] MLP[16], RNN[16], CNN[17] MLP[17]

Traffic accident

forecasting

GPS records[18], traffic accident

data[18]

SAE[18] DT[18], LR[18], SVM[18]

Traffic accident severity

forecasting

Traffic accident data[19] LSTM[19] MLP[19], BLR[19]

Traffic congestion

forecasting

Traffic condition data[20] LSTM[20] MLP[20], DT[20], SVM[20]

Traffic flow forecasting Traffic flow data collected

by freeway station’s

detectors[21, 22, 24, 26, 27], weather

data[26], traffic flow data collected

by observation stations with

cameras, induction coils and

velocity radars[28]

SAE[22, 24], DPN[26],

LSTM[23, 25, 27, 28], GRU[25],

DBN[21]

RF[22], RW[23, 27],

SVM[22, 23, 27, 28], RBF[22, 28],

ARIMA[21, 25, 26, 28], SAE[23, 27, 28]

Traffic speed

forecasting

GPS traces[33], traffic message

channel data[29], remote

microwave sensor data[30]

CNN[32, 33], RNN[32],

DBN[31], LSTM[30]

OLS[33], kNN[33], ANN[33],

RF[33], SAE[33], RNN[33],

LSTM[33], ARIMA[30–32],

SVR[30, 32], SAE[32]

Travel time forecasting Simulated traffic volume

distribution[34], traffic flow data

collected by station detectors[35]

SAE[34], DBN[35] ARIMA[35]
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methodologies were applied to traffic forecasting

problems, and for clarity, the full terminologies for the

abbreviations in Table 1 are given in Table 2. Because

of space constraints, only typical methods and the most

recent works are listed, as traffic forecasting is a very

wide research area.

In Table 1, we categorize the previous works by

the problems they address, and then list the used

datasets, deep-learning methods, and baseline methods.

For the deep-learning methods, we list the specific

family of models being used, such as LSTM, where

possible; otherwise, we list a more general concept,

Table 2 Abbreviations used in Table 1 and their
corresponding terminologies (in alphabetical order).

ANN Artificial neural network

ARIMA Autoregressive integrated moving average

BLR Bayesian logistic regression

CNN Convolutional neural network

DBN Deep belief network

DNN Deep neural network

DT Decision tree

GBDT Gradient boosting decision tree

GRU Gated recurrent units

HA Historical average

LASSO Least absolute shrinkage and selection operator

LR Logistic regression

LSTM Long short-term memory

MLP Multilayer perceptron

OLS Ordinary least squares

RBF Radial basic function

RF Random forest

RNN Recurrent neural network

RW Random walk

SAE Stacked autoencoder

SARIMA Seasonal ARIMA

STAM Spatial-temporal attention model

SVM Support vector machine

SVR Support vector regression

VAR Vector autoregressive

kNN k-nearest neighbor

such as RNN. For the baseline methods, we do not

only list the traditional methods used, but also some

deep-learning methods, providing they were proposed

by the authors and compared with the traditional

methods. In some works, the performance between

deep-learning methods may be compared, considering

different parameters; in these cases no baseline methods

are listed.

Although many studies have covered various

forecasting problems (Table 1), deep-learning

methodologies can still be much applied to solve

traffic forecasting problems for these three reasons.

First, deep learning is still a very active field, and new

models and algorithms are continuously proposed.

Second, more traffic data are becoming publicly

available. With the emergence of new research areas,

such as autonomous driving, which involves both large

amount of datasets and forecasting problems, deep-

learning methods have wide potential applications.

Third, deep-learning models are computationally

expensive to train and demand a huge amount of

training time, which makes deep learning not very

flexible in real systems; thus, methods of implementing

and deploying deep learning-based systems are yet to

be studied.

3 Geospatial Data to Images: Our
Framework

Based on insights from previous works, we propose

a deep-learning framework that transforms geospatial

data to images before utilizing state-of-the-art deep-

learning methodologies. Our framework can be

summarized as shown in Fig. 4. Our framework has

two inputs: geospatial data and external factors. For

the geospatial data, we perform data transformation

and image preprocessing to transform geospatial data

to images. For the external factors, we extract their

features. Then both the images and features are fed into

the deep-learning models to yield the predicted results.

Fig. 4 Structure of our deep-learning framework.
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3.1 Data transformation

In this section, we introduce two methods of

transforming geospatial data to images: individual-
based data transformation and crowd-based data
transformation. The choice between these two data

transformations depends on the specific application.

For both methods of data transformation, the geospatial

data need to be transformed to gray images. To effect

this, we have to grid the whole map based on the

location information of the geospatial data, and then

each grid cell is seen as a pixel. Intuitively, a smaller gap

between grids would generate an image with a higher

resolution. We also have to partition the time domain

into small time intervals. Because we are dealing with

forecasting problems, the common scenario is to predict

the situation of the next time interval based on the data

collected in the previous time intervals. Then using the

data within each cell, we can transform a cell into a

single value by adding the data or taking the average,

or other application-centric methods.

To explain the transformation process, we use an

example of check-ins collected from two individuals,

within a location range of Œ0; 3/ � Œ0; 3/ and time range

of Œ0; 3/, as shown in Figs. 5 and 6.

3.1.1 Individual-based data transformation

For individual-based data transformation, the geospatial

data are grouped by different individuals and

transformed to an image per individual. As shown in

Fig. 5, the value in each cell represents a 0/1 binary

variable which indicates whether the individual has

visited the cell or not. With other geospatial data, it

may also be a continuous variable, such as the moving

speed of the individual in the cell.

Individual-based data transformation is suitable for

individual-based applications, such as human trace

forecasting and taxi destination forecasting.

Fig. 5 Individual-based data transformation, with each image representing the movement of an individual.

Fig. 6 Crowd-based data transformation, with each image representing the number of check-ins in a time interval.
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3.1.2 Crowd-based data transformation
For crowd-based data transformation, the geospatial

data are grouped by different time intervals and

transformed to an image per time interval. As shown

in Fig. 6, the value in each cell represents the number of

check-ins within a cell in a specific time interval. With

other geospatial data, it may also represent other crowd-

based characteristics, such as the size of the flow, the

number of individuals, and the supply and demand of

transportation services.

Crowd-based data transformation is suitable

for crowd-based applications, such as traffic flow

forecasting and crowd flow forecasting.

3.2 Image preprocessing

Before feeding the images into the deep-learning

models, some preprocessing operations may be applied,

such as image fusion and image selection, to choose the

appropriate images to use.

3.2.1 Image fusion
Image fusion has been used in computer vision area to

combine two or more images from different sources into

a single image[61]. One advantage of image fusion is that

the combined image could provide more information

than any of the input images. In addition, the errors in

a single image can be avoided by comparing with other

images, if the images overlap in spatial and temporal

domains.

3.2.2 Image selection
While forecasting for crowd, a practical method is to

choose a sliding lookback window and use the data

within this lookback window to predict the future case.

This corresponds to an image selection process where

only the most recent images are used to predict the

near future. Based on the temporal properties, different

images may be selected, such as images in the past

few hours and images in the same time interval of the

previous weekday.

3.3 Feature extraction

Traffic conditions are affected by external factors other

than the geospatial data, such as weather data and

holiday information. It has been known that traffic

situations are highly affected by the weather, and the

traffic patterns in workdays and holidays are different;

for example, there is an obvious daily commute pattern

on workdays. We need to incorporate this effect into

our predictions.

3.4 Deep-learning models
The choice of deep-learning models involves domain

knowledge as well as trial and error. Although different

deep-learning models or their combinations can be

tried and applied for forecasting problems, CNNs and

RNNs are widely used to capture the spatial and

temporal dependencies among the geospatial data. The

performances of the deep-learning models may depend

on the specific problems. In the next section, we give a

specific example of the deep-learning model used in the

New York taxi pick-up/drop-off forecasting problem.

4 New York Taxi Pick-up/Drop-off
Forecasting Problem

In this section, we define the taxi pick-up/drop-off

forecasting problem based on a New York trip record

data[3], which we use to formulate the problem and

validate our framework. The taxi pick-up/drop-off in

one area may be affected by the neighborhood; for

example, when a taxi drops off a passenger, it may

search for passengers in nearby areas. The pick-

up/drop-off events of taxis are also affected by the

most recent time intervals and may exhibit a periodical

pattern; the pick-up/drop-off during morning/evening

rush hours may be similar on consecutive workdays or

the same day of the previous week.

For this problem, we supported our deep-learning

model with CNNs and residual networks and compared

it with time-series models, such as HA model and

ARIMA, which capture temporal dependencies. Based

on our experiments, our deep-learning model achieved a

remarkable improvement over HA model and ARIMA.

4.1 Dataset description

In our experiments, we used the NYC taxi trip

record data provided by the NYC Taxi and Limousine

Commission, covering both yellow and green taxis.

Unlike yellow taxis, green taxis can only pick up

passengers in upper Manhattan and the outer boroughs.

Each taxi trip record includes fields capturing pick-up

and drop-off dates/times, pick-up and drop-off locations

(longitudes and latitudes), trip distances, itemized

fares, rate types, payment types, and driver-reported

passenger counts. We mainly used pick-up/drop-off

timestamps and locations of taxi trips from July 2015 to

June 2016, which contain 138 413 407 yellow taxi trips

and 18 355 786 green taxi trips.
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4.2 Data transformation and problem description

We used crowd-based data transformation in our taxi

pick-up/drop-off forecasting problem. To realize this,

we partitioned the New York map into an M � N grid

map based on the location information of the geospatial

data, such as the longitude and latitude, where each

square formed by grids is referred to as a cell. For the

high-level feature, we aimed to predict the taxi pick-

up/drop-off number within cell .i; j / in time interval k,

based on the previous data.

Formally, we denote a taxi trip record r as

.tO
r ; tD

r ; xO
r ; yO

r ; xD
r ; yD

r /, where tO
r and tD

r represent

the pick-up and drop-off timestamps, respectively;

xO
r and yO

r represent the pick-up longitude and

latitude, respectively; xD
r and yD

r represent the drop-

off longitude and latitude, respectively. For each cell,

the longitude and latitude ranges of cell .i; j / were

represented as Œxi ; xiC1/ � Œyj ; yjC1/. Time interval

k was defined as Œtk; tkC1/. We define the taxi pick-

up/drop-off numbers within cell .i; j / in time interval k

as follows:

v
pick-up

i;j;k
D jfr jr 2 R; tk � tO

r < tkC1;

xi � xO
r < xiC1; yj � yO

r < yjC1gj;
v

drop-off

i;j;k
D jfr jr 2 R; tk � tD

r < tkC1;

xi � xD
r < xiC1; yj � yD

r < yjC1gj;
where j � j represents the cardinality of a set, r represents

a trip record, and R represents the set of all the trips

(including yellow and green taxi trips).

We denote the taxi pick-up/drop-off numbers within

time interval k as a tensor Vk 2 R2�M�N , where

.Vk/0;i;j D v
pick-up

i;j;k
, .Vk/1;i;j D v

pick-up

i;j;k
. The taxi pick-

up/drop-off forecasting problem can be stated as given

fVkjk D 0; 1; : : : ; n � 1g, predict Vn.

We used Root Mean Square Error (RMSE) as our

evaluation metric, which can be formulated as

RMSE D
s

1

S

X
i

.vi � Ovi /2;

where Ov and v are the predicted and true values,

respectively, and S is the total number of the values to

predict.

In our experiments, we partitioned the New York map

into a 25 � 25 grid map and evenly split a day into 48

time intervals. We used the taxi trip record from July

2015 to May 2016 as the training set and the taxi trip

record in June 2016 as the testing set. We evaluated the

RMSE for pick-up and drop-off predictions separately.

To prepare the inputs for the deep-learning model, we

conducted two more preprocessing operations:

� We used the log function to transform the scale

of the original pick-up/drop-off numbers, as the supply

and demand for taxis was unbalanced in different areas,

and thus, the distribution of these numbers was highly

skewed. Most cells had a small number of pick-ups

or drop-offs, and only few cells had an extremely large

number;

� Then we used a min-max normalization process to

scale the numbers into the range Œ�1; 1�, as required by

the tanh activation function of the deep-learning model.

For evaluation, the reversed processes were

performed before the RMSEs were calculated.

4.3 Image preprocessing

Since we lacked other sources of data which also

reflects the taxi pick-up and drop-off situations, image

fusion technologies were not used. In the image

selection process, to predict the pick-up and drop-off

numbers Vk 2 R2�25�25 in interval k, we chose the

following pick-up and drop-off numbers as inputs:

� Vk�`; : : : ; Vk�1, where ` represents the length of

the lookback window;

� Vk�48, which represents the pick-up/drop-off

numbers in the same time interval a day earlier;

� Vk�7�48, which represents the pick-up/drop-off

numbers in the same interval a week earlier;

� External factors, including weather, wind speed,

and holiday data.

We compared the effect of different lengths of the

lookback window (i.e., ` D 2; 4; 6).

While our target was to predict the overall taxi pick-

up/drop-off situation, there were two types of taxis:

yellow taxis and green taxis. Although we could easily

add the pick-up/drop-off numbers from these two types

of taxis, it would be interesting to investigate if a better

prediction result can be achieved by separately using

the pick-up/drop-off images from the yellow taxis and

green taxis separately. This would be considered in the

future.

4.4 Feature extraction

External factors, such as weather and wind speed, may

affect the demand for taxis. On a rainy or windy day,

the demand for taxis may increase as those who usually

use bicycles may find it inconvenient to ride in a bad

weather.

To prepare the external factors as inputs for the deep-

learning model, we used one-hot coding to transform

the holiday data, and weather conditions into binary
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vectors, where 1 indicates the day is a holiday, and

0 indicates otherwise. In addition, we had a 25-bit

vector for the 25 types of weather conditions, such as

rain, snow, and fog. The temperature and wind speed

were scaled to the range Œ�1; 1� with the min-max

normalization. Because we lacked data on the weather

condition, temperature, or wind speed of the future

time interval k we aimed to predict, we only used the

information of the most recent time interval k � 1. All

these vectors and scaled values were then concatenated

to a long vector and used as the input for the deep-

learning model.

4.5 Deep-learning model

In our deep-learning model, we combine CNNs and

residual networks. Residual networks have been used to

build extremely deep models and achieve a tremendous

success on tasks such as image recognition[37].

In our implementation of the deep-learning model,

we used Theano[62], which is a Python framework

for fast computation of mathematical expressions,

and Keras[63], which is a high-level neural network

application programming interface written in Python.

For convenience, we used the Keras layers to present

our deep-learning model as shown in Fig. 7. Each layer

used in the model is explained as follows:

� InputLayer: the layer that specifies the input;

� Conv2D: the two-dimensional convolutional layer,

in which each filter has a size of 3 � 3;

� Activation: the layer that applies an activation

function to an output, e.g., the ReLU function and tanh

function;

� Merge: the layer that merges a list of inputs;

� Dense: the regular densely-connected neural

network layer;

� Reshape: the layer that reshapes an output to a

certain shape.

While the input images were independently

processed at first, a merge layer was used to fuse

the influence of different images as well as the external

factors. In this way, the influence of different images,

which represents the pick-up/drop-off situation in the

past few hours, a day earlier, and a week earlier, could

be learned separately and their degrees of influence on

the time interval k could be quantified and adjusted by

the merge layer.

Since we were predicting the taxi pick-up/drop-off

numbers within the same cells with the inputs, we did

not use subsampling or max-pooling in the CNN for this

specific problem, but only convolutions. For the residual

network, we used an Activation layer and a Conv2D

layer as an RNU, as shown in Fig. 7. We studied the

effects of different numbers of RNUs used in the model.

The loss function to be minimized in the training

process is the mean squared error between the predicted

pick-up/drop-off numbers and the true pick-up/drop-off

Fig. 7 Workflow of our deep-learning model. Here we illustrate the case with one image and one residual network unit.
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numbers:

L.�/ D jj OVk � Vkjj22 (1)

where � denotes all learnable parameters in our deep-

learning model, OVk denotes the predicted pick-up/drop-

off numbers and Vk denotes the true pick-up/drop-off

numbers, both in time interval k.

Algorithm 1 outlines our training process. To

accelerate the training process, we use the mini-batch

technology[64] (we use 25 as the batch size) and

Adam[65] as the optimizer.

4.6 Baseline methods

We compared our deep-learning model with two

baseline methods:

� Historical Average. In our implementation of the

HA method, we used the weekly average values of pick-

ups and drop-offs in each time interval.

� ARIMA. We used a Python module statsmodels
for our implementation of ARIMA model and the

parameters were optimized by grid searching.

4.7 Experiments and results

Our results of predicting the taxi pick-ups/drop-offs

Algorithm 1 Training of our deep-learning model
Input: Historical observations: fV0; : : : ; Vn�1g;

external factors: fE0; : : : ; En�1g;
length of lookback window: `.

Output: a deep-learning model M
1: initialize the training dataset D ∅

2: for all available time interval k .7 � 48 � k � n � 1/ do
3: Ik D ŒVk�`; : : : ; Vk�1; Vk�48; Vk�7�48�

4: put an training instance .fIk ; Ek�1g; Vk/ into D
5: end for
6: initialize the parameter �

7: repeat
8: randomly select a batch of training instances Db from D
9: find � by minimizing the objective (1) with Db

10: until stopping criteria is met

11: return the trained model M

using different methods and parameters are summarized

in Table 3.

Our key findings are as follows:

� For the baseline models, HA captured the

weekly pattern, while ARIMA used the most recent

information. Based on our results, the weekly pattern

outstripped the most recent information in the taxi pick-

up/drop-off forecasting problem.

� Our deep-learning framework yielded a remarkable

improvement over both baseline methods.

� With different lengths of lookback window `, we

may achieve different performances for pick-up or

drop-off forecasting. As seen from our results, using

a smaller ` of 2, the best RMSE for pick-up forecasting

was achieved, and using a bigger ` of 6, the best RMSE

for drop-off forecasting was achieved.

� Using more RNUs does not always result in better

performance. When the length of lookback window ` is

fixed as 4, the best performance was achieved by using

only one RNU.

5 Conclusion

In this study, we focus on the application of deep-

learning technologies in a series of traffic forecasting

problems based on geospatial data. In addition,

we propose a preliminary framework for traffic

forecasting, which transforms the geospatial data to

images and leverages the state-of-the-art deep-learning

technologies. Our experiments on New York taxi pick-

up/drop-off forecasting problem demonstrate that our

framework greatly outperforms traditional methods.
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Table 3 RMSE results.
Model Pick-up RMSE Drop-off RMSE

Historical average 10.127 8.516

ARIMA 12.210 11.209

Length of lookback window ` Number of residual network units

Deep learning

2 1 6.685 7.893

4 0 8.744 8.167

4 1 7.914 6.552

4 2 8.185 6.625

4 3 8.251 7.037

6 1 8.033 6.542
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