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A Robust Graph Optimization Realization of Tightly Coupled
GNSS/INS Integrated Navigation System for Urban Vehicles

Wei Li, Xiaowei Cui*, and Mingquan Lu

Abstract: This paper describes a robust integrated positioning method to provide ground vehicles in urban
environments with accurate and reliable localization results. The localization problem is formulated as a maximum a
posteriori probability estimation and solved using graph optimization instead of Bayesian filter. Graph optimization
exploits the inherent sparsity of the observation process to satisfy the real-time requirement and only updates
the incremental portion of the variables with each new incoming measurement. Unlike the Extended Kalman
Filter (EKF) in a typical tightly coupled Global Navigation Satellite System/Inertial Navigation System (GNSS/INS)
integrated system, optimization iterates the solution for the entire trajectory. Thus, previous INS measurements
may provide redundant motion constraints for satellite fault detection. With the help of data redundancy, we add a
new variable that presents reliability of GNSS measurement to the original state vector for adjusting the weight of
corresponding pseudorange residual and exclude faulty measurements. The proposed method is demonstrated on
datasets with artificial noise, simulating a moving vehicle equipped with GNSS receiver and inertial measurement
unit. Compared with the solutions obtained by the EKF with innovation filtering, the new reliability factor can indicate

the satellite faults effectively and provide successful positioning despite contaminated observations.

Key words: Global Navigation Satellite System (GNSS); sensor fusion; Inertial Navigation System (INS); optimization;

factor graph; tightly coupled integration

1 Introduction

Ground vehicles that aim to fulfill specific tasks such
as route planning and self-driving rely on the accurate
localization results mainly provided by the Global
Navigation Satellite System (GNSS). However, GNSS
signals are susceptible to artificial interference or other
negative effects, such as non-line-of-sight, multipath, and
attenuation. These effects will provoke deterioration of
GNSS’ positioning accuracy, so identifying contaminated
measurements and obtaining a reliable solution are
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important, especially for safety critical applications. To
enhance the performance of standalone GNSS in urban
settings, receivers can be augmented with other sensors
and barometric altimeters'"?, Inertial Navigation Systems
(INSs)® and vision systems™ have all been considered.
Among the above sensors, the combination of INS
and GNSS is most widely applied because of their
complementary properties.
obtained from GNSS can correct errors accumulated over
time in INS. Although INS measurements are immune

Accurate positioning results

to external interference, they can supply the integrated
navigation system with high-rate velocity and attitude
and provide a short-term positioning solution by dead
reckoning when GNSS is absent. GNSS/INS integrated
navigation systems are typically classified as loosely,
tightly, and ultra-tightly coupled architectures'™. In loosely
coupled techniques, GNSS and INS provide the position
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When the number
of visible satellites is insufficient, the techniques fail.

and velocity results, respectively.

In the case of ultra-tightly coupled method, INS and
integration Kalman filter work as parts of a loop filter of
a generic GNSS receiver; this technique belongs to the
field of receiver design and is difficult to implement in
software. A deep degree of coupling leads to improved
navigation performance. Considering the shortcomings
of the abovementioned integrated navigation systems, the
tightly coupled GNSS/INS system is currently the most
widely used integration architecture. The main benefit
of tight integration is enhanced system availability, which
permits positioning results to be obtained in scenarios with
poor signal quality or limited coverage'®.

The typical tightly coupled integration structure is
realized by merging GNSS raw measurements (i.e.,
pseudorange and Doppler observables) and INS navigation
solutions through a Bayesian filter. The positioning issue
is viewed as a non-linear estimation problem and typically
solved by the Kalman filter and its extended variants”,
including the unscented Kalman filter® and iterated
Extended Kalman Filter (EKF). From a mathematical
perspective, existing filtering methods have two major
disadvantages. First, they show instability when solving
nonlinear estimation problems. The EKF, for instance,
only evaluates the Jacobians once at a single time step
by using Markov assumption to achieve its recursive
form. The lack of iteration may not yield a convergent
result when the system is nonlinear™, and it fails to
take full advantage of previous information. Second, the
filtering methods are sensitive to faulty measurements.
The operating point of linearization in EKF is the mean
of previous estimations, and it may be deviated from the
true state because of defective observations. Improper
operating points will lead to bad linearization of the
positioning process, causing bias and inconsistency under
complicated environments.

To avoid the first defect of existing filtering algorithms,
the optimization methods are used to solve non-linear
localization in the field of robotics. The batch optimization
algorithms can iterate over the whole trajectory and
converge to a better operating point. However, iteration
brings a large amount of computations that are considered
post-processing!”!. Thus, batch optimization methods
have rarely been applied to tightly coupled GNSS/INS
integration systems. Circumstances have changed in recent
years, and researchers in robotics have found two ways to
perform optimization in real-time. The first approach is
to solve the optimization problem under a sliding window

framework. The main perspective of the approach is to
avoid infinite growth of iteration time by limiting the size
of the state vector. The sliding window algorithm can
scale from exhaustive batch solutions to fast incremental
solutions by tuning several parameters''”. The second
approach is to reduce the computation of optimization
iteration by exploiting the sparse connectivity of the
observation process!'"!. The factor graph is introduced!?
to identify the part that needs to be updated, and it is
used to solve Simultaneous Localization And Mapping
(SLAM) issues'®, Furthermore, a factor graph can be
transformed into a Bayes net!. Using the property of
chordal Bayes net, Cholesky decomposition in the gradient
descent algorithm can be simplified effectively, and the
iteration time is shortened.

To avoid the second defect of existing filtering
algorithms, faulty measurements should be distinguished
from good ones. To detect incorrect GNSS measurements
and exclude them, a concept named Receiver Autonomous
Integrity Monitoring (RAIM) was introduced in 1987.
Most existing implementations of RAIM algorithms utilize
GNSS-only measurements to assess consistency, with an

15161 'This assumption

assumption of single satellite failure!
is not applicable in degraded signal environments
confronted by urban vehicles, because the obstacles
may cause more than one signal error simultaneously.
Although more than one outlier is available, the classic
RAIM algorithms are unable to distinguish the wrong
measurements and isolate them. To solve this problem,
some probabilistic algorithms can be adopted as the
pretreatment processes. In the existing implementation of
a tightly coupled GNSS/INS system, innovation filtering is
a common feature of Kalman filter designs!'”, especially
for applications with integrity requirements. Innovation
filtering sets a threshold and rejects the measurement
whose normalized innovation exceeds the threshold, so
that it can filter out violent changes. However, innovation
filtering performs poorly when measurement errors grow,
because the state estimates are contaminated by errors in
each iterate step.

In this paper, we propose a tightly coupled
GNSS/INS integrated positioning algorithm based on
graph optimization, which is factored with robust
adaptation and real-time performance. There are some
obvious differences in the choice of state variables and
graph presentation between this paper and the previous

literature!'® 1.

To obtain accurate motion estimations,
we add the accelerometer and gyro biases to state

variables, and the structure of the factor graph is changed



726 Tsinghua Science and Technology, December 2018, 23(6): 724-732

accordingly. In addition, our algorithm records the entire
trajectory, so the preceding GNSS measurements and
motion constraints between adjacent GNSS epochs can
provide redundant information for outlier elimination.
Inspired by the concept of switchable constraints®” in the
domain of SLAM, we construct a robust cost function
by introducing a new reliability factor in the original
state variables, so that the new factor can indicate which
satellite measurement is contaminated while positioning
in process. Furthermore, our algorithm complies with
the requirements of real-time applications by exploiting
the sparse connectivity of observations through the factor
graph.

This paper is organized as follows. We first provide
a brief review of related work in Section 1. Section
2 uses Bayes’ rule to express the integrated navigation
problem as a product over several error functions. Section
3 shows how the vehicle states and sensor observations
can be modeled as a factor graph. Section 4 provides
the algorithm to solve incremental optimization from a
Bayesian inference perspective. Section 5 presents an
evaluation of the proposed method on simulated datasets.
The last section discusses the conclusion and future work.

2 MAP Estimation in Integrated Navigation

The goal of all types of localization methods is to find the
most likely posterior state given the measurements from
sensors. Thus, the positioning problem can be formulated
as a Maximum A Posteriori (MAP) problem,

Z=argmax P(To. |Zo.¢, Uo:t ) (D
€T

where & presents the optimal estimation for the state
variables of the system, z,; presents all the GNSS
observations from the beginning. Moreover, ug.; presents
all the prior information, which is equivalent to motion
information from INS. Given that GNSS measurements
and INS information are independent of each other, Bayes’
rule® allows us to factor the expression above as

af::argmaxHP(zLj |xt)HP(:ct lzio1,u:) ()
T t.j t

where z;; is the measurement from the j-th satellite at
a fixed time ¢t. Thus, MAP estimation is expressed as
a product over several single factors. By constructing
appropriate error functions, the whole problem can be
modeled as a factor graph, and Bayesian inference is used
to obtain the optimal solution.

3 Factor Graph Formulation

Factor graph was proposed by Kschischang et al.'? to
model factorizations. Formally a factor graph is a bipartite
undirected graph, including vertexes and edges: vertex 6,
presents the state variable of different moments, and the
edge connecting two vertexes presents the error function
e;;(+); each edge corresponds to a single observation z; ;.
When a new observation arrives, only nodes associated
with the current observation need to be updated.

Figure 1 shows an example of the factor graph
formulation in a previous study!'!, where IMU means
Inertial Measurement Unit. In this figure, INS and GNSS
operate at different frequencies, and there is a lack of
modeling for biases of inertial sensors.

According to Eq. (2), we use f to define the probability
distribution of state variables. Thus, the whole factor graph
defines factorization as

f(o) :Hfi(ei) 3)

Through comparison with MAP problem, the goal of the
graphical model is

arggnaxl?[f( ) 4)

When the observation noises accord with Gaussian
distribution, the negative logarithm of probability
distribution is proportional to the error function, and the
MAP estimation can be converted to a non-linear least

squares problem:

A~ . T —
w:argmlng e(zi,z5,2:;) 02,5 e(wi,x;,2:5) (5)
T .
¥

where §2,; represents the information matrix of a
constraint relating the parameters z; and z;, and it
decides the weight of an error function over the entire
optimization problem. e;;(-), as the abbreviation of
e(x;,x;,%;), presents a residual function for all the
observations available from both GNSS receiver and
inertial measurement unit.

Although the positioning problem solved by the

optimization method will be formulated as an objective

GPS GPS GPS GPS

Fig. 1 Graph structure in Ref. [11].
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function, which needs to be optimized, the selection of
state variables and error functions may influence algorithm
performance. Figure 2 illustrates the factor structure of
our optimization algorithm. The large nodes represent
state variables. There are three types of state variables:
vehicle state x.., satellite state s, and inertial unit state
Tin.. Small nodes on the edges represent the error
functions corresponding to different measurements. The
specific implementation will be explained in the following
subsections.

3.1 Motion model constraint

The blue node in Fig. 2 between two vehicle states
represents the velocity error function. The vehicle state
in this paper is connected to the edges of pseudo-range
(pseudo-range rate) and INS measurements. It contains the
3D position and velocity of the vehicle, as well as the clock
error relative to satellite and its drift.

8 lock g¢clock
:l.:vche]R :(7’177’2,7’3,1)1,'02,’0375000 ?5COC ) (6)

Given that GNSS observations do not update the
attitude, the vehicle state here does not contain Euler
angles. With the aid of odometry information, we use a
constant velocity model to constrain the changes in both

position 7' = (ri,ri,rt) and clock error. The error
function is
ritt rt+ (vt + ot - At/2
rytt i+ (vt +osth) - At/2
ea=| " | | et AY2 (D)
65_1‘_0{:1( 5§lock+5glock.At
6:_1'?{:k 5;:10ck
With 2! = diag(o},02,03, gdlock gelockdrifty g the

covariance matrix associated with the vehicle state factor.
3.2 Inertial sensor’s constraint

The red node in Fig. 2 between a vehicle state and an
inertial unit state represents the inertial error function. The
selection of an inertial unit state depends on the sensor
we use. This paper considers a single integration of gyro

Reliability constraint

! Pseudo-range

Pseudo range rate
xz xx x4 + X5 ) see
Velouty

Reliability initialization

Acceleration
quaternion

Fig. 2 Graph structure in this paper.
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and accelerometer; thus, the inertial measurements include
attitude w?, and specific force f°. The gyro measurement

model” is

Mgyro :w?b'i_yg"_’/g ®)

where v, is Gaussian white noise, and y B is a bias modeled
as a first-order Gauss-Markov process. Similarly, the

accelerometer measurement model is

MM yccel :a?b +gb+ya+ya (9)

where v, is Gaussian white noise, and y,, is a random walk
bias. The acceleration and angular velocity are obtained
according to the kinematic equations, and Euler angles
(0, ¢,1) are transformed from the direction cosine matrix
R;. For instance, in the ECEF frame:

0 =Ry f*+g°— 202 v° (10a)

>3 e b b
R, = R;(£2;,— 12;,) (10b)
To increase the accuracy of motion estimation, we add
the calibration parameters y, and y, to the inertial unit
state. These parameters make our graph structure different

from those in Ref. [19].
connects an inertial unit state vertex and a vehicle state

The inertial constraint edge

vertex. Velocity and attitude will be updated when a new
INS observation comes. The velocity vector belongs to the
vehicle state; thus, the remaining Euler angles belong to

the inertial unit state.
xine€R9:(67¢7wayg7ya) (11)

Accordingly, the error function of inertial constraint is

vitt i+ ot At
vatt vl 40 - At
vit! vt 408 At
el — 011 B 0, + ét At (12)
° ¢t+1 ¢t + ¢.t At
(o i+ At
yit )
Yo Yo

3.3 Switchable pseudorange constraint

The green node in Fig. 2 between a vehicle state and
a satellite state represents the GNSS error function.
Each observation of a satellite provides a pseudorange
measurement p,;, and a pseudorange rate measurement
0py;, with the prior knowledge of satellite position. The
measurement function®! is

m! ] l!lpfﬁT—ptH

t _ pr
m = +
GNSS
[ t H,USAT v, H

prr
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5ER+5RE _|_5AT +c- 5tclock
5ER+C_(§tclock (13)
where 6FF, §%E  and 4T present the effects to position
caused by earth’s rotation, relativity, and atmosphere,
respectively. Considering the satellite measurements may
have potential fault, a new reliability factor is introduced
to enhance the system’s robustness. The only variable of
satellite state is the reliability factor s, ;. We construct
a continuous function w(s, ;) as a weighted value of the
GNSS measurement. If we consider both pseudorange and
its rate, the reliability factor will be expanded into a 2D
one.

seR=(s,,,s;,) (14)

Thus the pseudorange error function is
w(stl, ).(m;r_ptj) (15)

el as = J
GNSS w(s?,j) : (m;rr 75pt])

We define w(s; ;) €[0,1]. When the value of w(s, ;) is
closed to zero, the satellite measurement is regarded as
an outlier. In the topological interpretation, the reliability
factor is set to zero to make an edge “invisible”. Thus,
it is also a convenient way to convert the full trajectory
optimization to partial optimization.

The yellow node in Fig. 2 between two states from
the same satellite at adjoining moments represents the
reliability error function. Considering the stability of
the satellite’s observability, the error function is used
as a constraint to ensure the reliability factors of the
same satellite will not change rapidly. Therefore, the
corresponding function is

€1 = St41,j— St (16)

If the goal is to minimize the sum of error functions,
then setting all reliability factors to zero will reach
numerical satisfaction. However, this condition is not
expected to find the successful position, so we need
a constant initial value ~, as anchors to the reliability
factors. The constraint between fixed value and reliability
factor is illustrated in Fig. 2 as the purple node. The
edges exist to prevent the optimization process to reject

all measurements. The error function is then defined as
€ =", — St (17)
3.4 Opverall objective function

In our algorithm, the state vector X contains the position,
velocity, attitude, accelerometer bias, gyroscope bias,

receiver clock error, and reliability vectors.
X:(xvch7saminc) (18)

The least squares solution of factor graph with nodes and
edges described above can be formulated as

S . 2 2
X:argmanHef’,dIIm Flletllor +
> e

t,5

2 2 2
lebnss e, +letallpe, +lebalZe, (9

t t t t
‘Qin’ Qpr’ ‘Qrel’ and 'Qini

where £2°

vel»

matrixes associated with the error functions at time t.

are the information

The goal of localization issue is to find the optimal state
variables that guarantee the minimization of the above
error function.

4 Solution of the Incremental Optimization
Problem

To solve the least squares problem as shown in Eq. (5),
we need a good initial value &. We then calculate its first-
order Taylor expansion, linearize the problem, use Gauss-
Newton or LM algorithm to find the descent direction, and
iterate the updated procedure until we find a numerical
solution. J, is then used to present the Jacobian matrix
of the error function.

J,= = (20a)
dw=(J7902;]0,) TT R e (&) (20b)

At each iteration, the error function is linearized on
current & over the entire trajectory, thereby showing
better astringency than the EKF. Given the sparsity of
the Jacobian matrix, Cholesky decomposition can be
calculated in real-time. The back-end process has several
mature algorithms, e.g., g2o/®?, iSAM2!'"¥, which can be
used directly.

5 Results

This section presents the evaluation of the proposed
method. We use datasets with artificial noise to
demonstrate the validity of our algorithm. The ground
truth trajectory is created by simulating a moving vehicle
with two external sensors. The GNSS measurements are
generated at 1 Hz with the biases containing atmosphere
delay, receiver clock offset, and signal-in-space error. We
use the Zenith model™” to calculate atmosphere delay and
a zero-mean Gaussian noise with a standard deviation of
6 m to describe the signal-in-space error. For the INS
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measurements, they are generated at 50 Hz and corrupted
with constant bias and zero-mean Gaussian noise in each
axis. Equations (8) and (9) show the accelerometer and
gyro error models. Here we use y, and y,, to present the
static component of biases, and o, as well as o, to present
the root Power Spectral Density (PSD) of inertial sensor
noise. In the simulation, the relevant parameters are set as
follows:

Y, = (?jaNorthagfaSt,gfown) =(9,—12,8) mg;
gg = (ggorth’ggEast’g;Down) — (_1807 240, —160) deg /h,
00 =100-1,,5 ng-Hz /2,

g, =0.5- 11><3 deg~h_1/2.

After generating a 2-min data fragment, we added
some specific errors to the original GNSS measurements.
During the entire process, seven satellites can be observed,
and the number of visible satellites is adequate for
positioning. The entire trajectory is divided into five
sections:

e From the beginning to 20 s, only continuous
noise is added to the pseudo-range measurements of
two designated satellites. This section aims to test the
performance when more than two satellites return faulty
signals at the same time.

e From 21 s to 40 s, only continuous noise is added
to the pseudo-range rate measurements of two designated
satellites. This section aims to test the performance when
pseudo-range rate measurements are contaminated.

e From 41 s to 60 s, two satellites are selected
and continuous noise is added to their pseudo-range
measurements. Meanwhile, another two satellites are
selected, and continuous noise is added to their pseudo-
range rate measurements. This section aims to test the
performance when both the pseudo-range and pseudo-
range rate of a same satellite are contaminated.

e From 61 s to 90 s, noise is added to several
raw pseudo-range and pseudo-range rate measurements
randomly. This section aims to test the performance when
a satellite changes available state suddenly.

e From 91 s to the end, we add errors that
build up gradually to the pseudo-range measurements of
three designated satellites. This section aims to test the
performance when innovation filters may fail theoretically.

The standard deviation of artificial error is three times
the signal in space error, and the simulation produces
192 pseudo-range errors. Finally, 118 pseudo-range rate
errors are obtained. The results of simple EKF, EKF with
innovation filtering, and graph optimization are shown in

Figs. 3-5.

The comparison of the three positioning algorithms
reveals that the simple EKF is most sensitive to
disturbances. Innovation filtering can exclude the
measurement whose normalized innovation exceeds the
fixed threshold. From 90 s to the end, the innovation filter
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performs poorly when the noise increases gradually and
stays constant. Moreover, the fixed threshold is also one
of its defects. Compared with the adaptive threshold, the
former is less flexible and may fail when most of the faults
are right below the fixed threshold. The graph optimization
method shows ideal performance in the last 30 s of the
experiment because the previous positioning will make the
current solution difficult to deviate from the true trajectory.
Even when the noise is increasing slowly, the corrupted
measurements can be identified through the pseudorange
residuals.

We accomplish back-end optimization by using gZo
framework®.  After the optimization, the comparison
of the reliability factors s; ; and pseudo-range residuals
is shown in Fig. 6, whereas the comparison of 57 ; and
pseudo-range rate residuals is shown in Fig. 7. Evidently,
the reliability factor sharply decreases when the faulty
GNSS measurement appears. By setting a proper threshold
or choosing a clustering algorithm, our method can
identify the satellite faults effectively. In our simulation,
the method achieves a detection rate of 86.79%, and some
artificial noises may not be large enough to detect.

All experiments were conducted on a laptop computer
with Intel Core i7-4700M, 8 GB RAM. The proposed
graph optimization algorithm takes 318 ms to process a
10 s data fragment. With the help of the sliding window, a
compromise method can be found, which may satisfy the
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real-time performance and provide redundant data for
consistency assessment.

6 Conclusion

In this paper, the GNSS/INS integrated navigation system
is implemented by the optimization method instead of the
most widely used filtering method. Batch optimization
brings a large amount of computation because of iterations
over the entire trajectory. We model the localization
process as a factor graph, so the sparsity of the observation
model can be exploited to reduce the computational
complexity of Cholesky decomposition and satisfy the
real-time constraint. The new algorithm takes advantage
of previous GNSS measurements to supply redundant
information, as well as INS measurements for motion

constraints. Data redundancy is conducive to outlier
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rejection. By introducing a reliability factor to construct a
new error function, we implement satellite fault detection
under the aid of INS.

The simulation results using datasets with artificial
noise demonstrate that reliability factor can indicate the
satellite faults effectively. Compared with the innovation
filter, our algorithm performs better when the measurement
errors are gradually increasing. The novel positioning
algorithm can meet the requirements of both accuracy and
integrity in urban vehicle navigation.

Our future work aims to test the proposed method on
real-world datasets and apply the carrier phase differential
technique (real-time kinematic) instead of pseudo-range
positioning. Thus, some new state variables, such as
integer ambiguity, will be considered when solving the
optimization problem. Fortunately, new factors can
be incorporated into the original graph structure in a
convenient way. However, mixed integer estimation will

complicate the formulation of the positioning problem.
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