
ISSN 1007-0214 04/10 pp 671–679
DOI: 10.26599 / TST.2018.9010028
Volume 23, Number 6, December 2018

Practical Cryptanalysis of a Public Key Cryptosystem Based
on the Morphism of Polynomials Problem

Jaihui Chen∗, Chik How Tan, and Xiaoyu Li

Abstract: Multivariate Public Key Cryptography (MPKC) has intensively and rapidly developed during the past

three decades. MPKC is a promising candidate for post-quantum cryptography. However, designing it is universally

regarded as a difficult task to design a secure MPKC foundation scheme, such as an encryption scheme and key

exchange scheme. In this work, we investigate the security of a new public key cryptosystem that is based on the

Morphism of Polynomials (MP). The public key cryptosystem proposed by Wang et al. (Wuhan University, China)

comprises a key exchange scheme and encryption scheme. Its security can be provably reduced to the hardness of

solving a new difficult problem, namely, the Decisional Multivariate Diffie Hellman (DMDH) problem. This problem

is a variant of the MP problem, which is difficult to solve by random systems. We present a proposition that reduces

the DMDH problem to an easy example of the MP problem. Then, we propose an efficient algorithm for the Key

Recover Attack (KRA) on the schemes of the public key cryptosystem. In practice, we are able to entirely break the

cryptosystem’s claimed parameter of 96 security levels in less than 17.252 s. Furthermore, we show that finding

parameters that yield a secure and practical scheme is impossible.

Key words: cryptanalysis; post-quantum cryptography; multivariate public key cryptosystems; morphism of
polynomials problem

1 Introduction

Since the invention of Shor’s algorithm[1], current
cryptography algorithms based on number theory can
be broken in polynomial time by a quantum computer.
Therefore an alternative to these algorithms must be
identified. The alternative, which must be resistant to the
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attack of quantum computers, is called post-quantum
cryptography. Besides code-based cryptography, i.e.,
schemes based on non-quasi cyclic Codes[2], Multivariate
Public Key Cryptography (MPKC) is also considered as
one of the most promising candidates for post quantum
cryptography. Its security is based on solving a set
of random Multivariate Quadratic (MQ) equations on a
finite field that has been proven to be Non-deterministic
Polynomial (NP) hard. However, no evidence has
shown that quantum computers can solve this kind of
problem efficiently. Furthermore, MPKC schemes are
considerably more efficient than current cryptography
algorithms, such as Rivest, Shamir, and Adleman (RSA)
scheme, in computing and are friendlier to resource-
restricted environment, i.e., wireless sensor networks[3].

Since the Matsumoto-Imai scheme introduced the
first MPKC encryption scheme[4], a number of MPKC
schemes have been proposed. However, the construction
of these MPKC schemes relies not only on the MQ
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problem but also on the Isomorphism of Polynomials (IP)
problem. Given the uncertainty of the IP problem, most
MPKC schemes have been broken, i.e., the Matsumoto-
Imai scheme and, balanced Oil and Vinegar (OV)
scheme[5]. Rare exceptions, such as the simple matrix
encryption (ABC)[6] and double hidden field encryption
(ZHFE)[7], are considered as probable MPKC encryption
schemes. Nonetheless, these schemes exhibit different
disadvantages. For example, ABC may experience
decryption failure, and ZHFE has limited key generation
space[8]. Thus, existing promising MPKC schemes are all
signature schemes, such as Unbalanced Oil and Vinegar
(UOV) scheme[9], Rainbow[10], Quartz[11], Gui[12], MQ-
based Digital Signature Scheme (MQDSS)[13], and HS-
Sign[14].

In addition, a number of attempts have been undertaken
to tackle the provable security problem of MPKC. For
example, Courtois[15] studied provable security against the
key-only attack on Quartz, but failed to clarify security
against the chosen-message attack. Bulygin et al.[16]

presented a concept for reducing the public key size
of the UOV signature scheme and provided a provable
security against direct attacks. Then, Sakumoto et
al.[17] provided a provable security proof of UOV against
the chosen-message attack by using the idea given by
Bellare and Rogaway[18] wherein a random seed r is
concatenated with the signed message M to render the
basic trapdoor one-way function into full domain hash.
In Crypto2011, Sakumoto et al.[19] proposed provably
secure identification/signature schemes based on the MQ
problem. These schemes have greatly improved the
security of MPKCs. However, whether their techniques
can be translated into a secure encryption scheme remains
unknown.

Recently, together with their work on cryptanalysis
of cryptosystems based on non-abelian factorization
problems[20], Wang et al.[21] (WZM) proposed a novel
public key cryptosystem that is based on the Morphism of
Polynomials (MP) problem. In contrast to other schemes,
their schemes can be provably reduced to the hardness of
solving a new difficult problem, namely the Decisional
Multivariate Diffie Hellman (DMDH) problem. This
problem is a variant of the MP problem, which is known to
be NP-hard for random systems.

Our work mainly focuses on the WZM cryptosystem.
We provide two major contributions according to the
WZM cryptosystem. On the theoretical side, we explore
the minimal polynomial property of a matrix and present
a proposition that reduces the DMDH problem to an

easy instance of the MP problem. In addition, we supply
an efficient algorithm to break the WZM schemes. On
the practical side, we implement a plenty of attack
experiments to attack the WZM scheme. We are able to
completely break their claimed parameter at 96 security
levels in less than 17.252 s. Accordingly, we conclude that
finding parameters that yield a secure and practical scheme
is impossible.

This paper is structured as follows: In Section 2, we
describe the hard problems underlying MQ schemes and
Key Recovery Attacks (KRAs). Then, we overview WZM
schemes in Section 3. In Section 4, we illustrate that
WZM schemes with their recommended parameter of 96
security levels are entirely broken within a few seconds.
Concluding remarks is provided in Section 5.

2 Preliminaries
The basic objective of multivariate cryptography is to
utilize a system of multivariate quadratic polynomials
over a finite field Fq. Thus, the security of multivariate
cryptosystems is based on the MQ problem which is
defined as follows.

Definition 1 Given m quadratic polynomials p1, ...,

pm in n variables over a finite field Fq, find a vector
x=(x1, ...,xn)∈Fn

q such that p1(x)= · · ·= pm(x)= 0.
This problem is NP hard even for quadratic systems

over the field of two elements[22].
However, for most existing MPKCs, the coefficients

of the public system P (a collection of m quadratic
polynomials p1, ...,pm in n variables) are not chosen
randomly. Instead, one begins with an easily invertible
quadratic map F (called central map) and combines it with
two invertible affine maps S and T to obtain a public key
of the form P = S ◦F ◦T . Therefore, the security of the
scheme is based not only on the MQ problem, but also on
the IP problem, which is defined as follows.

Definition 2 The IP problem is the problem of finding
an isomorphism (S,T ) from P to F , where P and F are
the two public sets of u quadratic equations, and S and T

are isomorphic.
The scarcity of existing knowledge on the hardness of

the IP problem mainly prevents researchers from providing
security proofs for their MPKCs.

However, when the above affine transformations S and
T are not bijective, the problem is called MP problem that
has been proven to be NP hard for any finite field[23].

3 New Public Key Cryptosystem Based on
the MP Problem

In this section we review the new WZM public key
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cryptosystem[21] and the novel hard problem underlying
WZM schemes. WZM proposed two schemes in their
public key cryptosystem: a key exchange scheme and a
public key encryption scheme. In addition, given that
their public key encryption scheme uses the same trapdoor
and is based on the same problem as their key exchange
scheme, we only describe the key exchange scheme in
this paper. Below, we provide an overview of their key
exchange scheme.

Let MQ(n,m,Fq) be a family of multivariate quadratic
functions as follows:

F (x)= (f1(x), ...,fm(x)),

fi(x)=
∑n

j6k
αi,j,kxjxk+

∑n

j
βi,jxj+γi,

where αi,j,k, βi,j , and γi ∈Fq for i=1, ...,m.
Let T be an m×m matrix, define f(T ) = αmTm +

αm−1T
m−1 + · · ·+ α1T

1 + α0I and KT = {f(T )|∀T ∈
Mm(Fq)}, where Mm(Fq) is a set of m×m matrices over
Fq, αi ∈Fq,06 i6m.

Similarly, let U be an n× n matrix, define f(U) =

βnU
n+βn−1U

n−1+· · ·+β1U
1+β0I and KU = {f(U)|∀U ∈

Mn(Fq)},βi ∈ Fq,0 6 i 6 n, where Mn(Fq) is a set of
n×n matrices over Fq, βi ∈Fq,06 i6n.

The two elements Ta and Tb in KT satisfy the
multiplication commutative law, that is, TaTb = TbTa. In
addition, the two elements Ua and Ub in KU satisfy the
multiplication commutative law, that is UaUb =UbUa.

In reference to the above situation, we describe the key
exchange scheme proposed by Wang et al.[21] as follows:

(1) Let Alice and Bob be two parties that agree on
publicly available system parameters (Fq,F,T,U), where
F ∈ MQ(n,m,Fq), and two singular matrix T ∈R Mm

and U ∈R Mn, of which the degrees of minimal
polynomials are attained in m and n.

(2) Upon obtaining the system parameters (Fq,F,

T,U), Alice chooses Ta ∈ KT and Ua ∈ KU at random
and computes Ga = Ta ◦F ◦Ua. Then Alice sends Ga to
Bob.

(3) Bob receives Ga and obtains the system parameters
(Fq,F,T,U). He chooses Tb ∈KT and Ub ∈KU at random
and computes Gb =Tb◦F ◦Ub. Bob sends Gb to Alice and
computes the shared key kB =Gab =Tb ◦Ga ◦Ub.

(4) Alice receives Gb and computes the shared key
kA =Gba =Ta ◦Gb ◦Ua.

Given that Ta and Tb in KT , Ua and Ub in KU

satisfy the multiplication commutative law, and Alice and
Bob successfully establish a common session key sk =

kA = kB , which is a multivariate quadratic function in

MQ(n,m,Fq).
Now, we will revisit the fact that the hardness of this

new problem is related to the difficulty of solving a DMDH
problem which is defined below.

Definition 3 Computational Multivariate Diffie
Hellman (CMDH) problem. Given a triple (F,Gx,Gy),
the CMDH problem involves finding the MQ function Gxy

such that Gxy =Tx◦Ty◦F◦Ux◦Uy, where Gx =Tx◦F◦Ux,
Gy = Ty ◦ F ◦ Uy, Gxy = Tx ◦ Ty ◦ F ◦ Ux ◦ Uy and
F ∈MQ(n,m,Fq), Tx,Ty ∈KT , Ux,Uy ∈KU .

Definition 4 DMDH problem. Given a 4-tuple (F,

Gx,Gy,Gz), the DMDH problem involves deciding
whether Gz =Gxy, where Gx =Tx◦F◦Ux, Gy =Ty◦F◦Uy,
Gxy = Tx ◦ Ty ◦ F ◦ Ux ◦ Uy, and F ∈ MQ(n,m,Fq),
Tx,Ty ∈KT , Ux,Uy ∈KU .

The relationship among these problems, including the
MP problem, is similar to the relationship in the case of
the computing Diffie Hellman problem, the decision Diffie
Hellman problem, and the discrete-logarithm problem.
That is, we do not know whether CMDH and DMDH
belong to an NP-hard problem. A straightforward method
to solve this problem is to identify the two non-bijective
affine transformations Tx and Ux when given Gz and Gxy.

Thus, the basic hypothesis for parameter setting is to
assume that solving the above problem is essentially not
easier than solving the MP problem with random non-
bijective affine transformations.

Assumption Hardness Hypothesis by Wang et al.[21]

Solving the above DMDH problem is as hard as solving
the MP problem.

However, this assumption is wrong. In the next section,
we will show that this DMDH problem is an easy instance
of the MP problem.

4 Cryptanalysis of the New Public Key
Cryptosystem Based on the MP Problem

Now, we analyze the security of WZM schemes against
KRA.

4.1 Revisitation of the first attack

The goal of breaking WZM schemes is to evaluate their
basic problems: the MP problem and the proposed DMDH
problem.

As stated by Ref. [21], the first KRA attempts to
directly find the private key pair (Ta,Ua) from Ga or

(Tb,Ub) from Gb. Let Ta =
m∑
i=1

αiT
i + α0I and Ua =

n∑
i=1

βiU
i+β0I . For any x∈Fn

q , we have
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Ga(x)−Ta ◦F ◦Ua(x)≡ 0.

Now we consider the first attack discussed by Wang et
al.[21] The problem of finding (Ta,Ua) from Ga or (Tb,Ub)

from Gb is viewed as a random instance of the reduced MP
problem, and the number of unknown variables is reduced

from m2 +n2 to m+n. Given that Ta =
m∑
i=1

αiT
i +α0I

and Ua =
n∑

i=1

βiU
i + β0I , we can obtain the following

qn cubic equations with respect to α1, ..,αm, β1, ...,βn by
substituting all x into the equation Ga(x)−Ta◦F◦Ua(x)≡
0. ∑

j,k,t

ξ(1)ijktαjβkβt+
∑
j,k

ξ(2)ijkαjβk+
∑
j,k

ξ(3)ijkβjβk+∑
j

ξ(4)ij αj+
∑
j

ξ(5)ij αj+ξ(6)i =0
(1)

where 16 i6 qn and all coefficients are in Fq.
WZM suggested that in general, α0 and β0 are equal to

0 to ensure that Ta and Tb are singular, and the total number
of combined unknowns in the above Eq. (1) is N =mn2+

mn+n(n+1)/2+m+n.[21] If we can select more than this
number of linearly independent equations from Eq. (1),
then solving the above system through linearization is easy.
However, WZM claimed that because F and (Ta ,Tb)

are selected at random, the construction of such linearly
independent equations search process and the complexity
is approximately O(qn).

However, the above attack can be constructed through
another approach. Given that Ga(x)−Ta◦F◦Ua(x)≡ 0 for
all x ∈ Fn

q , the coefficients of Ga(x) and the coefficients
of Ta ◦F ◦Ua(x) are equal. (F,T,U) are publicly known
system parameters. Thus, if we use symmetric matrices
to represent the quadratic component of the public key F

(omitting the linear part of F will not affect cryptanalysis),

we can obtain the following
mn(n+1)

2
cubic equations

with m+n variables.∑
j,k,t

λ(1)
ijktαjβkβt+

∑
j,k

λ(2)
ijkαjβk+

∑
j,k

λ(3)
ijkβjβk+∑

j

λ(4)
ij αj+

∑
j

λ(5)
ij αj+λ(6)

i =0 (2)

where 16 i6 mn(n+1)

2
and all variables are in Fq.

4.2 KRA with direct attacks

Solving such a system of
mn(n+1)

2
cubic equations

with m + n variables requires the use of the direct
attacks technique. The direct attacks use equation solvers,
including extended linearization (XL)[24] and Gröbner
Basis algorithms, such as F4

[25] and F5
[26]. We briefly

describe these equation solvers below.
Bettale et al.[27] asserted that for a semiregular system,

the computational complexity of F4 is bounded by

O

((
t

(
n+dreg−1

dreg

))ω)
, where n is the number of

variables, t is the number of equations, and ω is a linear
algebraic constant and 26ω6 3. In general, we set ω=2

for lower bound complexity and ω = 3 for upper bound
complexity. dreg is the degree of regularity of the system,
which is the index of the first non-positive coefficient in
the Hilbert series Sm,n with

Sm,n =

∏m

i=1
(1−zdi)

(1−z)
n ,

where di is the degree of the i-th equation and z is the
variable of the Hilbert series.

The HybridF5 (HF5) algorithm[27] is currently the
fastest algorithm among all the direct attacks algorithms.
Its underlying principle is the deduction of some variables
required to create overdetermined systems before the
F5 algorithm is applied. Thus, one has to run the
F5 algorithm several times (depending on how many
variables he/she guesses) to find a solution for the
original system. When guessing u variables over Fq,
this number is given by qu. The complexity of solving
a semiregular system of t multivariate equations in n

variables over Fq by the HF5 algorithm can be estimated

as quO

((
t

(
n−u+dreg−1

dreg

))ω)
.

Generally speaking, the best direct attack algorithm for
solving multivariate polynomial equations over medium
fields is the HF5 algorithm, and that for solving
multivariate polynomial equations over large fields is the
F4 (or F5) Gröbner Basis algorithms.

When the underground field is small and under the

assumption that
mn(n+1)

2
= ε(m + n)2, ε > 0, as

is discussed in Ref. [24], the best algorithm is the
XL algorithm, and the complexity is O((m+n)ωD/D!),
where D≈⌈1/

√
ε⌉.

However, the above result cannot be used directly
in the WZM scheme because it is based on the DMDH
problem which seems as hard as the MP problem. Next we
discuss why direct attack algorithms cannot be efficiently
used to solve the MP problem.

Recall that for a system based on the MP problem, we
assume that Ga and F are two public sets of m quadratic
equations, and Ta and Ua are two non-bijective morphism
transformations, where Ga(x)−Ta ◦F ◦Ua(x)≡ 0 for all
x∈Fn

q . The target of solving MP problem is to recover Ta
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and Ua. Similarly, we can obtain a system of
mn(n+1)

2
cubic equations with m2+n2 variables, but because Ta and

Ua are singular, the resultant
mn(n+1)

2
cubic equations

are not independent and can be reduced to a small number
of cubic equations.

The number of reduced equations depends
on the rank of Ta and Ua, and the final
number of reduced cubic equations is attained by
Rank(Ua)·Rank(Ta)·(Rank(Ta)+1)

2
. Taking parameters

q = 216,n = 12, and m = 10 as an example, if we treat
all polynomials of F as homogeneous in general, we will
obtain a system of 780 cubic equations with 244 variables.
However, assuming that the rank of Ta is 9 and that of
Ua is 11, the resultant cubic equations can be reduced to
594 cubic equations with 244 variables. When the rank
of Ta and Ua is small, the resultant cubic equations can
be reduced to a small number of equations. Given that
we do not know the number of independent equations,
direct attack algorithms cannot be efficiently used to solve
this MP problem. The same situation requires the use
of direct attack algorithms to attack WZM schemes that

provide a system of
mn(n+1)

2
cubic equations with m+n

variables for reducing cubic equations. Similarly, taking
the parameters q=216,n=12, and m=10 recommended
by Wang et al.[21] as an example, we will obtain a system of
780 cubic equations with 22 variables. However, assuming
that the rank of Ta is 8 and that of Ua is 10, the resultant
cubic equations can be reduced to 360 cubic equations
with 22 variables. These equations will be difficult to solve
with direct attack algorithms. Thus, the equation seems to
be solvable only by an exhaustive search algorithm, as
claimed by Wang et al.[21], who stated that their schemes
are based on the reduced MP problem wherein the number
of variables are reduced from m2+n2 to m+n. In addition,
this problem remains intractable because it can only be
dealt with by an exhaustive search attack.

Through the above discussion, we find that the use
of a direct attack to solve the MP problem is mainly
hindered by the following: The resultant cubic equations
are not independent and reducible. Thus, if we can find
some method to convert the resultant cubic equations into
nonreduced equations, we can use direct attack algorithms
to solve this problem. Luckily, we find a property of the
minimum polynomial to break the intractability of DMDH
problem. Below, we present a proposition to illustrate that
the DMDH problem can be reduced to an easy instance of

the MP problem.
Proposition The DMDH problem of WZM schemes

can be reduced to an easy instance of the MP
problem. This reduction shows that recovering the two
transformations is always equal to solving a system of
mn(n+1)

2
independent cubic equations with m + n

variables.
Let fminT (x) and fminU(x) be the corresponding

minimum polynomials of matrices T and U , respectively.
In the construction of WZM schemes, the degree of the
minimum polynomial of matrices T and U is equal to m

and n, respectively. Let fminT (x) = xm+
∑m−1

i=0
α′

ix
i and

fminU(x)=xn+
∑n−1

i=0
β′
ix

i, we have

Tm =−
∑m−1

i=0
α′

iT
i

and
Un =−

∑n−1

i=0
β′
iT

i.

Recall that Ta =αmTm+αm−1T
m−1+ · · ·+α1T and

Ua =βnU
n+βn−1U

n−1+ · · ·+β1U in the construction of
WZM schemes, we have
Ta = αm(−

∑m−1

i=0
α′

iT
i) + αm−1T

m−1 + · · ·+ α1T
1 =∑m−1

i=1
(αi−αmα′

i)T
i−αmα′

0T
0

and
Ua = βn(−

∑n−1

i=0
β′
iU

i) + βn−1U
n−1 + · · · + β1U

1 =∑n−1

i=1
(βi−βnβ

′
i)U

i−βnβ
′
0U

0.
If we let γ0 = −αmα′

0, γi = αi − αmα′
i and η0 =

−βnβ
′
0, ηj = βj −βnβ

′
j , where 1 6 i 6 (m−1),1 6 j 6

(n−1), and all elements are in Fq.
Finally we will get

Ta =
∑m−1

i=0
γiT

i

and
Ub =

∑n−1

i=0
ηiU

i.

The above equations show that because of the restraint
of the degree of minimum polynomial of matrices T and
U must be equal to m and n, respectively, and Ta and
Ua are always bound by the coefficients of the minimum
polynomial of matrices T and U , respectively. Ta and Ua

are not randomly generated and are always equal to new
T ′

a and U ′
b as shown by the following form.

T ′
a =
∑m−1

i=0
γ′
iT

i

and
U ′

b =
∑n−1

i=0
η′
iU

i.

Recall that solving the DMDH problem involves
finding the two nonbijective affine transformations Ta and
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Ua, when given F and Ga.
In addition, because T and U are known, knowing

fminT (x) and fminU(x) is easy. Consequently, if we can
solve the above γ′

i, 06 i6 (m−1) and η′
j , 06 j6 (n−1),

we can recover the underlying Ta and Ua. Then, we have
Ga(x)−T ′

a ◦F ◦U ′
a(x) ≡ 0 for all x ∈ Fn

q . Thus we can

obtain a system of
mn(n+1)

2
cubic equations with m+n

variables γ′
i, 0 6 i 6 (m− 1) and η′

j , 0 6 j 6 (n− 1).
However, because

T ′
a =
∑m−1

i=0
γ′
iT

i

and
U ′

b =
∑n−1

i=0
η′
iU

i,

the resultant equations are always independent equations.
Finally, the DMDH problem of WZM schemes is

reduced to an easy instance of the MP problem. Its solution

is equal to solving a system of
mn(n+1)

2
independent

cubic equations with m+n variables.

4.3 Our attack algorithm

Now we will describe our modified attack algorithm,
which uses direct attacks.

The above discussion shows that we can use other
algorithms rather than the exhaustive search algorithm for
KRA on WZM schemes. Our modified attack algorithm
on KRA for WZM schemes over a finite field is described
in Algorithm 1.

In our attack algorithm, despite Ta = αmTm +

αm−1T
m−1 + · · ·+α1T and Ua = βnU

n + βn−1U
n−1 +

· · ·+ β1U , where αi,1 6 i 6 m and βi,1 6 i 6 n are
the constructed unknowns, we do not directly recover these
unknowns but instead construct other unknowns γ′

i,06 i6
(m− 1) and η′

j ,0 6 j 6 (n− 1) which can ensure direct
attack algorithms run efficiently. According to our above
analysis in Proposition, by using γ′

i,0 6 i 6 (m−1) and
η′
j ,06 j6 (n−1), we can also recover Ta and Ua.

4.4 Practical attack under the recommended
parameters

Wang et al.[21] proposed concrete parameters for their
scheme at the commendable security level of 96. The
parameters are chosen as follows: q=216, n=12, and

Algorithm 1 Our algorithm for KRA on WZM schemes
(Ga,F,T,U )
Require:

Ga: the key Alice sends to Bob;
F,T,U : the public system parameters;

Ensure:
Ta,Ua: the private key;

1: Construct two new transformation T ′
a and U ′

a in the form:

T ′
a =

∑m−1

i=0
γ′
iT

i

and
U ′
a =

∑n−1

i=0
η′iU

i;

2: Let Ga(x)−T ′
a◦F◦U ′

a(x)≡ 0 for all x∈Fn
q and generate a system

of mn(n+1)
2

cubic equations with m+n variables γ′
i,06 i6 (m−1)

and η′j ,06 j 6 (n−1);
3: Solve the system using the appropriate direct attack algorithms in

accordance with the finite field and obtain all solutions (defined as
sol);

4: For every sol[i] do
5: Compute

T ′
a =

∑m−1

j=0
sol[i]jT

i

and
U ′
a =

∑n−1

j=0
sol[i]j+mU i;

6: Check if T ′
a ◦F ◦U ′

a =Ga and mark the position as pos when it is
correct;

7: End for;
8: return Ta =

∑m−1
j=0 sol[pos]jT

i, Ua =
∑n−1

j=0 sol[pos]j+mU i;

m=10. In this section, we show that security is essentially
incompatible for WZM schemes.

The result of our cryptoanalysis to the lower/upper
bound complexities against KRA with direct attack by F4

which are 222/230 for WZM (F216 ,10,12) not 296 claimed
security in Ref. [21]. Table 1 shows the improvements
of lower bound (ω = 2) and upper bound (ω = 2.8) in
the complexity of solving such a system by using different
attack methods for WZM (F216 ,10,12).

Table 1 shows that the rank of T and U is assumed
to be 9 and 11, respectively. Table 1 also shows that the
number of reduced equations in KRA with direct attack is
smaller than that with our modified attack. Thus, even in
the simplest non-bijective form (the rank of T and U is n−1
and m−1, respectively), the complexity remains as high as
252 and memory will be insufficient when performing such
an attack in practice. However, when using our modified
attack algorithm, all equations are independent equations,
and the attack complexity is only 222.

Furthermore, we are able to attack WZM schemes. We

Table 1 Lower and upper bounds of the complexity of different KRA algorithms against WZM schemes with (Fq,n,m) =
(F216 ,12,10).

Attack algorithm Number of equations (reduced) Number of variables Complexity (lower/upper)

KRA with exhaustive search 2192 (linear) 1660 296/2192

KRA with direct attacks (directly) 594 (cubic) 22 254/262 (Out of Memory)

KRA with our attacks 780 (cubic) 22 222/230
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completely break WZM schemes under their
recommended parameters (F216 ,12,10). We program
and run our modified attack algorithm using MAGMA[28]

v2.20-5. All experiments are run on a workstation with
a Dual XEON Quad Core 2.27 GHz processor, 24 GB
of main random access memory, and operation system
of Scientific Linux 5.11 (Boron). In addition to the
recommended parameters, we also attack other parameters
(F212 ,14,12) and (F26 ,28,20) under reasonably selected
conditions in accordance with the security analysis
provided by Wang et al.[21] to evaluate the security of
different fields under our attack. We perform each attack
1000 times during each test. The results are listed in
Table 2. We break their recommended parameters at 96
security levels in less than 17.252 s. The results of the
practical attacks summarized in Table 2 shows that we can
efficiently break the schemes in different fields at their
claimed security within several seconds.

Finally, we attempt to estimate the secure and optimal
parameters that will enable WZM schemes to resist our
attacks. We select secure and optimal parameters for WZM
schemes at different security levels in accordance with
the theoretical complexity of our attacks. The selected
parameters are summarized in Table 3, which shows
that more than 10 million multiplication operations are
required to encrypt just one plaintext to achieve 80-bit
security. This requirement is impractical because
encrypting just one plaintext requires an estimated running
time of more than 10 min. Thus, finding parameters that
yield a practical scheme for the WZM cryptosystem is

Table 2 Results of theoretical complexities and practical
KRA using our modified attack algorithm on WZM
schemes.

Parameter Claimed Theoretical Attack

(Fq , n,m) security complexity (lower/upper) time (s)

(F216 ,12,10) 296 222/230 17.252

(recommend)

(F212 ,14,12) 284 232/243 91.87

(select)

(F26 ,28,20) 284 232/243 330.86

(select)

Table 3 Estimated parameters for WZM schemes at given
security levels.

Parameter Security Encryption Decryption

(Fq ,n,m) level (Muls) (Muls)

(F216 ,28,26) 280 9956926 8885240

(F212 ,32,36) 280 31876164 29147904

(F26 , 64,70) 280 841995030 801207680

impossible.

5 Conclusion

We used modified attacks to investigate the security of
the WZM schemes, a new public key cryptosystem that
is based on the MP problem, against the KRA. We
showed that our attack algorithm completely broke the
recommended parameters for WZM schemes at 96 security
levels in less than 17.252 s. We attempted to estimate
secure and optimal parameters at 80-bit security levels
to resist our attacks. However, WZM schemes with
these parameters are considerably slower than expected.
Therefore, finding parameters that yield a secure and
practical scheme is impossible.
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