
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 08/10 pp599–609
DOI: 10 .26599/TST.2018 .9010027
Volume 23, Number 5, October 2018

Software System Evolution Analysis Method Based on Algebraic
Topology

Chun Shan, Liyuan Liu, Jingfeng Xue�, Changzhen Hu, and Hongjin Zhu

Abstract: The analysis of software system evolution is highly significant in software research as the evolution runs

throughout the lifecycle of a software system. Considering a software system as an algebraic engineering system,

we propose a software system evolution analysis method based on algebraic topology. First, from a complex

network perspective, we abstract a software system into the software structural topology diagram. Then, based

on the algebraic topology principle, we abstract each node in the software structural topology diagram into an

algebraic component represented by a 6-tuple. We propose three kinds of operation relationships between two

algebraic components, so that the software system can be abstracted into an algebraic expression of components.

In addition, we propose three forms of software system evolution, which help to analyze the structure and evolution

of system software and facilitate its maintenance and reconfiguration.

Key words: software structural topology diagram; algebraic component; topological complex; evolution

1 Introduction

Static evolution and dynamic evolution have been
proposed in previous studies[1, 2] as the two main
types[3] of software evolution. Static evolution refers
to the evolution under non-operating conditions. In
this case, the migration of the operating states of
the software system as well as the active processes
could be ignored, but the function of the software
system may be temporarily disabled and therefore, not
sustainable. Dynamic evolution refers to the evolution
under the operating conditions[4]. It overcomes the
shortcomings of static evolution, but dynamic changes
such as the migration of the operating states and the
active process[5] need to be considered, which can result
in technical difficulties.

In this paper, we propose a dynamic software system

�Chun Shan, Liyuan Liu, Jingfeng Xue, Changzhen Hu,
and Hongjin Zhu are with the School of Software,
Beijing Institute of Technology, Beijing 100081, China. E-
mail: sherryshan@bit.edu.cn; 597098022@qq.com; xuejf@
bit.edu.cn; chzhoo@bit.edu.cn; 1961357332@qq.com.
�To whom correspondence should be addressed.

Manuscript received: 2017-11-03; accepted: 2017-11-14

evolution analysis method which considers a software
system as an algebraic engineering system. First,
from a complex network perspective, the software
system is abstracted into a structural topology diagram
with the information resources as the node and
the behavior as the edge. Then, using a complex
based on the topological properties, each node in
the diagram corresponding to the software system
module is abstracted into an algebraic component
PM, and the algebraic component is represented
by a 6-tuple: PM D .X; Y;D;C; �; �/. The integrated
software system is considered to be assembled from
these algebraic components. Then, we proposed three
operation relationships: calling, nesting, and including.
These operation relationships can form a complete
algebraic system by which an arbitrary software
system can be abstracted into the form of algebraic
expressions of the components. Considering the
algebraic components, the analysis of software system
evolution is therefore transformed into three forms:
addition of components, deletion of components, and
modification of components. We therefore establish the
theoretical framework of using algebraic components
to describe the software and analyze the software



600 Tsinghua Science and Technology, October 2018, 23(5): 599–609

evolution process.

2 Related Work

Various foreign software component models have
been proposed in the literature, among which,
the most popular three are the Common Object
Request Broker Architecture[6] proposed by Object
Management Group, Distributed Component Object
Model[7] proposed by Microsoft, and the Enterprise
JavaBeans model[8] proposed by Sun Microsystems.
These three models separate the software components
interface from its implementation, and the components
interact only through the interface; therefore, the
reusability of the components is improved.

Furthermore, many researchers in China have
extensively studied software component models, and
have achieved noteworthy results. The most widely
accepted is the “Bluebird component model” proposed
by Yang et al.[9] The model combines the advantages of
the three abovementioned foreign models and divides
the components into two parts: external interface and
internal structure. Based on this model, Zhang and
Li[10] proposed an algebraic representation of software
components, dividing the software components into
functional parts and connecting parts. However, this
expression separating the functional and connecting
parts of software system is only applicable to an object-
oriented programming language and not a process-
oriented programming language.

3 Software System Evolution Analysis
Method Based on Algebraic Topology

3.1 Method overview

The method is a kind of method for analyzing dynamic
software system evolution[11, 12] based on algebraic
topology, which regards a software system as an
algebraic engineering system for implementing logical
organization. It abstracts software system into an
algebraic expression to analyze the evolution.

The method involves three specific steps. First,
the software system is abstracted into a structural
topology diagram based on the idea of complex
networks. Second, the software system is presented
with an algebraic expression of components based on
the structural topology diagram. Third, the evolution
of software system is mapped to the changes of the
algebraic expression of components, and the software
system evolution is analyzed from three perspectives:

addition of component, deletion of component, and
modification of component.

3.2 Algebraic abstraction

Researchers have found that the topologies of
software systems usually have complex network-related
properties[13] such as “small-world”[14] and “scale-
free”[15], which inspires us to combine ideas on
software engineering[16] and complex network[17] to
analyze software systems.

Our research on software systems is therefore
centered on structural topology by abstracting a
structural topology diagram from the software system.
In a software system, we abstracted various modules
(subsystems) into nodes, and the interaction between
the modules into edges between nodes. Then, the static
structure of the whole software system can be abstracted
into a network structure formed by nodes and edges,
which becomes the software system structural topology
diagram. For a software system, both the number of
modules and the interaction between various modules
are fixed; therefore, there is only one corresponding
specific single software structural topology diagram.

Currently, complex network theory[18, 19] and research
methods are mainly used in open-source software
systems. For software systems developed by a process-
oriented programming language, we can abstract the
functions (methods) and structures in source codes into
nodes. The relationship between the use of different
methods and structures as well as the interaction
between the methods and structures can be abstracted
into edges (Fig. 1). For software systems developed
by an object-oriented programming language, we can
abstract the classes into nodes, and the association,
generalization, inheritance, dependency, aggregation,
and composite relationships between different classes
into edges between nodes (Fig. 2). This way, any
software system can be abstracted into a software
structural topology diagram[20] based on the source
code.

Main

Max

Sum

Min

Main

Max

Sum

Min

Fig. 1 Process-oriented procedure calling graph and
corresponding topology diagram.



Chun Shan et al.: Software System Evolution Analysis Method Based on Algebraic Topology 601

Fig. 2 Object-oriented class diagram and corresponding
topology diagram.

3.3 Algebraic method of software system

Algebraic topology is a branch of mathematics that
uses abstract algebra tools to study topological spaces,
where the algebra tools convert topological problems
into algebraic ones, and the topological problems are
solved with algebraic methods.

In this paper, we regard the software system topology
diagram as a complex based on topological properties,
which has been used for research in biological
fields[21], and the software components (such as
modules, subsystems) as a subcomplex. Each complex
can be abstracted into an algebraic component based
on the algebraic topology principle. The integration
of software systems is composed of these algebraic
components. To describe algebraic components, we
propose a software system composite framework
(Fig. 3). The behavior of each level of the software
system can be presented as the structure of the
algebraic components. The whole software system is an
integral structure composed of intertwining vertical and
horizontal algebraic components, in which the upper
layer of the algebraic components is a composite of
those in the lower layer.

Then, we propose an algebraic aggregation model
based on the software system composite framework
(Fig. 4). The algebraic component of the software
system is considered to be a 6-tuple: PM D .X;
Y;D;C; �; �/, which consists of functional and
connection parts. Here, X D fx1; x2; : : : ; xng is a

Fig. 3 Software system composite framework.

Fig. 4 Software system algebraic aggregation model.

logical behavior set composed of logical behavior
x1; x2; : : : ; xn. In addition, Y is a set of connection
relations, C denotes the controller, D denotes the
internal data, � represents the aggregation operation,
and � denotes the detector. The functional parts of
the software system algebraic component constitute
the logical behavior set, internal data, the aggregation
operation, the connection parts by the connection
relation set, the detector, and the controller.

According to the relationship between the modules
in the software system, the operation relationships
between algebraic components can be divided into
three: calling operation, including operation, and
nesting operation.

Calling operation: Assuming there are two different
algebraic components PM1 and PM2 in the software
system S , if PM1 uses the services provided by PM2,
then a calling relationship exists between PM1 and
PM2, recorded as PM1

L
PM2, with the corresponding

topological form shown in Fig. 5.
Nesting operation: Assuming there are two different

algebraic components PM1 and PM2 in the software
system S, if the algebraic components PM1 and PM2

are nested together to accomplish one function, then

PM1

PM2

Fig. 5 Calling relationship topological form.



602 Tsinghua Science and Technology, October 2018, 23(5): 599–609

a nesting relationship exists between PM1 and PM2,
denoted as PM1

N
PM2. The corresponding software

structure topological form is shown in Fig. 6.
Including operation: Assuming there are two

different algebraic components PM1 and PM2 in the
software system S; if the execution of PM1 is based
on the execution of PM2I that is, the output of PM2

is the input of PM1; then PM1 is contained in PM2;
it could be concluded an including relationship exists
between PM1 and PM2; denoted as PM1

J
PM2. The

corresponding topological form is shown in Fig. 7.
According to the above three relationships and

their corresponding topology diagrams, any software
system can be abstracted into the algebraic expressions.
The operation rule is as follows: The priority of
computing between algebraic components is left-right,
including-nesting-calling, and parentheses have the
highest priority if they exist.

Three steps are needed to abstract an algebraic
expression from a given software system structural
topology diagram. (1) Roughly decompose the diagram
from top to bottom: divide the structural topology
diagram (subgraph) into upper and lower parts until
the leaf nodes. (2) Refine the new diagram from left to
right: decompose the lower part of the topological graph
from left to right until there is no topology subgraph
on the right side. (3) Integrate the system: replace
each segmented part of the top algebraic expression
with the algebraic expressions corresponding with the
topological subgraphs, so that the integrated algebraic
expression for the software system is obtained.

We need to specify the condition that algebraic
component PM1 equals PM2 before studying the
computational properties of algebraic components:

(1) PM1:X D PM2:X ;

PM1

PM2 PM3

Fig. 6 Nesting relationship topological form.

PM1 PM2

Fig. 7 Including relationship topological form.

(2) PM1:Y D PM2:Y ;
(3) PM1:D D PM2:D;
(4) PM1:C D PM2:C ;
(5) PM1:� D PM2:� ;
(6) PM1:� D PM2:�.
By induction and proving, we obtain the following

10 operation properties on the three operation
relationships:

Property 1: Assuming that there are three different
algebraic components PM1;PM2; and PM3 in the
software system S; then PM1; PM2; and PM3 satisfy
the union law on the calling operation.
.PM1 ˚ PM2/˚ PM3 D PM1 ˚ .PM2 ˚ PM3/ (1)

Proof 1: To prove Property 1, we only need to prove
that every tuple of the algebraic components on one
side of the equality sign is equal to the corresponding
tuple on the other side; that is, the two algebraic
components satisfy the equality condition; then, the
above six equations are true. First, for 8x 2 ..PM1 ˚

PM2/˚ PM3/:X , we get x 2 .PM1 ˚ PM2/:X or x 2
PM3:X . If x 2 PM3:X , then x 2 .PM2 ˚ PM3/:X , so
x 2 PM1˚ .PM2˚ PM3/:X . If x 2 .PM1˚ PM2/:X ,
we get x 2 PM1:X or x 2 PM2:X . Similarly, if x 2
PM1:X , we can obtain x 2 PM1 ˚ .PM2 ˚ PM3/:X ;
if x 2 PM2:X , then x 2 .PM2 ˚ PM3/:X , we can also
obtain x 2 PM1 ˚ .PM2 ˚ PM3/.

Property 2: Assuming that there are three different
algebraic components PM1;PM2; and PM3 in the
software system S; then PM1;PM2; and PM3 satisfy
the union law on the nesting operation.
.PM1 ˝ PM2/˝ PM3 D PM1 ˝ .PM2 ˝ PM3/ (2)

Proof 2: The proving process is similar to that of
Proof 1.

Property 3: Assuming that there are two different
algebraic components PM1 and PM2 in the software
system S; then PM1 and PM2 satisfy the commutative
law on the nesting operation.

PM1 ˝ PM2 D PM2 ˝ PM1 (3)

Proof 3: The proving process is similar to Proof 1.
Property 4: Assuming that there are three different

algebraic components PM1; PM2; and PM3 in the
software system S; then PM1;PM2; and PM3 satisfy
the union law on the including operation.
.PM1 ˇ PM2/ˇ PM3 D PM1 ˇ .PM2 ˇ PM3/ (4)

Property 5: Assuming that there are three different
algebraic components PM1;PM2; and PM3 in the
software system S; for PM1;PM2; and PM3; the nesting



Chun Shan et al.: Software System Evolution Analysis Method Based on Algebraic Topology 603

operations of the three algebraic components satisfy the
union law to the including operation.
.PM1˝PM2/ˇPM3 D .PM1ˇPM3/˝.PM2ˇPM3/

(5)
Property 6: Assuming that there are three different

algebraic components PM1;PM2; and PM3 in the
software system S; for PM1;PM2; and PM3; the nesting
operations of the three algebraic components satisfy the
union law to the calling operation.
.PM1˝PM2/˚PM3 D .PM1˚PM3/˝.PM2˚PM3/

(6)
Property 7: Assuming that there are two different

algebraic components PM1 and PM2 in the software
system S; for PM1 and PM2; the results of calling
operation, nesting operation, and including operations
of two algebraic components are also algebraic
components; that is, PM1 ˚ PM2, PM1 ˝ PM2, and
PM1ˇ PM2, are also algebraic components and belong
to the software system S:

Property 8: Assuming that there are n different
algebraic components PM1; PM2; : : : ; PMn in the
software system S; for PM1;PM2; : : : ;PMn; the results
of calling operation, nesting operation, and including
operations of two algebraic components are also
algebraic components; that is, PM1˚PM2˚� � �˚PMn,
PM1˝PM2˝� � �˝PMn, and PM1ˇPM2ˇ� � �ˇPMn are
also algebraic components and belong to the software
system S:

Property 9: The calling, nesting, and including
operation relationships of the algebraic components in
the software system S constitute a complete algebraic
system.

Property 10: The set of all algebraic components
of the software system S and the three computing
relationships between algebraic components, i.e., the
calling, nesting, and including computing relationships,
constitute an exchange semi-group denoted as < S;
˚ >;< S;˝ >, and < S;ˇ >, respectively.

The algebraic system composed of algebraic
components and the calling, nesting, and including
relationships must be a complete algebraic system
since the software system is a complete system. Only
when this precondition is satisfied can we abstract any
software system into the algebraic expression with our
method.

Here we show the proving process after clarifying the
following two definitions.

(1) Software system structure set: Assuming that

the set of all algebraic components in the software
system S is defined as PM D fPM1;PM2; : : : ;PMng,
and the set of arithmetic relationships between algebraic
components is defined as R D f˚;˝;ˇg. If two
algebraic components PMi and PMj in the software
system S are related by R; denoted as < PMi ;PMj >,
then < PMi ;PMj >2 R, the system generated by
the algebraic components set PM on the arithmetic
relationship set R; is called the software system
structure set, denoted as Sc D R.C/.

(2) The integratedness of the computing system: If
the various algebraic components that make up the
software system satisfy the three conditions below, then
the computing system is integrated. First, the algebraic
components in the software system S are closed to
any of the operations; second, the software system S

generated by the three arithmetic relationships between
algebraic components is closed; third, every algebraic
component PMi in the software system S has a specific
function; that is, the algebraic component PMi is
complete.

The proving process can be divided into three steps
in detail.

(1) To prove that all algebraic components in the
software system S are closed to the calling, nesting,
and including computing relations, i.e., the algebraic
components generated by these computing relationships
belong to this software system, we assume, based
on Property 7, that there are two different algebraic
components PM1 and PM2 in the software system S I

then, the algebraic components PM1 ˚ PM2, PM1 ˝

PM2, and PM1 ˇ PM2 also belong to S . Then, we
can state that the algebraic components in the software
system S are closed to each computing relationship.

(2) To prove the software system generated by nesting,
calling, and including computing relationships is
closed, we assume that O D .O1; O2; : : : ; Oi / is
the algebraic components’ set composed by i .i > 1;
i 2 N/ algebraic components on˚ relation, P D .P1;

P2; : : : ; Pj / is the algebraic components’ set composed
by j .j > 1; j 2 N/ algebraic components on ˝
relation, and Q D .Q1;Q2; : : : ;Qk/ is the algebraic
components’ set composed by k .k > 1; k 2 N/
algebraic components onˇ relation, apparently, O;P;
Q � Sc , and for any algebraic component Oi ; Pj ; and
Qk; there are Oi 2 Sc , Pj 2 Sc , and Qk 2 Sc . Based
on Property 7, we know that the algebraic components
generated by the three computing relationships belong
to Sc ; then, we can state that the software system
generated by the three computing relationships is



604 Tsinghua Science and Technology, October 2018, 23(5): 599–609

closed.
(3) To prove that every algebraic component in the

software system S has a specific function, the algebraic
component PM D .X; Y;D;C; �; �/ in the software
system is derived from the software system algebraic
aggregation model proposed in Fig. 4; therefore, any
algebraic component can represent a functional module
and has a specific function.

3.4 Three forms of evolution

When a software system is being utilized, various
internal and external factors will lead to changes
in users’ needs, and the software system needs to
evolve to satisfy users’ needs. In this study, we
investigate software system evolution based on the
algebraic expression of components, and the evolution
is attributed to the change of the relationships among the
various algebraic components that make up the software
system.

Three forms of software system evolution are
addition, deletion, and modification of algebraic
components.

(1) Addition of software algebraic components:
it is divided into the addition of calling algebraic
component, addition of nesting algebraic component,
and addition of including algebraic components, since
the relationships among the algebraic components
are divided into calling, nesting, and including. The
evolution process of addition of calling algebraic
component is shown here.

Suppose the software system structure topology
diagram is as that shown in Fig. 8.

In the software system shown in Fig. 8, a new
calling component PM11 is added, and it is called
by component PM5 in the original software system;
therefore, the new software system topology can be
obtained as Fig. 9.

PM1

PM3

PM6

PM4

PM7 PM8

PM10PM9

PM2

PM5

Fig. 8 A software system structure topology diagram.

PM1

PM3

PM6

PM4

PM7 PM8

PM10PM9PM11

PM2

PM5

Fig. 9 The structure topology diagram after adding
component PM11:

The algebraic expression of components of the
original software system is PM1 ˚ ŒPM2 ˚ PM5 ˝

.PM6˚PM9/�˝ŒPM3˚.PM7ˇPM6/˝.PM8˚PM10/�.
After evolution, the expression is PM1˚ŒPM2˚.PM5˚

PM11/ ˝ .PM6 ˚ PM9/� ˝ ŒPM3 ˚ .PM7 ˇ PM6/ ˝

.PM8 ˚ PM10/�˝ ŒPM4 ˚ .PM8 ˚ PM10/�.
(2) To describe the full-scale evolution of the

software system, we divide the deletion of algebraic
component into five parts: deletion of the top algebraic
component, deletion of the underlying calling algebraic
component, deletion of the underlying nesting algebraic
component, deletion of the underlying including
algebraic component, and the associated deletion. Here,
we mainly focus on deletion of the top algebraic
component and the associated deleting.

The function of the top algebraic component of
the software system is to combine all the algebraic
components to form a complete system as the entrance
of the software system. Therefore, removing the top
component results in loss of contact to the other
algebraic components, which collapses the entire
software system. Thus, we need to introduce a new
algebraic component to serve as the entrance of
the software system after deleting the top algebraic
component.

For example, considering the software system
topology shown in Fig. 10, after deleting the top
algebraic component PM1; we need to introduce a new
component PM0 to be the new top component, so that
we can get the new topology given in Fig. 11.

The algebraic expression of components of the
original software system is PM1 ˚ ŒPM2 ˚ .PM5˚

PM11/˝ ŒPM6 ˚ .PM9 ˇ PM13/��˝ ŒPM3˚ .PM7 ˇ

PM6/ ˝ .PM8 ˚ PM10/� ˝ ŒPM4˚.PM8 ˚ PM10/ ˝

PM12�. After evolution, the expression is PM0˚ŒPM2˚

.PM5 ˚ PM11/˝ŒPM6 ˚ .PM9 ˇ PM13/�� ˝ ŒPM3 ˚

.PM7 ˇPM6/˝ .PM8 ˚ PM10/�˝ ŒPM4 ˚ .PM8˚



Chun Shan et al.: Software System Evolution Analysis Method Based on Algebraic Topology 605

PM1

PM3

PM6

PM4

PM7

PM13

PM8 PM12

PM10PM9PM11

PM2

PM5

Fig. 10 The structure topology diagram after adding the
algebraic components.

PM0

PM3

PM6

PM4

PM7

PM13

PM8 PM12

PM10PM9PM11

PM2

PM5

Fig. 11 The structure topology diagram after deleting the
component PM1:

PM10/˝ PM12�.
The actual software system evolution process

involves the deletion of intermediate algebraic
components, but the intermediate algebraic components
may be related to many algebraic components.
Therefore, we need to consider the associated deletion.
When deleting an intermediate algebraic component,
we need to delete all of its relations.

For example, the structural topology diagram of a
software system is shown in Fig. 12, after deleting the
intermediate algebraic component PM6, we also need to
delete the associated relations, and we can get the new
structural topology diagram in Fig. 13.

The algebraic expression of components of the
original software system is PM0 ˚ ŒPM2 ˚ .PM5˚

PM11/ ˝ .PM6 ˚ PM9/� ˝ .PM3 ˚ PM8/˝ .PM4 ˚

PM8˝PM12/. After evolution, the expression is PM0˚

ŒPM2 ˚ .PM5 ˚ PM11/� ˝.PM3 ˚ PM8/ ˝ .PM4 ˚

PM8 ˝ PM12/.
(3) When modifying algebraic components, the

algebraic expression of components does not change
if only the internal structure, and not the external
relations, is modified. However, if we modify
the relationships between algebraic components, the

PM0

PM3

PM6

PM4

PM8 PM12

PM9PM11

PM2

PM5

Fig. 12 The structure topology diagram after deleting the
algebraic components.

PM0

PM3
PM4

PM8 PM12

PM11

PM2

PM5

Fig. 13 The structure topology diagram after deleting the
component PM6.

expression would change correspondingly. Research
on this kind of modification can be conducted from
two perspectives: modification of the top algebraic
component relationships and that of the non-top
algebraic component relationships.

In the topology shown in Fig. 14, the top algebraic
component PM0 is modified to eliminate the calling
relationship between PM0 and PM4: To ensure that the
software system runs smoothly, we need to introduce a
new algebraic component PM as the software system
entrance to integrate the entire software system, as
shown in Fig. 15.

PM0

PM3
PM4

PM8 PM12

PM11

PM2

PM5

Fig. 14 Software system structure topology diagram after
deleting the associated algebraic components.



606 Tsinghua Science and Technology, October 2018, 23(5): 599–609

PM

PM4

PM12PM5

PM11

PM8

PM0

PM2 PM3

Fig. 15 Structure topology diagram after modifying the
component PM0:

The algebraic expression of components of the
original software system is PM0 ˚ ŒPM2 ˚ .PM5˚

PM11/�˝.PM3˚PM8/˝.PM4˚PM8˝ PM12/. After
evolution, the expression is PM ˚ ŒPM0 ˚ ŒPM2 ˚

.PM5 ˚ PM11/�˝ .PM3 ˚ PM8/� ˝ .PM4 ˚ PM8 ˝

PM12/.
There is no peculiarity for non-top algebraic

components in a software system, and we only need
to establish new communications according to new
relationships between the algebraic components.

By abstracting the software system into an algebraic
expression of components, the research on evolution
of the software system becomes centered on the
algebraic expression of components. The evolution law
of software system can be obtained when algebraic
theory is applied to analyze the algebraic expression
of components; this reduces the risk involved with the
direct analysis of software system evolution as well as
the analysis time.

4 Experiment and Analysis

4.1 Experiment environment

This experiment was carried out in the Windows
10 operating system with JavaEE development
environment, using an open-source software system
JeeSite, which is a rapid development platform based
on JavaEE as well as several excellent open-source
projects. It is highly efficient and secure.

4.2 Experiment process, results, and analysis

The experiment procedure comprises three steps, as
shown in Fig. 16.

First, the software system for experiment was

Fig. 16 Experiment procedure.

selected, and its structural topology diagram was
abstracted out of the software system. Then, algebraic
components were abstracted from every node in the
topology diagram, and the algebraic expression of
components was obtained. The XML configuration file
was generated according to the algebraic expression
of components of the software system. When the
software system evolution was needed, we modified
its algebraic expression of components and according
to the modified expression, we generated a new
XML configuration file. Then, the software system
reorganized its functions according to the newly
generated XML configuration file. In this way, we
realized a dynamic evolution of the software system.

The first step was to obtain the topology diagram of
software structure. The four modules of JeeSite, system
management (SYS), content management (CMS),
online office (OA), and code generation (GEN), are
shown in Fig. 17. The system management module
includes enterprise organization structure (CG), menu
management (MG), and role rights management (RG)
function. The content management module includes
content management (NG), column management (LG),

Fig. 17 JeeSite structure topology diagram.



Chun Shan et al.: Software System Evolution Analysis Method Based on Algebraic Topology 607

and document management function (FG). We obtained
the topology diagram of software structure as shown in
Fig. 17 according to the relationship between various
modules, with MI representing the main interface
module.

The second step was to abstract the algebraic
expression of components from the topology diagram
of the software structure. First we roughly decomposed
the topology diagram of software structure from top
to bottom to obtain the expression MI ˚ SYS ˝
CMS ˝ OA ˝ GEN. Then, we refined SYS and CMS
modules stepwise from left to right to get expressions
SYS ˚ CG ˝ MG ˝ RG and CMS ˚ .NG ˇ RG/ ˝
LG ˝ FG. Lastly, we integrated the entire algebraic
expression upward to obtain the algebraic expression of
components of JeeSite as MI ˚ .SYS ˚ CG ˝MG ˝
RG/˝ ŒCMS˚ .NGˇRG/˝LG˝FG�˝OA˝GEN.

The third step was to form the XML configuration
file according to the algebraic expression. The structure
of XML configuration file is shown in Fig. 18,
where “component operation list” represents the three
operation relationships between components: calling,
nesting, and including; “configuration” represents the
configuration relationship among the components; and
“component relation list” represents the relationship list
between the components. According to the algebraic
expression of components obtained in the second step,
we obtained the XML configuration file as shown in
Fig. 19.

During operation, the algebraic expression of
components of the software evolution changed, which
consequently changed the XML configuration file of
software system to complete the software system
evolution. Therefore, the software system evolution
is mapped to the changes of the algebraic expression
of components, and the software system can evolve

Fig. 18 Structure of XML configuration file.

Fig. 19 XML configuration file.

by changing the software algebraic expression of
component.

Assuming a new functional module management
(JG) needs to be added to the enterprise organizational
structure module during the software operation, we
only need to change its built-in algebraic expression of
component; that is, we change CG into CG˚ JG, then
the original algebraic expression of component MI ˚
.SYS˚CG˝MG˝RG/˝ŒCMS˚.NGˇRG/˝LG˝
FG�˝OA˝GEN becomes MI˚ ŒSYS˚ .CG˚ JG/˝
RG�˝ ŒCMS˚ .NGˇRG/˝LG˝FG�˝OA˝GEN,
and the corresponding configuration XML file becomes
as shown in Fig. 20.

Fig. 20 XML configuration file after increasing the
organization management.



608 Tsinghua Science and Technology, October 2018, 23(5): 599–609

Through the above experiment, we have proved
that the evolution of software systems can be mapped
to software algebraic expression of components.
Changing the algebraic expression of components will
result in a corresponding change in software system
evolution. This method applies the algebraic theory
to the process of software evolution and regards the
various functional modules of the software system
as different algebraic components. Three kinds of
computing relationship between algebraic components,
calling, nesting, and including, are used to represent the
relationships between the software system functional
modules to ensure a more efficient evolution of the
software systems.

5 Conclusion

In this paper, we propose an algebraic topology-
based method for studying dynamic software systems,
whereby any arbitrary software system can be
abstracted into an algebraic expression of components,
which is then used to denote software system evolution.

In this paper, a software is considered as a kind
of engineering system that implements logic control,
and its function modules can be abstracted into the
representation of different algebraic components.
This paper also presents a method of abstracting any
software system into a topology diagram of software
structure, which can express the source codes of
software system. In addition, a method for transforming
the topology diagram into an algebraic expression
of components is presented, and the algebraic
component of the software system is represented
by PM D .X; Y;D;C; �; �/. The relationship between
the algebraic components is divided into three
operational relationships: calling, nesting, and
including. It was proved that the calling, nesting,
and including operational relationships between
algebraic components can form a complete algebraic
system, and these three operational relationships help to
abstract any arbitrary software system into an algebraic
expression of components.

The process of software system evolution was
analyzed from three aspects: addition of algebraic
components, deletion of algebraic components,
and modification of algebraic components, and a
corresponding evolutionary algorithm was proposed.

A new research method was developed to analyze
the software system evolution based on algebraic
topology. This method pioneers a new field of using

algebraic theory to analyze software system evolution
and shifting the research on software system to center
on algebraic expressions; this is expected to further
develop in the future.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (No. U1636115) and the National
Key R&D Program of China (No. 2016YFB0800700).

References

[1] H. P. Breivold, I. Crnkovic, and M. Larsson, A
systematic review of software architecture evolution
research, Information & Software Technology, vol. 54, no.
1, pp. 16–40, 2012.

[2] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M.
Faloutsos, Graph-based analysis and prediction for
software evolution, presented at the 34th International
Conference on Software Engineering, Zurich, Switzerland,
2012.

[3] R. D. Cosmo, D. D. Ruscio, P. Pelliccione, A. Pierantonio,
and S. Zacchiroli, Supporting software evolution in
component-based FOSS systems, Science of Computer
Programming, vol. 76, no. 12, pp. 1144–1160, 2011.

[4] H. L. Chen and L. I. Ren-Fa, Dynamic evolution
mechanism oriented to service-object, Journal of
Computer Applications, vol. 30, no. 7, pp. 1974–1977,
2010.

[5] F. Dai, T. Li, Z. W. Xie, Q. Yu, and P. Lu, Towards an
algebraic semantics of software evolution process models,
(in Chinese), Journal of Software, vol. 23, no. 4, pp. 846–
863, 2012.

[6] Keira, Common Object Request Broker Architecture
(CORBA), https://www.ibm.com/support/knowledgecenter/
SSMKHH 10.0.0/com.ibm.etools.mft.doc/bc22400 .htm,
2015.

[7] Z. Onderka, DCOM and CORBA efficiency in the wireless
network, Computer Networks, vol. 291, pp. 448–458,
2012.

[8] W. Darwish and K. Beznosov, Analysis of ANSI RBAC
support in EJB, International Journal of Secure Software
Engineering, vol. 2, no. 2, pp. 25–52, 2011.

[9] F. Q. Yang, H. Mei, and K. Q. Li, Software reuse
and software component technology, (in Chinese), ACTA
ELECTRONICA SINICA, vol. 2, no. 27, 1999.

[10] Y. S. Zhang and X. Li, Design method of software
architecture based on component operation, (in Chinese),
Computer Engineering, vol. 34, no. 9, pp. 48–49, 2008.

[11] W. Cazzola and A. Shaqiri, Dynamic software evolution
through interpreter adaptation, presented at the 15th
International Conference on Modularity, ACM, Mlaga,
Spain, 2016.

[12] X. Sun, Y. Chai, Y. Liu, J. Shen, and Y. Huang, Evolution
of specialization with reachable transaction scope based on
a simple and symmetric firm resource allocation model,
Tsinghua Science and Technology, vol. 22, no. 1, pp. 10–
28, 2017.



Chun Shan et al.: Software System Evolution Analysis Method Based on Algebraic Topology 609

[13] R. Jiang and M. Yang, Survey on software complexity
research, Computer Systems & Applications, vol. 23, no.
9, pp. 1–5, 2014.

[14] C. Grabow, S. Grosskinsky, and M. Timme, Small-world
network spectra in mean-field theory, Physical Review
Letters, vol. 108, no. 21, p. 218701, 2012.

[15] A. Shaukat and J. P. Thivierge, Statistical evaluation
of waveform collapse reveals scale-free properties
of neuronal avalanches, Frontiers in Computational
Neuroscience, vol. 10, no. 163, 2016.

[16] Y. Liu, J. J. Slotine, and A. L. Barabasi, Controllability of
complex networks, Nature, vol. 473, no. 7346, pp. 167–
173, 2011.

[17] D. Chen, L. Lü, M. S. Shang, Y. C. Zhang, and T.
Zhou, Identifying influential nodes in complex networks,
Physical A Statistical Mechanics & Its Applications, vol.
391, no. 4, pp. 1777–1787, 2012.

[18] Z. Liu, T. Li, X. Yu, and X. Wang, The verification analysis

of the software dynamic evolution topology structure
model based on demand and runtime variability parallel
driver under the background of large data, presented at
the 6th International Conference on Machinery, Materials,
Environment, Biotechnology and Computer, Tianjin,
China, 2016.

[19] C. Chen, X. H. Hu, K. Zheng, X. Wang, Y. Xiang, and
J. Li, HBD: Towards efficient reactive rule dispatching
in software-defined networks, Tsinghua Science and
Technology, vol. 21, no. 2, pp. 196–209, 2016.

[20] J. Ruths and D. Ruths, Control profiles of complex
networks, Science, vol. 343, no. 6177, pp. 1373–1376,
2014.

[21] X. Q. Peng, X. D. Yan, and J. X. Wang, Framework
to identify protein complexes based on similarity
preclustering, Tsinghua Science and Technology, vol. 22,
no. 1, pp. 42–51, 2017.

Chun Shan received the PhD degree in
computer science from Beijing Institute
of Technology in 2015. She is a lecturer
and master tutor of School of Software
in Beijing Institute of Technology. Her
research interests include software security,
network security, and artificial intelligence.
Now she is leading the project “Software

Vulnerability Detection Methods and Techniques Based on
Topological Invariant” supported by the National Natural Science
Foundation of China (No. U1636115).

Liyuan Liu is currently a master
student of school of software in Beijing
Institute of Technology. She received the
bachelor degree from Beijing Institute
of Technology in 2016. Her research
interests are software security and artificial
intelligence.

Jingfeng Xue received the PhD degree
in computer science from Beijing Institute
of Technology in 2003. He is the vice
dean, professor, and doctoral supervisor
of School of Software in Beijing Institute
of Technology. His research interests
include cyberspace security and artificial
intelligence.

Changzhen Hu received the PhD degree in
information security from Beijing Institute
of Technology in 1996. He is the vice
dean, professor, and doctoral supervisor
of School of Software in Beijing Institute
of Technology. He led the project of the
National Key R&D Program of China (No.
2016YFB0800700). His research interest

is cyberspace security.

Hongjin Zhu received the master degree in
software engineering from Beijing Institute
of Technology in 2017. He is currently
a software engineer in Shenzhen. His
research interest is software security.


		2018-08-29T10:41:38-0400
	Preflight Ticket Signature




