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Side-Channel Attacks in a Real Scenario

Ming Tang*, Maixing Luo, Junfeng Zhou, Zhen Yang, Zhipeng Guo, Fei Yan, and Liang Liu

Abstract: Existing Side-Channel Attacks (SCAs) have several limitations and, rather than to be real attack methods,

can only be considered to be security evaluation methods. Their limitations are mainly related to the sampling

conditions, such as the trigger signal embedded in the source code of the encryption device, and the acquisition

device that serves as the encryption-device controller. Apart from it being very difficult for an attacker to add a

trigger into the original design before making an attack or to control the encryption device, there is a big gap in

the capacity of existing SCAs to pose real threats to cipher devices. In this paper, we propose a new method, the

sliding window SCA (SW-SCA), which can be applied in scenarios in which the acquisition device is independent

of the encryption device and for which the encryption source code requires no trigger signal or modification. First,

we describe the main issues in existing SCAs, then we theoretically analyze the effectiveness and complexity of

our proposed SW-SCA —a method that can incorporate a sliding-window mechanism into almost all of the existing

non-profiled SCAs. The experimental results for both simulated and physical traces verify the effectiveness of the

SW-SCA and the appropriateness of its theoretical complexity.

Key words: side-channel attack; sliding window; trigger mechanism; soft K-means

1 Introduction

The use of Side-Channel Attacks (SCAs) has become
an effective avenue for obtaining secret information
from cryptographic devices, which seriously threatens
their security. In 1999, Kocher et al.l'l proposed
the use of Differential Power Analysis (DPA) to
successfully recover the key of a cryptographic
algorithm by analyzing the relationship between
the power consumption of the cryptographic device
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during encryption and the intermediate value of the
cryptographic algorithm. In addition, electromagnetic
emanation!?!, timing®!, and other physical leakage
also can be used in SCAs. Generally, SCAs can
be divided into two categories: profiled and non-
profiled. A profiled SCA has two phases: a profiling
phase in which an adversary is provided with
a training device for testing that allows him to
characterize physical leakages and obtain a precise
leakage model; and an online exploitation phase in
which an attack is mounted against a similar target
device to perform a secret key extraction. A non-
profiled SCA only requires the latter phase and
assumes a less precise leakage model, typically based
on engineering intuition. Non-profiled SCAs include
DPA, Correlation Power Analysis (CPA)“, Mutual
Information Analysis (MIA)!, Variance Ratio (VR)[®!,
and Differential Cluster Analysis (DCA)!!. Profiled
SCAs include Template Attacks (TA)!® and Stochastic
Approach (SA)P!. Products that meet high security
requirements must undergo an evaluation before
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entering the marketplace, for example, using the
Common Criteria (CC)!'% and ISO/IEC 17825:2016!!1,
A CC evaluation at the highest assurance level for
penetration attacks requires that the device be capable
of resisting attacks with 1 million traces. Similarly, the
ISO/IEC 17825:2016 (application note for international
standard ISO/IEC 19790, sibling to NIST/FIPS 140-
2) requires a resistance capability against side-channel
analysis with 10000 traces (level 3) and 100 000 traces
(level 4).

Most existing SCAs are carried out in an ideal
measurement environment, with a trigger mechanism
added to the source code to activate the acquisition
device, which indicates where the start and end signals
are in each encryption process. However, this approach
is not applicable to real scenarios, because the source
code can rarely be modified by an adversary. However,
in a security evaluation, a trigger can be added to the
source code, for the security assessment often has to
consider the worst cases.

The main purpose of this paper is to move SCAs
towards the realistic attack scenario. We consider
an attack scenario in which an encryption target
continuously encrypts a set of plaintexts, while an
acquisition device works independently to alternately
acquire and post power consumption data (referred to
as curves). But without any trigger to control the
cryptophytic device and activate the acquisition device,
only partial and discontinuous power consumption data
generated by the cryptographic device can be sampled.
This leads to uncertainty about the correspondence
between the plaintext and curve. Thus, all existing
SCAs based on this correspondence will fail. In the
above attack scenario, we assume that (1) the working
cycle of the cryptographic device, based on its operation
speed, is often public information, and (2) all of the
plaintext or ciphertext of the entire encryption process
can be acquired since the attacker can eavesdrop on
the communication channel. We propose a method,
the sliding-window SCA (SW-SCA), whereby a sliding
window mechanism can be integrated into almost all the
existing non-profiled SCAs to deal with the proposed
attack scenario. Taking the sliding-window CPA (SW-
CPA) as an example, we explain how to transform
the traditional SCA into an SW-SCA that can handle
this attack scenario. In addition, we propose a soft
K-means preprocessing method that can improve the
attack efficiency of CPA or SW-CPA.
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The remainder of this paper is organized as follows.
In Section 2, we describe the SW-SCA. In Section 3,
we present two methods for handling attacks against
no-trigger samples, the SW-CPA and SSW-CPA, which
combine SW-CPA with soft K-means preprocessing.
In Section 4, we analyze the complexity of the SW-
SCA and estimate the number of curves required to
successfully recover the key. Lastly, to verify that our
analysis is consistent with reality, in Section 5, we
perform several experiments on the SASEBO-W!!?!
and SASEBO-GII evaluation boards. We draw our
conclusions in Section 6.

2 Sliding Window SCA

2.1 No-trigger sampling scenario

In the no-trigger sampling scenario shown in Fig. 1,
there is an acquisition device under the control of a
Personal Computer (PC), such as an oscilloscope as
well as an encryption device, and these devices work
independently of each other .

In this scenario, since the sampling rate of the
oscilloscope is fy, the sampling period is A =
1/fs. The encryption device sequentially performs
the Advanced Encryption Standard (AES) on the N
plaintexts Py, Py, P>, ..., Pny—1. The encryption cycle
is ToA, so, ideally, Ty points can be sampled during
each encryption period. After the encryption device
works for an unknown period of time, the acquisition
device starts to record the power consumption. The
operation mode of the acquisition device is as follows:
collect #; points, return data for nyA. As we can see,
the working period of the acquisition device is 71 A =
(t1 + n1)A, in which #; indicates the number of points
collected, and n; indicates the number of points not
collected. Assume that the total working time of the
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Fig. 1 Scenario of no-trigger sampling.
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acquisition equipment is LA. Since the acquisition
device requires a certain time interval to return the
samples, we use NaN (not a number) to denote the data
corresponding to this interval. Then L sample points are
divided into segments by the length of 7, points, with
each segment referring to a curve. There are a total of
M = L/Ty curves, and these curves are stored in a
matrix Gy xr, of M rows and Ty columns, as shown in
Fig. 2.

2.2 Analysis of no-trigger samples

According to the scenario described above, the curve
has the following three characteristics:

(a) The curves may contain power consumption data
of two plaintexts. This is because the acquisition and
encryption devices work independently, and there is no
guarantee that the acquisition device will start working
from the beginning of a certain encryption process. We
only consider all of the samples divided into curves
by the length of T, because one curve at most covers
two encryption processes, which leads to a situation
in which one part of one curve comprises the power
consumption data of one plaintext and another part
comprises that of another plaintext.

(b) The curves contain missing data, as denoted by
NaN. This is due to the fact that the acquisition device
requires a certain time interval to return the samples.

(c) The correspondence between the curve and the
plaintext is uncertain, because the acquisition and
cryptographic devices work independently.

These three differences above mean that the original
SCA cannot directly handle the current samples for the
following reasons:

(1) The correspondence between the plaintext and
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Fig.2 No-trigger samples.

the power curve is uncertain, so that the key cannot be
recovered directly via the correlation between the power
consumption and intermediate value.

(2) Due to the unknown number of absent samples,
the original SCA cannot deal with this situation.

(3) Since there is no guarantee that a curve contains
power consumption data for only one plaintext, an
attack relying on multiple points in one curve will fail.

2.3 Steps of SW-SCA

To overcome the three difficulties described above, a
new method is required.

To address the characteristic described above in
Section 2.2a, since the number of time points for one
encryption is Ty and each curve also contains Ty points,
this ensures that each curve in the same position is doing
the same operation. As such, there is no real impact on
methods such as CPA, MIA, and VR that do not require
the use of multiple power points on each curve. That is,
for these methods, the curve has been aligned.

Regarding missing data denoted as NaN, as described
in Section 2.2b, any data with the value NaN can be
directly discarded. In the 7-th column of the power
consumption matrix Gy xr,, the number of samples
actually used to calculate the correlation coefficient is
not M, but A; M. A, is the proportion of non-NaN data
in this column, which is related to the sizes of Ty, 71,
t1, and n1, which is discussed below in Section 4.1.

To overcome the uncertainty described in Section
2.2c, we propose the sliding window mechanism.
Although the correspondence between the curves and
the plaintexts are unknown, this correspondence can be
determined if we can determine the plaintext of the first
curve. Because the plaintext is encrypted in sequence
and the samples are collected in the same order, when
it is determined that the first curve corresponds to the
s-th plaintext, then we known that the second curve
corresponds to the (s 4+ 1)-th plaintext,..., and the
M -th curve corresponds to the (s + M — 1)-th plaintext.
So, by determining to which plaintext the first curve
corresponds, we can know the correspondence between
other curves and plaintexts. We call this correspondence
the Start Point of Encryption (SPE).

Here, we make necessary adjustments to the original
non-profiled SCAs, such as CPA and propose the
SW-SCA method for no-trigger samples. The steps of
SW-SCA are as follows (as shown in Fig. 3).

(1) Divide L samples by the length of Ty to obtain
atotal of M (M = L/Tp) traces with each segment
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representing one trace. With these traces, build a matrix
GumxT,, Where Ty is the time of one encryption.

(2) Calculate the predicted power consumption
matrix Hyxg according to the leakage model using the
known plaintext blocks Py, Py, P, ..., Py—1, for each
guessing subkey k (k = 0,1,2,..., K — 1). The k-th
column of Hyxg corresponds to the subkey k.

(3) Calculate the distinguisher value for each column
Hy of Hyxk, each column G; of Gpyxr, and the
starting point s for each sliding window, where H} =
[Hs k. Hs+1,k» - » Hsym+1,k]. In another words, Hj
is a column vector consisting of M numbers taken
from the s-th element of the k-th column of Hyxg
and G, is the r-th column of Gyxr,. d(H},Gy)
is the distinguisher, which can be represented as the
correlation coefficient in CPA, the mean difference in
DPA, or the mutual information in MIA. However, since
some elements of G; may be NaN, adjustments must
be made to the calculation of the distinguisher value as
follows: if the element G;; in G; is NaN, remove G ;
and the corresponding j-th element Hjs, i in Hj before
calculating the value of the distinguisher.

(4) The correct subkey k*, the position ¢ * of the target
operation in the traces, and the plaintext Pg+ of the first
curve are chosen based on the maximum correlation
coefficient:

(k*,1*,s*) = Argmax;,  |p(H}., G|

3 Two Attack Methods Against No-Trigger
Samples

In this section, we will first use CPA as an example
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Fig.3 Schematic of SW-SCA process.
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and transform it into SW-CPA, as described in Section
2, then combine soft K-means with SW-CPA to create
another attack method SSW-CPA.

Before analysis, we preprocess the collected power
traces, divide the L samples /o, ...,Ir—1 by the length
of Ty and obtain a matrix G of size M x Ty. See
Algorithm 1 for details regarding this preprocessing.

3.1 SW-CPA algorithm
3.1.1 Algorithm of SW-CPA

Based on the original CPA, we propose a new attack
method, i.e., SW-CPA. The steps of SW-CPA in a real
scenario are as follows:

Phase 1. For each guessing subkey £k (k=
0,1,..., K—1), compute the intermediate value matrix
Vnxk using plaintexts P; (j =0,1,...,N —1).
Based on leakage model, the matrix Hyxg of the
predicted power consumption is transformed from
matrix Vyxk, typically using the Hamming Weight
(HW) or the Hamming Distance (HD).

Phase 2. Using the sliding window mechanism,
compute the correlation coefficient p(H;,G;) and
obtain the matrix Rgx1,x(N—m+1)- The size of the
sliding window is equal to the number of M.

Phase 3. Choose the subkey k* that maximizes the
correlation coefficient as the correct subkey.

The time consumption mainly relies on the main
function of the 8-15 line cycles. So the complexity
of Algorithm 2 is O(KL(N — L/Tp)), where K is
the number of guess subkeys, L is the total acquisition
time, 7y is the time of the once encryption, and N is the
number of plaintext sets.

3.1.2 Correctness of SW-CPA

Assuming that the correct subkey is k¢, the position
of the target operation in the traces is fy and
the correspondence between the first curve and the
plaintext is s¢, then |p(H sg, Gi,)| > 0 and most likely

Algorithm 1 Data_divide
Input: 7o, L,lo, ..., Il —1
Output: G xT,

1. M =L/To;

2: /*Divide samples by To*/
3: fori =0to M — 1do

4 for j =0to 7o — 1 do
5: Gij =lixTo+j3

6: end
7: end
8: return Gas <7y;
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Algorithm 2 SW-CPA
Input: Garx7y, Po--- Pn—1, K
Output: subkey
1: forn =0to N —1do
2 fork =0to K —1do
3: Vi .k = Sbox(P, & k);
4 Hy ko = HW(Vy ks

5 end

6: end

7: /*Compute the correlation coefficient™®/
8. fork =0to K —1do

9: fort =0toTp—1do

10: fors =0to N — M do

1 Ri.1.s = |p(HE, Gp)l;
12: end

13: end

14: end

150 (K™, t%,5%) = Argmaxy ; ¢ Ri 1 s
16: subkey = k*;
17: return subkey;

Ip(H® . Gro)| = maxe .
this is as follows:

(1) When s = s, H ,ﬁ and G; are independent from
each other. So [p(H}, G;)| = 0.

(2) When s = 59 and k # ko, the correlation between
H} and G, is weak, especially after the S-box and other
non-linear components. So |p(H;, G;)| ~ 0.

(3) When s=1s59, k=ko, and ¢ #1ty, the
intermediate value of the target operation may appear

p(H},G;)|. The reason for

elsewhere in the curve, resulting in |p(H;, G;)| > O.
But compared to |p(H sg, Gy,)|, it is generally smaller.
So there is no impact on recovering the subkey, except
that it affects the location of the target operation at the
curve position.

(4) When s =ys9, k = ko,
is a strong correlation between Hj and G;. So
|p(H,fg, Gs,)| > 0 and most likely |p(Hs8, G| =
maxe s |p(H{. Gr)|.

3.2 SSW-CPA

and t =ty, there

In SCA, the Gaussian Leakage assumption!'?! is usually
considered to be true, which indicates that the leakage
related to the intermediate values subjects to the
Gaussian mixture distribution. And the leakage of the
intermediate value typically has a Gaussian mixture
distribution if there is only one leakage point and the
intermediate value is unknown. In other words, not only
the randomness of the noise, but also the randomness
of the plaintext input must be taken into account. Soft
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K-means is an algorithm that can effectively cluster
data that obeys a Gaussian mixture distribution. In this
subsection, we introduce the soft K-means algorithm
into CPA as a new preprocessing method, which
we refer to as SSW-CPA. The theoretical analysis
results show that this algorithm can improve the attack
efficiency of CPA.

3.2.1 Introduction of soft K-means

Clustering divides a set of data objects (usually
represented by a vector of values from a series of
features) into several categories. Objects belonging
to the same class are as similar as possible, and
objects belonging to different classes are as different as
possible!'#l. To date, there have been just a few papers
introducing a clustering algorithm into SCA. In DCA,
indicators (such as the sum of squared error and the
sum-of-squares) that originally were used to evaluate
clustering effects are used as distinguishers!’!. With
the help of K-means clustering, Heyszl et al.l!>
succeeded in attacking the exponentiation algorithms
used in public key cryptography based on one power
consumption curve. And Whitnall and Oswald!"*! also
makes the use of K-means, hierarchical, and other
clustering methods to improve the robustness of profiled
DPA. In this paper, as a preprocessing method, we
use an extended version of K-means known as soft K-
means!!®! to improve the attack efficiency of SW-CPA
or the original CPA.

In SCA, we generally
consumption is consistent with a Gaussian mixture
distribution, whereas the soft K-means clustering can
be used for data sets subjected to that distribution.
Compared to K-means, one advantage of soft K-means
is that it can return the possibility that each sample point
belongs to each cluster. The soft K-means algorithm is
given below.

We have N data objects, with each object being
an [-dimensional vector, and the n-th data object is
denoted by x. To divide the N data objects into K
clusters, the mean value of the k-th cluster is m®) the

assume that power

variance is olf, and the weight is ;. Each data point
x™ is given a soft degree of assignment to each of the
means. We call the degree to which x® is assigned

to cluster k the responsibility r,ﬁ")

(the responsibility of
cluster k for point n).
Assignment step. The responsibility is determined

as follows:
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3.2.2 Soft K-means preprocessing method
Let G be the leakage and H be the HW of the
intermediate value. Assume that under the condition of
H = h, G obeys a Gaussian distribution with mean
and variance alf, i.e., the conditional distribution is as
follows:

g —mp)”

_ (
folm=n(g) = mexp(— 207 )

Assuming that we obtain N power consumption
values go, g1,-..,gnN—1 of the target position and the
corresponding plaintext Py, P,..., Py—1, what we
want to know is the HW corresponding to each power
consumption value, that is, we perform the calculation
Pr(H = h|G = g;). Under the above assumptions, we
have

Pr(H = h|G = gn) =
Pr(H = h)Pr(G = g,|H = h)

S Pr(H = PG = gal H = )

h/
— 1 _(gn_mh)2
Pr(H = h) \/@exp( T )

1 w—mp)?\
ZPr(H =h')———exp (—M)
W ,/2310,%, 20},

It is clear that the formula above has the same form

as that for calculating responsibility rlgn) in the soft
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K-means algorithm. In fact, responsibility r,E") can be

used as an estimation of Pr(H = h|G = g,), because
the means and variances of clusters in soft K-means can
all be used as valid estimates of the mean and variance
in the power consumption in the Gaussian mixture
model when the number of clustered data objects is
relatively large. All in all, we can use soft K-means
clustering to obtain the probability distribution of the
HWs of the intermediate values corresponding to each
power consumption value Pr(H = h|G = gy).

The soft K-means preprocessing steps are as follows:

(1) Use the soft K-means algorithm to divide N
power consumption value go, g1,...,gN—1 Into nine
clusters, and obtain the mean my (k = 0,1,...,8) of
each cluster and the responsibility r,ﬁ") of each power
consumption value.

(2) Convert the cluster label to the corresponding
HW. If there are no other constraints, the number of
correspondences between the cluster label and nine
HWs is 9!. For the sake of simplicity, we can say that the
greater is the HW, the greater is the within-class mean
value. Thus, we only need to sort within-class mean
value from small to large, and then map it to HW O to 8.
In addition, we can obtain an estimate of the probability
of the HW corresponding to each power consumption
value Pr(H = h|G = g,) = r].

(3) According to the following formula, convert each
gn 10 g,

gn =Y hPr(H = h|G = g,) = E(H|G = gy).

h
3.2.3 Effectiveness of the soft
preprocessing method

K-means

In this section, we analyze the effectiveness of
the soft K-means preprocessing method for CPA.
Without preprocessing of the power consumption, we
estimate p(H, G) based on the sample values, whereas
with preprocessing, we estimate p(H,G'), where
G’ = E(H|G). In the following, we demonstrate
that the correlation coefficient becomes larger after
pretreatment, that is |p(H,G)| < |p(H, G’)|, which
indicates that the effect of a CPA attack after
pretreatment will be improved. Proposition 1 below,
as given in Ref. [17], is used to analyze the optimal
prediction function of the second order DPA (i.e., the
leakage model). Researchers!!®! have cited Proposition
1, and proposed an excellent and simple method known
as normalized inter-class variance.

We propose Proposition 2, an extension of
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Proposition 1, which uses the properties of conditional
expectation.

Proposition 1 Let X, Y be two random variables,
and f be an arbitrary function defined in the value space
x of X, then we have

p(f(X).Y) = p(f(X), E(Y|X)) x p(E(Y|X).,Y).

Lemma 1 Let X and Y be two random variables,
then the conditional expectation have the following two
properties:

(1) E(E(g(X.Y)|X)) =
E(E(Y|X)) = E(Y).

(2) Eg(X)Y|X) = g(X)E(Y|X).

Proposition 2 Let X = (X1, X5,...,X,) and
Y = (Y1,Ya,...,Y,) be two random variables, f and
g be two arbitrary functions. We then obtain the
following:

p(f(X).g(Y)) =
p(f(X), E(f(X)]Y)) x p(E(f(X)]Y), g(Y)).

Proof Using Lemma 1 repeatedly, and we have the
following:

Cov(f(X).g(Y)) =
E(f(X)g(Y))— E(f(X)) E(g(Y)) =
E(E(f(X)g(Y)|Y)) — E(E(f(X)|Y)) E(g(Y)) =
E(E(f(X)|Y)g(Y)) — E(E(f(X)IY)) E(g(Y)) =
Cov(E(f(X)|Y).g(Y)).
and
Cov(f(X), E(f(X)]Y)) =
E(f(X) E(f(X)|Y)) — E(f(X)) E(f(X)|Y) =
E(ECf(X)E(f(X)]Y) |Y))—
E(E(f(X)Y)) E(E(f(X)|Y)) =
E(E(f(X]Y) E(f(X)|Y))—
E(E(f(X)|Y)) E(E(f(X)|Y)) =
Var(E(f(X)[Y)).
Then we have
p(f(X). E(f(X)|Y)) x p(E(f(X)|Y),g(Y)) =
Cov(/(X). E/OIY))
V/Var(f(X)) Var(E(f(X)[Y))
Cov(E(f(X)IY).g(¥) _
VV(E(SCOIY ) Nar(g (V)
Cov(f(X).g(Y))

Nar(H)WVar(E(FOOTY))
Cov(f(X). g(Y))

VIR EC O V(1) -

Cov(H, g
= (X),g(Y)).
NG vargy D
And because of |p(E(H|G),G)| <
following:

E(g(X,Y)), particularly

1, we have the
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lp(H,G)| = |p(H, E(H|G))| x

lp(H., E(H|G))|.
Corollary 1 When the consumption G becomes
G’ = E(H|G) after soft K-means pretreatment, its
correlation with the predicted power consumption H
increase, that is |o(H, G)| < |p(H, G")|.
Proof By Proposition 2, we have the following:
p(H,G) = p(H, E(H|G)) x p(E(H|G), G).
Combined with p(E(H|G),G) <
following:
Ip(H.G)| = |p(H. E(H|G))| x

lp(H., E(H|G)).

3.24 Steps of SSW-CPA
The soft K-means preprocessing method can also be
combined with SW-CPA (SSW-CPA) to improve attack
efficiency. The process of SSW-CPA process has the
following three steps:

(1) Divide the collected curves into the power
consumption matrices G s x 1, described in Section 2.1;

(2) As the soft K-means preprocessing algorithm
(Algorithm 3), apply the soft K-means preprocessing
method to transform the power consumption matrix

Ip(E(H|G),G)| <

1, we have the

lp(E(H|G),G)| <

GMXTO into GI/WXT()'
(3) Use the SW-CPA algorithm to recover the subkey.
Here, we present the soft K-means preprocessing
method for handling the data generated in the no-
trigger scenario, which also requires that NaN cases be
processed.

4 Complexity of SW-SCA

In this section, we analyze the complexity of SW- SCA.

Algorithm 3  Soft-kmeans-pre
Input: G, K
Output: G
1: fort = 0to Ty do
2: temp =~ isnan(G(:,1)); //Select the subscript of the
non-NaN value in G

3: data = G(temp,t);

4: [resp,center] = softkmeans(data, K);
5: [~,hw2center] = sort(center);

6: [~,center2hw] = sort(hw2center);

7: center2hw = center2hw — 1

8: for n = 1 to sum(temp) do

9: data(n) = sum(resp(n,:) - * center2hw);
10: end

11: G(temp,t) = data,

12: end

13: return G;
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We determine the data complexity by the number
of encrypted plaintexts, which in the original SCA
is known as the number of samples required"'®. We
determine the time complexity by the time required
to complete the entire attack process (including
preprocessing).

4.1 Data complexity

Compared to the original SCA, the increased
data complexity is due to the missing data, as indicated
by NaN. When calculating the distinguisher value by
the #-th column G; of Gy xr,, we use only non-NaN
values. If the proportion of the non-NaN values in G;
is recorded as A;, the actual number of samples used
for the calculation is A; M. When the original SCA
requires My plaintext to perform a successful attack,
M; = iMO is required, where 7 is the position of the
leakage point that is most relevant to the intermediate
value in the power curve. In other words, we only
need to analyze the size of A, to determine the data
complexity. In the following section, we analyze the
relationship among A, Ty, T1, and #;.

A represents the proportion of non-NaN data in the 7-
th column G, of the power consumption matrix G xr,-
Let x be one of the L points collected in time order
before the preprocessing dividing step and let it be
denoted as 0,1,2,...,L — 1. According to the data
characteristics and processing methods, we can draw
two conclusions:

xinGy & x =t (mod To) (1)
x#NaN & x =i (mod T))A0<Li<—1(Q)

Let N;; be the number of solutions to the
following congruence equations, where x is a value

in0,1,2,...,L—1,t=0,1,2,...,Tp—1,and i =
0,1,2,..., 71 — 1.
=t d Tp);
x_. (mod Tp); 3)
x =i (mod T})

Let N; be the number of solutions to the congruence
equation x = ¢ (mod Ty), then by Egs. (1) and (2), we
can deduce the following:

t1—1

T:—1 Z Nt’i
. _ Q=0
N; = ZO Negs b= =g—.
Firstly, we deduce the number of solutions N; ; to the

congruence system (Eq. (3)). In the following, we give
two lemmas, and propose the proof of Theorem 1 based
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on these two lemmas. Lastly, we deduce the expression
of A; using Theorem 1.

Lemma 2 Let a,b be integers, and 7 be a
positive integer. Deduced by fundamental theorem of
arithmetic, we have the following:

T = p‘fl,pgz,...,pgd,ad >0h=1,2,....d,
where p, (h = 1,2,...,d) is prime, and we have the
following:

x=b (mod p{');

x=b (mod
a=b (modT) < ( P

x_b (modpd)

Proof phh |T', and T'|a — b, that is, the right can be
derived from the left. Meanwhile, for all /4, phh la —
so there is T = lem(p{', p32..... py*)la — b. The
left can be derived from the right. Thus Lemma 2 is
proved.

Lemma3 Leta,b,c, a1, and oy be integers, and p
be a positive integer, so we have

x = a (mod) p*!); a=b (modpmin(al,az));

x = b (mod) p*2) x = ¢ (mod pmax(@1.02))
For c, if max(ay, o) = oy, thenc = a;else ¢ = b.
Proof Evidently prin(@ne) |y _ g, and

prin(@1.02) |y — b thus p™n@192)|q — b, thereby the
right can be derived from the left. On the other hand,
because pmin(@1.@2)| pmax(@1.@2) gpd pmax(@.02) |y _ ¢
we have p™n@1@2)|x — ¢ Thus, p™n@ne)|g — p
and p™in(@1,22) |y — ¢ — g — b can be deduced. That is,
the left can be derived from the right. Consequently,
Lemma 3 is proved.

Theorem 1 Let #,i be integers, and Ty, T; be
positive integers, the necessary and sufficient condition
for the solutions to the congruence system (Eq. (3)) is

t =1 (mod gcd(Ty, T1)).

If a solution exists,then any two such solutions are
congruent modulo lcm(7y, 77). That is, if both x; and
X are the solutions to the congruence system (Eq. (3)),
then we have
(mod lecm (Ty, T1)).

Proof According to the fundamental theorem of
arithmetic, Ty and 77 can be decomposed as follows:

0 0
To=py'py - 0, h=12,....d;

X1 = X

pd , Olh
1 1
leptlxlpg-pd,ah >0,h=1,2,....d.
By Lemmas 2 and 3, we can deduce the followmg
formula:
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Dl()
x =1t (mod pll)
x =i (mod p1 ),
x =t (mod p ),
x =t (mod Ty); B q 21 N
x=i (modTy) x=i (mo pz),
x=t (mod pd ),
x =i (mod pd )
t=i (modp mm(a"a )),
x=j; (modp max(al’a )),
t=i (mod m‘““"Z’“z)),
x =j, (mod max(%’%)),
t=i (mod mln(Ot“"w")),
X =j; (mod max(Old’ad)),

in which formula, for all &, j, = t in the case of
max (), ) = af), otherwise j, = i. With Lemma 2

and gcd(Ty, T1) = pmm(al ol )p;mn(a2 0‘2)
we have the following:
t =i (mod ged(To,Th)) &

):
):

rnin(ozg ’O‘é)
..p N

mm(at1 L0 Iy

t=i (modp

mm(az2 ,az)

t=i (modp

t =i (mod mm(w“’a“'))
On the other hand, according to the Chinese
remainder theorem, the following congruence equations

must have solutions, and these solutions are congruent

mm(at1 S0 )pmm(u aé) min(otg,tx(li)

modulo p,;

5 Py
Y= j1 (mod max(al,ot ))
¥ = jz (mod max(az,az))
x=jg; (mod p max(a" g )).

And because Iem(7p, T1) =

mm(ad ,ad)

m‘“("‘l S0 1y mm(az,az)
Py

Py , these solutions also are congruent
modulo lem(7y, 77). In conclusion, Theorem 1 is
proved.

At this point, we begin to use Theorem 1 to calculate
A¢. Based on Theorem 1, we know that, for any ¢ (0 <

t < To—1),i (0 <i < Ty —1), and any integer
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h, when x is in range {0 + h-lem(Ty, T1), 1 + h -
lem(To, Th). ..., lem(To, Th) — 1 + h - lem(To, Th)},
there is one solution or no solution to the following
congruence equations:

X

t (mod Ty);
(mod T1).

And the equivalent condition of solution ist =i
(mod ged(Ty, T1)). Therefore, when L =/ -lecm(Ty,
T1), if x is in the range {0, 1, ...,lcm(Ty, T7) — 1}, the
number of solutions to the congruence system above is

X=i

NO Thus, when x is in the range {0, 1, ..., L — 1}, the
solutlon number N;; =1/ - Nt ;»and
t1—1 t1—1
> N ) Nu
A, = i=0 _ =0 _
Nl T1—1
Z Ny
t1—1 -1
YNy YN
i=0 _i=0
T,—1 T,—1 ’
YOLNYG DN
i=0 i=0
Thus, without loss of generality, the only

situation considered is when x is in the range {0,
lem(Ty, T1) — 1} Forany t (0 <t < Tp — 1),
let#/ =t (mod gecd(Ty, T1)) (0 < ¢/ < ged(To, Th)),
and the above congruence equations have solutions
when i is in range {¢',¢' + ged(To, Th),.... 1" + AL, -
gcd(To, Ty) (¢ + K., - ged(To, Ty) < Tl)}. The
number of such i values is as follows:
T12:1 N() B hltnax_i_l _ " T, —t —‘ _ Th ‘
ged(To, T1) ged(To, T1)
On the other side, when the boundary condition is set
tobet’ + h' . - gcd(To, T1) <ty instead of ¢t/ + h!

gcd(Ty, T1) < T1, we can calculate the following:
t1—1

> L = 1= [ i |
max ng(To,Tl) )

Hence we have
t1—1

2 N
At= i
ZNtl

From the above discussion, even if condition L =
[ -1lem(Ty, Ty) is false, when L is sufficiently large, we
obtain

max

_ { n—t "| _ged(To. Th)
ged(To, T1) T, '
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9’

A~ { fn—t “ ~ged(To. T1)
ged(To, Th) T
t" =t (mod gcd(Tp, T1)),
0<1t < gcd(Ty, T1).
Furthermore, A, ~ t;/Ty = t;/(ty + ny) in the
case when the value of #1/gcd(Tp, T1) is an integer
or is relatively large. In particular, when Ty = Ti,
To =T = ged(Ty, Ty), t' = t, and
At%"tl—t]: 1, 0<r<n—1;
To 0, nHh<t<Ty—1.

In summary, the data complexity of SW-SCA is t
times that of the original SCA. Where we have
1 A ( h—1t ‘I ~ged(To, Th)
© | ged(To, Th) Ty
to =to (mod ged(To, T1)),

0 <ty < ged(To, Th).
to is the position of the leakage point that is most
relevant to the intermediate value in the power curve.
In particular, when ¢, /gcd(7p, T7) is an integer or is
relatively large, A;, ~ t1/T1 = t1/(t1 + ny).

)

4.2 Time complexity

Because the acquisition and the encryption devices do
not work at the same time, the time complexity of
SW-SCA is also greater than the original SCA. For
simplicity, we assume that the working time of the
acquisition device is less than the total encryption time.
If the working time of acquisition device is M7, and
the working time of encryption device is NTy. The
corresponding plaintext of the first power curve has N —
M + 1 possible cases. The current algorithm exhausts
all of the possible N —M + 1 possible cases, so the time
complexity is multiplied by N — M + 1. In addition,
the encryption cycle is Ty, that is, a curve has T
points. Because we have no information to determine
the target location, we must perform this calculation for
all Ty points. The original SCA can always select a
certain range of points to finish the analysis, so the time
complexity of SW-CPA is multiplied by 7o/ W, where
W is the number of points of each curve that original
SCA used. Therefore, the time complexity of SW-SCA
is (N —M + 1)Ty)/ W times that of the original SCA.

5 Experiments

In this section, we first perform a simulation experiment
to verify the effectiveness of SW-CPA and SSW-
CPA, and the correctness of the theoretical complexity
evaluation, and then we finish our practical analyses of
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SW-CPA and SSW-CPA with respect to the scenario
presented in this paper.

5.1 Experiments on the simulated traces

5.1.1 Measurement setup

Our analysis method is performed with respect to
AES-128. Firstly, in the original scenario SCA attack
scenario, we use an Agilent DSO-X 3034 A oscilloscope
to sample the power consumed by the SASEBO-GII
board at a sampling rate of 5x107 s™!, and a PA303
amplifier to amplify the signal power, and we obtained
a power matrix of 20000 x 3253. To simulate the
partial and discontinuous power consumptions in the
no-trigger attack scenario, for the obtained initial power
matrix, we set the parameters £y = 1000, ny = 2000.
That is, we set the processing period to keep 1000 points
and throwing away 2000 points, and we deleted 2000
curves each at the beginning and end of power matrix.
The data thrown away is denoted by NaN.

5.1.2 Results

We performed the first SW-CPA and SSW-CPA on the
SASEBO-GII samples using the AES-128 algorithm.
Figures 4 and 5 show the differences obtained when
guessing different subkeys for different SPEs, with
the correct subkey plotted in black and the rest are
plotted in gray. The correct subkey 83 corresponds to
the highest spike, which also tells us that the next M
plaintext starting from position 2000 is the sequence
corresponding to the power consumption.

Figures 6 and 7 show the experimental results when
taking the number of traces as a variable. The more
traces are used, the more distinguishable is the correct
subkey. The correct subkey 83 converges to about 0.072,
whereas the others converge to about 0.01.

Based on the traces of 4000 (M;) or more, it
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Fig. 4 SW-CPA result as SPE changes in simulation
experiment.
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Fig. 5 SSW-CPA result as SPE changes in simulation
experiment.

Correlation coefficient distribution under different number of power curves
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Fig. 6 SW-CPA result as the number of traces changes in
simulation experiment.
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Fig. 7 SSW-CPA result as the number of traces changes in
simulation experiment.

is possible to obtain the stable maximum correlation
coefficient, whereas in the original with-trigger
scenario, the required number of curves for a successful
attack is about 1600 (M), as shown in Fig. 8.
According to the proofs presented in Section 4.1, we
calculated that A; ~ 0.332, M; = %MO = 4820 =~

o 3Correlation coefficient distribution under different number of power curves in original SCA
. ‘ T T T T T T T T

0.2 - q

o
|
I
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|
i \ \ \ \ \ \ \ \ \
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Power curve number

Fig. 8 CPA result as the number of traces changes.

4000, so we can accept that the number of curves in
the simulation experiment and the previous theoretical
estimate are basically the same.

5.2 Experiments on the physical traces

We conducted practical experiments on SASEBO-W
board, which is connected only to the oscilloscopes
channel-1 by its port-J2 without any computer control
or triggering system. The power consumption sampled
by the oscilloscope is stored on a PC, and the entire
scenario was like that shown in Fig. 1. The parameters
in this experiment were 77 = 6000052, Ty = 7326,
and 1 = 20000, and we sampled a total of 40 x 20 000
power consumption data items. We performed both
SW-CPA and SSW-CPA, and the experimental results
are shown in Figs. 9 and 10, where the correct subkey
43 is plotted in black and the rest are in gray. From
the figures we can see that SSW-CPA succeeds in
recovering the correct subkey 43, whereas SW-CPA
failed.

Then, we applied SSW-CPA to the case with a
different number of curves. The result, as shown in

Relationship between hypothetical keys and the sliding window position under the same leak point
T T T T T T T T

Correlation coefficient

p
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The position of sliding windows
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Fig. 9 SW-CPA result as SPE changes in practical
experiment.
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ip between hyp: ical keys and the sliding window position under the same leak point
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Fig. 10 SSW-CPA result as SPE changes in practical
experiment.

Fig. 11, indicate that as the number of traces increases
to 10000 or more, the distinction between the correct
and incorrect subkeys becomes more pronounced.

6 Conclusion

In this paper, we applied existing SCAs from
experimental conditions in a real attack scenario that
had two features. First, the acquisition device worked
independently from the encryption target, and second,
there was no modification or trigger signal in the
encryption source code and the encryption pattern was
not obvious in the side channel samples. For SCAs
that cannot handle this scenario, we proposed a method
called SW-SCA that can.

We also improved the efficiency of SW-SCA using
the soft K-means preprocessing method, and proved the
effectiveness of incorporating this method. Moreover,
we evaluated the time and data complexities of SW-
SCA, which we determined by the parameters in
the sampling conditions and encryption. Quantitative
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Fig. 11 SSW-CPA result as the number of traces changes in
practical experiment.
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estimation can help the designer or evaluator determine
the real threat from an SCA attacker and improve
security in real applications. The experimental
results verified the effectiveness of SW-SCA and
the correctness of the complexity evaluations.
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