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Abstract: Extracting and analyzing network traffic feature is fundamental in the design and implementation of

network behavior anomaly detection methods. The traditional network traffic feature method focuses on the

statistical features of traffic volume. However, this approach is not sufficient to reflect the communication pattern

features. A different approach is required to detect anomalous behaviors that do not exhibit traffic volume changes,

such as low-intensity anomalous behaviors caused by Denial of Service/Distributed Denial of Service (DoS/DDoS)

attacks, Internet worms and scanning, and BotNets. We propose an efficient traffic feature extraction architecture

based on our proposed approach, which combines the benefit of traffic volume features and network communication

pattern features. This method can detect low-intensity anomalous network behaviors and conventional traffic

volume anomalies. We implemented our approach on Spark Streaming and validated our feature set using labelled

real-world dataset collected from the Sichuan University campus network. Our results demonstrate that the traffic

feature extraction approach is efficient in detecting both traffic variations and communication structure changes.

Based on our evaluation of the MIT-DRAPA dataset, the same detection approach utilizes traffic volume features

with detection precision of 82.3% and communication pattern features with detection precision of 89.9%. Our

proposed feature set improves precision by 94%.
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1 Introduction

Over the last decade, people have become increasingly
reliant on computer networks in their work and daily
life. As a result, network traffic has experienced
tremendous growth in both volume and variety.
Many studies have used the technique of network
traffic analysis to improve the performance of
networks, optimize network structures, and strengthen
network security. Anomalous network behaviors are
the common representation of network faults, cyber-
attacks or other abnormal events within a network.
Thus, discovering such anomalous network behaviors
has become an important problem for researchers in
this field. Today, efficient network behavior anomaly
detection faces certain challenges due to the large
complex nature of network traffic.
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The goal of network behavior anomaly detection is to
find unexpected or irregular behaviors in the data. Many
studies have investigated network behavior anomaly
detection in the traffic volume time-series data. These
studies focus on the features of traffic volume, which
are treated as a time series, such as Internet Protocol
(IP) address counts, open port counts, durations, flow
counts, traffic volume, packet counts, and so on.
Using the features of traffic volume statistics for
anomaly detection, however, cannot efficiently detect
low-intensity anomalous behaviors. Meanwhile, other
researchers focus on the features of communication
patterns to detect anomalous behaviors that do not
exhibit traffic volume change, such as degree, in-degree,
out-degree, and graph edit distance, to name a few.
These studies can extract the network communication
structure feature from traffic and discover low-intensity
anomalous network behaviors, such as botnet command
and control communications, which cannot be detected
with conventional traffic volume feature anomaly
detection.

Different network anomalies show the varying traffic
features’ changes[1]. Both traffic volume features or
communication pattern features can be used to detect
attacks, but they cannot comprehensively detect the
overall network behavior. Hence, in the current study,
we explore the benefit of combining the traffic volume
feature and the communication pattern feature obtained
by network traffic data. We propose a novel dynamic
metrics approach for traffic feature extraction, which
serves as a profiling network behavior for our anomaly
detection.

1.1 Related works

Feature extraction from network traffic, which is
fundamental to the implementation of network behavior
anomaly detection, has received significant research
attention. We summarise the related work and pose
several limitations.

The deep packet inspection technique is used to
analyze network traffic data. Given that network
traffic volume has increased and the network speed
has improved. The packet sampling technology and
network flows (e.g., NetFlow and NetStream) have
been proposed. Many researchers have adopted flow
characteristics to find malicious behaviors in detection
algorithms. In Ref. [2], the authors proposed a Hidden
Markov model to realize the attack detection of
Secure Shell brute force based on time series. In

Ref. [3], utilizing the Gaussian mixture distribution
model, the authors profiled the baseline of normal
network behavior. The work of Ref. [4] proposed the
Autoregressive Fractionally Integrated Moving Average
(ARFIMA) model, which compared forecast values
with real values, and identified the deviation degree
to determine whether the current value is abnormal
or normal. The previous research in Refs. [5, 6] showed
that the observed traffic had self-similar and long-range
dependent characteristics over time[7, 8]. Meanwhile, the
traffic analysis approaches based on the time-scale can
identify abrupt changes in network traffic volume[9].

Despite recent network traffic analyzes in anomalous
behavior detection research, past studies have only
focused on traffic volume. In practice, the detection
approaches based on the packet feature extraction are
extremely difficult to apply in a high-speed network
environment[10]. The authors in Ref. [10] also pointed
out that the flow-level feature cannot effectively
reflect the whole information of the network traffic,
characterized by information loss with respect to the
network traffic characteristics. Particularly, attackers
can evade the traffic volume detection approach, and
low-intensity anomalous behaviors do not manifest
in terms of traffic volume but change in terms of
communication patterns.

Subsequently, several researchers presented graph
theory to analyze network communication patterns
and determine network attacks by identifying the
anomalous graph structure dealing with these
issues[11–16], including the analysis of network structure,
dependence, and correlation. The authors in Ref. [17]
used the network flow construct traffic graph to analyze
the network communication pattern and employed
the characteristic values of authority and hub in the
cluster algorithm for the botnet detection. The authors
in Ref. [18] proposed a graph-based analysis of the
network communication pattern to identify malicious
network sources. In Ref. [19], the authors proposed
the use of the community discovery method to identify
the anomalous community, and found that members
of the community were under similar attacks with
low intensity against multiple hosts. In Ref. [20],
the authors described the network communication
pattern based on time series using a graph model to
achieve anomaly detection. The authors first defined
the process of calculating the similarity of the two
graphs and detected the anomaly graph to identify
low-intensity attacks. The analysis of network data
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based on the graph theory has received wide attention
from researchers.

Despite these breakthroughs, existing research
on communication pattern has focused on specific
problems or aspects, such as detecting BotNets,
identifying Peer-to-Peer (P2P) applications, and
generating malware signatures, which deal with the
problem of revealing anomalous communication
structures based on fewer graph features instead of
traffic volume anomaly. In contrast, we aim to provide
an efficient feature extraction approach, which is
built upon real-time network traffic data, to combine
the benefit of traffic volume features and network
communication pattern features for real-world network
behavior anomaly detection. In our work, a novel
dynamic metrics approach for traffic feature extraction
is proposed to describe the change of network traffic
situation across the two adjacent time windows. Our
experiment results demonstrate that the proposed
approach does not only increase and complement
flow-level feature data, but also improve detection
accuracy.

1.2 Key contributions

The paper proposes a fast and efficient feature
extraction approach using Apache Spark for network
behavior anomaly detection. The main contributions of
our approach are presented below.

(1) We propose a real-time feature extraction
architecture to profile traffic volume and the
communication pattern simultaneously, instead of just
one of them. We define four types of flow-level feature
set to profile the network behavior changes across time
windows, including traffic volume static feature, traffic
volume dynamic feature, communication pattern static
feature, and communication pattern dynamic feature.

(2) We make several key attempts to explore
the regular feature fluctuations and the correlations
between the proposed four types of feature set in
anomalous time windows.

(3) We establish a real-time anomaly detection
approach called Evidence Accumulation Deviation
Degree (EADD), which provides the following
advantages: (i) quantification of the absolute change
to discover burstiness in network behaviors, (ii)
quantification of the relative changes to reduce
false alarms due to the timely occurrence of
centralised, periodical network behaviors, and (iii)
the quantification of the changes in trends, to discover

low-frequency and low-intensity attacks even though
the features of network behavior do not change
suddenly.

(4) We demonstrate the applications of combining
traffic volume and the communication pattern feature
set in detecting conventional traffic volume and low-
intensity anomalous behaviors using a real-world
dataset and validation dataset. Based on the real-world
labelled dataset traffic volume and the communication
pattern feature, we make the different contributions
for detected instances. Based on our evaluation of
the MIT-DRAPA dataset, the same detection approach
utilizes traffic volume and communication pattern
features with detection precision rates of 82.3%
and 89.9%, respectively. Our proposed feature set
also showed improved precision by 94%. We also
compare the changes of the time series of the traffic
volume, which shows no sudden change. We visualize
four graphs to profile the changes in communication
patterns, successively normal graph structures before
attacks, anomalous graph structures, and normal graph
structures after attacks. We also compare with feature
set extraction works in Ref. [21] depending on whether
the same test dataset is used. Our detection results
demonstrate that our extraction feature set has a high
detection rate.

2 Feature Extraction Architecture

In this section, a real-time feature extraction
architecture is proposed to profile the traffic volume
and the communication pattern. The system consists of
four key steps, as shown in Fig. 1.

Step 1 is the procedure of stream data collection.
Observed packets are collected to form the session
flow records in real time. At the same time, session
flow records are transformed into a graph using Spark
Streaming for constructing the graph model.

Step 2 calculates the statistical features. The system
establishes profiles for each time interval by means
of the feature extraction. Then, the static metrics and
dynamic metrics approaches are applied to calculate the
features set. Once the behavior profiles of current time
are established, the system switches to the detection
step.

Step 3 is a time series anomaly detection approach.
Our proposed approach analyzes time series by a
single data point and the subsequent time series. More
specifically, neither the entire history data nor only one
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Fig. 1 Feature extraction architecture.

nearest data is considered for the comparison of the
feature values. We also determine how many horizontal
adjacent points and vertical adjacent points are needed
to work well. This is planned for future works.

Step 4 is an anomaly decision phase. Based on
data from the last step of the analysis, evidence of
accumulation deviation degree (i.e., anomaly scores)
is calculated, and alert thresholds are derived from
years of manual analysis experiences in the campus
observation networks.

3 Feature Extraction

In this section, we propose our feature set across each
time window; here, we combine the traffic volume
features and communication structure features. In the
meantime, we cover the shortage of the lack of
information on flow-level features. The definition of
flow-level traffic data (i.e., session flow) is the same
with our previous work[22], namely, session flow data.
Two measurement methods are directly related to our
work: static metrics and dynamic metrics.

We utilize the static metrics method to extract the
static feature, which we calculate on one dataset of
the given time interval. The static feature can describe
network traffic condition in the current time window. It
is a conventional feature extracted method applied on
time series data.

We utilize the proposed dynamic metrics method to
extract the dynamic feature and then calculate the two
datasets related to two adjacent time intervals. The
dynamic feature can describe the change of network
traffic situation across the two adjacent time windows.

Table 1 List of network traffic features.

Feature category Detail

Traffic volume static feature

Byte counts
Packet counts
IP connection counts
Port connection counts

Traffic volume dynamic feature

Ratio of protocol
Ratio of connection counts
Ratio of byte counts
Ratio of packet counts

Communication pattern static
feature

Degree
In-degree
Out-degree
Entropy of the degree
In-degree
Out-degree maximum degree
Only in-degree node counts
Only out-degree node counts
Both in-degree
Out-degree node counts

Communication pattern
dynamic feature

Graph edit distance
Overlay edge counts
Overlay node counts

The key features are presented in Table 1.
The traffic volume feature set is inspired by previous

research[23, 24]. The mean, entropy, and maximum and
standard deviation values of the features are considered.
The mean packet counts per time window reflect the
mice flow proportion of all flows, wherein more mice
flows mean a larger attack. The communication pattern
feature set is also the graph feature set used in related
works[25–27]. In addition, graph edit distance is suitable
for measuring changes in graph topology[28]. Graph
edit distance can be used to evaluate the changes
between two successive graphs, which can reflect the
insertion and deletion of the edges and vertices. Graph
patterns can also be used to identify complex behavior
relationships.

3.1 Traffic volume dynamic feature

In this section, we explore the proposed dynamic
metrics methods to calculate the traffic volume dynamic
features. The first step is obtaining the two data sets,
namely, the continuous connection dataset and active
connection dataset. The definitions are presented here.
The second step is to calculate the dynamic features of
these datasets.

For example, the dynamic feature value of packet
counts is the ratio of the number of packet from
continuous connection dataset to the number of packet
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from the active connection dataset.
The Continuous Connection Set (CCS) is across the

two adjacent time windows. CCS contains all records of
the history window dataset, CSWH, which also belongs
to the observation window dataset, CSWA, defined
below.

CCS D CSWA \ CSWH (1)

Meanwhile, the Active Connection Set (ACS) is also
across the two adjacent time windows. The elements of
ACS are in observation window dataset, CSWH, but not
in the history window dataset, CSWA, which is defined
below.

ACS D CSWA � CSWH (2)

In the equation above, WH denotes the history
window (or the nearest-neighbour time window), CSWH

denotes the dataset of WH, WA denotes the current
time window (or the observation window), and CSWA

denotes the dataset of WA.

3.2 Communication pattern dynamic feature

In this work, session flow data are represented as
graphs. The graph nodes represent the source or
destination IP addresses, and graph edges represent
the network connection between nodes. We extract
the graph-based structural features to profile the
communication patterns for the network traffic analysis.
The critical steps involved in the extraction of
communication pattern features are described below.

Step 1: The session flow data are converted into the
graph data to construct a directed graph G D .V;E/
in each time window, where V denotes the nodes in
the graph and IP is the address set of the session flow
data. The .u; v/ 2 E denotes the edges in the graph,
indicating that the network communication behavior
exists between the IP address u and IP address v .

Step 2: We apply the static metrics definition
and dataset, CSWA to calculate the graph-based static
features. This is shown in Fig. 2, where T D ft � n;
: : : ; t �m; : : : ; t � 1; tg denotes a set of time intervals,
G.t/ denotes a graph snapshot in time t , and a series of
graph snapshot forms a time series graph given below.

Fig. 2 Time series of graphs.

G D fG.t � n/; : : : ; G.t � m/; : : : ; G.t � 1/;G.t/g:

Step 3: We apply the dynamic metrics definition
to calculate the features set of the dynamic graph, for
example, the dataset related to the two graphs snapshot,
namely, G.t �m� 1/ and G.t �m/, over two adjacent
time intervals at time t�m�1 and t�m . For example,
the dynamic feature value of graph edit distance is
calculated by jVt�1j C jVt j C 2jVt�1 \ Vt j C jEt�1j C

jEt jC2jEt�1\Et j, where jVt�1j represents the number
of nodes in graph G.t � 1/, jEt j represents the number
of edges in graphG.t/ ,G.t�1/ andG.t/ represent the
graphs of the two adjacent time intervals.

4 Computation of Anomaly Scores

According to the long-term, we observe the regular
feature fluctuations and the correlations among them
from network traffic data on campus data centers. Then,
we establish the anomaly detection approach, namely,
the evidence accumulation deviation degree, which
consists of the absolute change, the relative change, and
the trend change. Next, we perform the following: (1)
we quantify the absolute change based on our proposed
method to discover the abrupt change, (2) we quantify
the relative change to reduce false alarms due to the
centralised, periodical network behaviors that occur,
and (3) we quantify the change of the trend change
to determine whether the network behavior will not
change suddenly. The following parts introduce the
process of calculating three change values.

4.1 Absolute change

The comparative quantification of the absolute change
aims to solve the problem of burstiness network
behaviors, which focus on the change of feature cross
adjacent times.

The value of the absolute change is given by the
formula jf i .t/ � f i .t

0

/j, where f i denotes the i -th
feature, t is current time and t

0

is the adjacent time.
In each time interval, we compute EA.1/. As shown
in Eq. (3), EA.1/ represents the value of evidence
accumulative for the absolute change, wi represents the
weight of the i -th feature, m represents the number of
features (and is equal to 1) and R represents the feature
set with reference to the horizontal adjacent points at
time t .

EA.1/.t/ D

mX
iD1

�
wi �maxfj f i .t/ � f i .x/ j; x 2 Rg

�
(3)
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4.2 Relative change

In this section, we define the evidence accumulation
absolute change. Relative change aims to describe the
network behavior with the property of periodicity and
regularity in the time series data. This approach tries
to solve the problem wherein centralised, periodical
network behaviors appear on time can lead to more false
alarms.

The value of the evidence accumulation relative
change is given by the formula f

j
i .t/=max.f i .t/;

f i .t � 1/; : : : ; f i .t � N2//, where N2 denotes the
number of data points that are vertically adjacent to time
t , and the other variables have the same meaning as
those described in Eq. (3). In each time interval, we
compute EA.2/ , which is given by Eq. (4), where EA.2/

represents the value of evidence accumulative relative
change, Z denotes the feature set of the data points
that are vertically adjacent to time t with reference to
previous k weeks at the time t and jZj denotes the
size of the set Z. Z is given by the formula jZj D
N2 � .k C 1/. We define the evidence accumulation
relative change measure below.

EA.2/.t/ D

mX
iD1

0@wi

k

kX
jD1

 
f

j
i .t/

maxff j
i .x/g

; x 2 Z

!1A
(4)

4.3 Trend change

The majority of past studies have focused on the
individual unusual changes from the time series data,
like our absolute change and relative change. We also
consider the shapes of several data points of the time
series with respect to the other extracted data points.
By quantifying the fluctuations in trend changes, we
can profile the sharp feature values on specific time
series. When low-frequency and low-intensity attacks
occur in a network environment, the features of network
behavior will not change suddenly.

In each time interval, we calculate EA.3/, EA.3/

is given by Eq. (5). We also apply Symbolic
Aggregate Approximation (SAX) to calculate degree
of deviation between the subsequences. SAX[29] is
proposed based on Piecewise Aggregate Approximation
(PAA)[30]. Then, we calculate the minimum distance,
mdist. OC ; OQ/, where OC represents the subsequence
of current time and OQ represents any subsequence of
history data.

EA.3/
D

mX
iD1

0@ kX
jD1

wi'j �mdist. OCi ; OQ
j
i /

1AC " (5)

where 'j denotes the weight of previous j -th week andPk
jD1 'j D 1:

In the paper, our alphabet of cardinality is set to 10. In
accordance with Eqs. (3)–(5), the value of evidence
accumulation deviation degree can be calculated, as
shown in Eq. (6).

EA D �1

mX
iD1

�
wi �maxfj f i .t/ � f i .x/ jg

�
C

�2

mX
iD1

0@wi

k

kX
jD1

 
f

j
i .t/

maxff j
i .t/g

!1AC
�3

mX
iD1

0@ kX
jD1

wi'j �mdist. OCi ; OQ
j
i /

1AC" (6)

Algorithm 1 outlines the major steps of the network
behavior anomaly detection algorithm. We develop
a scalable algorithm using a proposed traffic feature
extraction approach and the time series anomaly
detection technique, to detect the two possible types of
traffic volume and communication pattern anomalies.

5 Experimental Evaluation

In this work, Apache Kafka, Apache Flume, and
Apache Storm were combined for the big data
analysis. However, using multidimensional data can
be problematic due to computing expenses, making
such data inappropriate for real-time calculations to be
used in actual practice. Multiple dimension features are
necessary for the proper profiling time series network
behaviors in the real world. Traditional ways of massive
data processing, analyzing, and storage for network
traffic may not work effectively.

5.1 Experimental system setup

(1) Network architecture for data collection. The data
source used in this work is captured from the campus
network and we only process the Internet Protocol
Version 4 (IPV4) packets. The system adopts the
port mirroring technique to accurately capture network
traffic.

The runtime environment is located in a campus
network, as illustrated in Fig. 3. Though port mirroring,
one switch port sends a copy of data packets to another
switch port, so all of the packets are redirected to
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Algorithm 1:� Anomaly identification algorithm
Input: network traffic session data
Output: alarm

1 get stream data and set time window ;
2 for each rdd in DStream do
3 slicehis D get previous time-window slice data;
4 slicenow D get current time-window slice data ;
5 parse session data rddslicehis ;
6 parse session data rddslicenow;
7 if rddslicehis ¤ null then
8 f tvs D caculate static traffic volume features;
9 build edge data edgeRDD;

10 create new graph rddgraph;
11 caculate static traffic activity graph features f tags ;
12 end
13 if rddslicehis ¤ null and rddslicenow ¤ null then
14 caculate common data between previous and current

rddcommon;
15 caculate active data this time window rddactive;
16 caculate dynamic traffic volume features f tvd ;
17 caculate dynamic traffic activity graph features

tdgd ;
18 end
19 f D f tvs [ f tags [ f tvd [ tdgd ;
20 the feature vector f is as input data of anomaly

detection; // or save to database
21 get current time type tc workday or weekend;
22 get history data Rtc for absolute changes ;
23 get history data Ztc for relative changes ;
24 get history data Qtc for trend changes ;
25 filter anomalous times on feature set R, Z, and Q;
26 get current feature vector singledata.t/ D f .t/ ;
27 get subsequence data seqdata;
28 for each fi in singledata.t/ do
29 EA.1/.t/ Dcaculate the absolute change;
30 EA.2/.t/ Dcaculate the relative change ;
31 end
32 for each fi in seqdata.t/ do
33 get i-th feature subsequence history data OQi ;
34 get i-th feature subsequence current data OCi ;
35 EA.3/.t/ Dcaculate the trend change;
36 end
37 EA.t/ Dcaculate evidence accumulative degree;
38 if EA > ' then
39 alarm and save EA to MySQL ;
40 end
41 end

the collection router. Then, in our big data cluster
(computing cluster and storage cluster), we can capture
network traffic from the collection router. We use
PF RING technology to capture the packets from our
server with the 10 Gbps optical network card. Next,

Fig. 3 Network architecture.

we employ Apache Flume to obtain the packets from
one network card and then Apache Kafka technology
is employed to transmit the packets to another network
card. Finally, the function of step 1 is implemented, as
shown in Fig. 3.

(2) Big data platform for data processing. The
proposed algorithms are developed on Spark 1.6.0
using Scala 2.10.4, continuously executes for real-time
anomaly detection at campus data center. To launch a
Spark application in cluster mode, we need to set the
proper configuration to obtain the better performance.
Our Spark application properties in runtime, shown in
Table 2, demonstrate good performance.

Our big data cluster includes several nodes using
Tecal RH2288H V2. All the nodes have 10 cores of
two Intel(R) Xeon(R) Processor E5-2658 v2 2.40 GHz
with 256 GB of Random Access Memory (RAM). The
connection between each node is 10 Gbps. The big data
platform is set up with Hadoop YARN 2.6.0 on CentOS
6.5 as a single cluster, which is configured with a single
NameNode and several DataNodes. Each node has the
same application deployment. Spark is deployed in the
Hadoop cluster managed by YARN.

5.2 Feature analysis

We make several key attempts to explore the
Table 2 Spark application properties.

Property Value
Deploy mode Cluster
Driver cores 2

Driver memory 2 GB
Executor counts 16

Executor memory 1 GB
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regular feature fluctuations and correlations among the
proposed four types of feature sets. We make the
following observations: (i) these features indicate that
the daily and weekly patterns of network behaviors
have regular periodicity, (ii) several features are almost
unchanged, except for several anomalous fluctuations,
(iii) communication pattern features show pronounced
increasing peaks and decreasing valleys at regular
intervals, and (iv) when anomalies occur, different types
of features show anomalous fluctuations at varying time
slots and the same type feature may show different
degree changes.

(1) Traffic volume feature. Figure 4 shows the traffic
volume static feature. We observe a similarity between
the traffic volume in Fig. 4a and the data packet
counts in Fig. 4b. The red and blue lines represent
the protocol of Transmission Control Protrol (TCP)
data and the User Datagram Protocol (UDP) data,
respectively. The feature values of network behavior
variability or burstiness are similar, especially with
the long-range time scale. Evidently, these features
indicate the daily and weekly patterns. Even with
the same traffic volume static features, Figs. 4a and
4b show anomalous fluctuations at different time
slots. Furthermore, as shown in Fig. 4, we can conclude

Fig. 4 Static features of session flow.

that the anomalies occurring at time slot a1 exhibit
the change of feature values on packet counts that are
greater than the volume.

We find that the daily and weekly patterns of
network communication behaviors in the data center
have regular periodicity, which is in accordance with the
findings of past works[31, 32]. Moreover, some servers
only provide services (e.g., database, backup, cluster,
etc.) and cannot be directly accessed by external users.
These network communication behaviors of the data
center reflect the provision mode for daily service and
the network behaviors of external users[33, 34].

Figure 5 shows the feature values of the ratio of
connection counts related to traffic volume dynamic
features. As can be seen in the figure, the trends
are almost unchanged, except for several anomalous
fluctuations within the time series data.

(2) Communication structure feature. Figure 6 plots
the same time range on the static graph features
calculated over 30-minute intervals. Figures 6a–6c
represent the number of nodes that only have incoming
edges, outgoing edges, and both incoming and outgoing
edges, respectively, as observed in the snapshot graph.
Notice that the number of nodes rises significantly in
Fig. 6a but not in Fig. 4. Figure 4 reflects the traffic
volume features and Fig. 6 reflects the communication
pattern features at the time-scales of interest. Notably,
the variabilities of network behavior features appear in
different time slots in Figs. 6a–6c.

Figures 7a–7c represent the graph edit distance
and the number of edges overlap or nodes overlap
that appear in adjacent dynamic graphs, respectively.
We find that significant stability and time-series data
values over adjacent time slots do not change abruptly
during the 7-day period. Figure 7 shows pronounced
increasing peaks and decreasing valleys at regular
intervals.

Fig. 5 Dynamic features ratio of connection counts.



Xiaoming Ye et al.: Efficient Feature Extraction Using Apache Spark for Network Behavior Anomaly Detection 569

(a) Number of nodes that only have an in-degree

(b) Number of nodes that only have an out-degree

(c) Number of nodes that have both the in-degree and out-degree

Fig. 6 Static features of the graph.

Next, we compare the traffic volume feature of packet
counts with the feature of graph edit distance. The
anomalies occurring at time slot a1 and the feature of
packet counts demonstrate the sudden huge growth;
although the feature values are almost normal in the
next time slot, the anomalies continue. The correlations
reflected in the graph edit distance at that point suddenly
decrease as well; the anomalies lasted for almost 50
time slots, as shown in Fig.7a.

5.3 EADD method

The proposed real-time feature extraction and anomaly
detection approach EADD is implemented in our
campus network environment. We also apply our
proposed feature set to the MIT-DARPA 1999 intrusion
detection dataset.

(1) Real-world dataset. By observing a total of

(a) Demonstration of the different time points by comparing graph edit distance to packet
counts

(b) Edge overlap counts

(c) Node overlap counts

Fig. 7 Dynamic features of the graph.

3 814 373 408 session flow records collected over 181
days, we found that the number of daily average
session flow records is 21 073 886 and the number of
daily average users is 387 406. The expiration times of
the TCP and UDP session flows are 5 min and 20 s,
respectively. The system uses a batch interval of 60 s
and a time window of 60 s in realizing the real-time
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processing of the received session flow records. As for
the selection of the parameters for detection algorithms,
in absolute change, each feature is referenced to the
adjacent 10 points at a given time, whereas in relative
change, each feature is referenced to the adjacent
time in the previous 3 weeks and the current week.
Meanwhile, in trend change, the length of the original
time series is 20, which is reduced to 10 dimensions
via PAA. Moreover, considering the correlations across
time, the nearer the recent data are assigned to the
feature value x, the greater their higher weight.

The system detects the anomalous behaviors during
network operation, which may be due to the network
transformation of the data center by the network
administrator, server migration (e.g., change of the
server’s IP address, network devices addition and
deletion, and so on), the greater number of connections
to the rarely accessed network servers, and other
unusual behaviors of the network management. These
useful and seemingly legitimate exceptions, which are
often different from the usual network behaviors, can
be found in time, as shown in Fig. 8.

Our approach can complement the existing traffic
volume data analysis by identifying the specific
phenomena we are missing because they are just
not high volume enough, including BotNets, P2P,
established services, and so on. Figure 8 shows the
results of the real-time detection of the proposed
approaches. Our proposed approach may not cause
false alarms because the EADD is always below 9
on the internal network communication (and below 97
on the external network communication) in this work.

Fig. 8 Real-time anomaly detection.

To alleviate the effect of noise, the approach EADD
only produces non-zero charges when the current time
window EADD is larger than the normal EADD by
thrice the standard deviation.

We apply the communication pattern features and
the traffic volume features together to detect the
anomalies, and then label the whole detected anomaly
instance. Then, we compare the contributions of
different feature sets with the same detected instance
by conducting two experiments. The first experiment
is that only traffic volume features are chosen to
detect anomaly. The second experiment is that only
communication pattern features are chosen. After
several experiments, we find in the real-world data
that the traffic volume features and communication
structure features play complementary roles in the
different network anomalies. The approach shows the
highest accuracy with both feature sets as well as lower
accuracies of 68.63% and 79.91% with just the traffic
volume features and communication structure features,
respectively, as shown in Table 3. As mentioned
above, different network anomalies show the changes
of different network features.

(2) 1999 DARPA dataset. We validate the detection
precision of the proposed approaches on the MIT-
DARPA 1999 dataset[35]. We consider only the outside
traffic in our evaluation and analyze the traffic data on
Monday, Week 5. The traffic data include not only the
normal behaviors, but also the attacking activities. The
numbers of each attack type can be found in Table 4.

Table 3 Accuracy result in different features.
Feature category Accuracy (%)

Traffic volume feature 68.63
Communication structure feature 79.91
Both 100

Table 4 Numbers of each type of attack.

Attack type
Number of

attacks
Attack type

Number of
attacks

crashiis 2 queso 14
eject 6 secret 2
fdformat 10 selfping 2
httptunnel 2 tcpreset 3
neptune 6 teardrop 2
perl 2 xsnoop 2
pod 2 xterm 8
ppmacro 22 yaga 4
ps 6
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This work sets out to make a comparative evaluation
of our feature set running on the algorithm J48
and AdaBoostM1 in WEKA. The experiments results
shown in Table 5 indicate that the feature set combining
traffic volume and communication structure features
shows the best precision and recall. Chen et al.[21]

proposed the combination of Principal Component
Analysis (PCA) and wavelet analysis feature selection
algorithm for better anomaly detection. Their solution
was also tested using the MIT-DARPA 1999. However,
their algorithm generated many false alarms (147 false
alarms). In comparison, our extraction feature set,
which focuses on the traffic volume and communication
pattern analysis of attacks, can detect attacks that
change the volume and the structure of the network
overtime with a high detection rate.

Figure 9 shows the network communication structure
on the MIT-DARPA 1999 dataset in the time periods
of the sudden increase of feature values to a maximum
degree. We visualize the collected flow-level data as a

Table 5 Results in different feature sets.

Classified features
J48 (%) AdaBoostM1 (%)

Precision Recall Precision Recall
Traffic volume 79.60 86.10 82.30 86.10

Communication
structure

79.90 73.00 89.90 94.80

Both 87.60 89.50 94.00 95.20

Fig. 9 Anomalous and normal periods.

graph at four time slots. This is very useful because
it enables us to better understand the changes of
communication patterns. At the time slot in which the
maximum degree suddenly increases, we can observe
that new small nodes of clusters appear at the beginning
of the attack. Group attack behaviors are observed
in three hosts (172.016.114.050, 152.169.215.104,
and 206.048.044.050, respectively). By sequential
observation, we find that the three clusters are larger
than the prior time slot. Comparing the changes of
the other features, we show a time series of the traffic
volume. There is no sudden change in that time series,
and such correlated anomalous behaviors cannot be
detected through traffic volume features. Therefore,
the proposed extraction feature set is more efficient
than the other method in detecting the changes in
communication patterns.

Two experiments are carried out to prove the
validity and feasibility of our proposed approach.
The reason why a lower accuracy is obtained could
be due to the different network anomalies causing
different changes of feature sets on a real-world
dataset. Different network anomalies show the changes
of different network features. As we have seen, the
traffic volume and communication pattern features can
be complementary to each other. However, this does
not mean that the features of the graph are better
than the traffic volume features. During this detection
period, network anomalies cause greater changes on the
communication pattern features.

6 Conclusion and Future Works

We propose a real-time feature extraction architecture to
profile traffic volume and the communication patterns
for network behavior anomaly detection. We define
four types of flow-level feature sets and explore the
regular feature fluctuations and the correlations among
them in anomalous time windows. We establish a
real-time anomaly detection approach (i.e., EADD),
provide the quantification of the absolute change and
the fluctuations in the trend changes to discover the
anomalous behaviors accurately. Next, we demonstrate
the applications of combining the benefits of the traffic
volume and the communication pattern feature sets in
detecting conventional traffic volume and low-intensity
anomalous behaviors through a real-world dataset and a
validation dataset.

In the future, we plan to determine the cause of
anomalous behaviors, which is our next research goal.
We also plan to apply machine learning, outliers, signal
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analysis, optimization algorithm, and visualization,
to comprehensively understand the dynamic behavior
of complex networks and improve the accuracy of
anomaly identification.
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