
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 04/10 pp550–560
DOI: 10 .26599/TST.2018 .9010022
Volume 23, Number 5, October 2018

A Scheduling Optimization Technique Based on Reuse in Spark to
Defend Against APT Attack

Jianchao Tang, Ming Xu�, Shaojing Fu, and Kai Huang

Abstract: Advanced Persistent Threat (APT) attack, an attack option in recent years, poses serious threats to the

security of governments and enterprises data due to its advanced and persistent attacking characteristics. To

address this issue, a security policy of big data analysis has been proposed based on the analysis of log data

of servers and terminals in Spark. However, in practical applications, Spark cannot suitably analyze very huge

amounts of log data. To address this problem, we propose a scheduling optimization technique based on the

reuse of datasets to improve Spark performance. In this technique, we define and formulate the reuse degree

of Directed Acyclic Graphs (DAGs) in Spark based on Resilient Distributed Datasets (RDDs). Then, we define a

global optimization function to obtain the optimal DAG sequence, that is, the sequence with the least execution

time. To implement the global optimization function, we further propose a novel cost optimization algorithm based

on the traditional Genetic Algorithm (GA). Our experiments demonstrate that this scheduling optimization technique

in Spark can greatly decrease the time overhead of analyzing log data for detecting APT attacks.

Key words: Spark; Advanced Persistent Threat (APT); schedule; reuse; Resilient Distributed Dataset (RDD);

Directed Acyclic Graph (DAG); Genetic Algorithm (GA)

1 Introduction

Advanced Persistent Threat (APT) attack is an attack
pattern whereby attackers adopt advanced attack means
to make long-term and persistent network attacks on a
particular target[1]. Generally, the attackers in an APT
attack have a specific target. In the first step, they invade
into the target network by various means of social
engineering. Then, they continuously lurk in the target

� Jianchao Tang, Ming Xu, and Kai Huang are with the College
of Computer, National University of Defense Technology,
Changsha 410073, China. E-mail: mymailtjc@163.com;
xuming@nudt.edu.cn; kai.huang@nudt.edu.cn.
� Shaojing Fu is with the College of Computer, National

University of Defense Technology, Changsha 410073, and Sate
Key Laboratory of Cryptology, Beijing 100878, China. E-mail:
shaojing1984@163.com.
�To whom correspondence should be addressed.

Manuscript received: 2017-09-22; accepted: 2017-09-29

network to gather intelligence rather than immediately
launch attacks. This stage can last for a year or several
years until an attack network is built. Then, attackers
launch a final attack to unnoticeably steal confidential
documents of governments and enterprises or to cause
serious damage to important infrastructures.

Advanced persistent threat attacks have several
characteristics which make them difficult to detect[2]:
(1) They are advanced: Typically, the attackers actively
invade into the target network by social engineering
or zero-day vulnerabilities. Meanwhile, they adopt a
wide range of existing attack techniques to build the
subsequent attack network. (2) They are hidden: The
attackers usually lurk in the target network for a
long time without being discovered. (3) They are
persistent: The attackers continuously lurk in the target
network to gather intelligence in a long term and
wait for the final attack. Moreover, APT attacks
are extremely devastating since they can result in



Jianchao Tang et al.: A Scheduling Optimization Technique Based on Reuse in Spark to Defend Against APT Attack 551

the theft of confidential documents of governments
and enterprises and the destruction of country’s
important infrastructures[1–4]. For example, the events
of Operation Aurora of Google in 2009[5] and the
Stuxnet attack of Iran’s nuclear centrifuges in 2010[6].

To address the above issues, four types of security
policies against APT attacks have been proposed[2, 3]:
(1) Host file protection: In this security policy, the
execution of applications is strictly controlled by
creating a white list to prevent the execution of
malicious codes. (2) Malicious code detection: In this
security policy, the propagation of malicious code is
examined repeatedly. (3) Network intrusion detection:
The security policy involves analyzing and detecting
the command and control channels of APT attacks
by deploying network intrusion detection systems to
network borders. (4) Big data analysis: The security
policy is a kind of network forensics. First, the original
flow of network equipment and the logs of terminals
and servers are comprehensively collected. Then, the
data is stored in a centralized way and subjected
to deep analysis. When any clue of APT attack is
detected, the whole attack scenarios are reconstructed
as early as possible. This security policy is the most
effective policy to defend against APT attacks because
its analysis covers the whole attack process. Therefore,
we adopt the big data analysis policy to defend against
APT attacks.

For the big data analysis policy, a big data processing
framework is necessary to analyze massive amounts of
log data. As a distributed data processing framework
based on memory, Spark[7–11] has characteristics of high
efficiency, high fault tolerance, and high scalability, and
it is suitable framework for data analysis. Therefore,
Spark is selected as the log processing framework in this
study and the system model is as shown in Fig. 1. The
log data of terminals and servers are uploaded to the
Spark system. Then, Spark analyzes the input data and
sends the results to the output panels for decision-
makers to make the next decision.

However, in application scenarios of multiple
servers and multiple terminals, Spark cannot meet

Fig. 1 Big data analysis detection model.

the performance requirements. In fact, the calculation
results of some Spark applications can be reused
by other applications to reduce the execution time
of these applications[12]. Considering that Spark is
a distributed data processing framework, there are
many reusable calculation results when huge log
data is analyzed. If these calculation results can be
effectively reused, it would tremendously improve
Spark performance. However, for the existing Spark
mechanism, applications cannot reuse the same
calculation results.

Reuse techniques[13–15] are traditionally used as
database optimization methods, which involve reuse
of the same query results. Therefore, in this study, a
method of combining Spark with reuse techniques is
investigated to improve Spark performance. To achieve
the maximum reuse between multiple applications, a
scheduling optimization technique based on reuse is
proposed and implemented. Besides, some experiments
are conducted to prove its feasibility. The innovations
of this optimization technique are listed as follows:

(1) The concept of the reuse degree of Spark
applications is defined and a formula to calculate it is
proposed.

(2) Two novel concepts which are the relative location
and the redundancy operation based on the reuse
degree are defined. To obtain the optimal application
sequence, a global optimization function based on the
two concepts is proposed.

(3) To obtain the global optimal solution, a cost
optimization algorithm is designed and implemented
based on the traditional genetic algorithm.

The remaining parts of this paper are organized as
follows. The related works are introduced in Section
2. In Section 3, we define and formulate the reuse
degree. The global optimization function is introduced
in Section 4. In Section 5, we propose and implement
the cost optimization algorithm based on Genetic
Algorithm (GA). In Section 6, we conduct experiments
to prove the feasibility of our optimization technique,
and in Section 7, we present our conclusion about the
study.

2 Related Work

2.1 Data structure of Spark

Spark has a unique data structure: Resilient Distributed
Dataset (RDD)[16], which is a kind of read-only data
structure. The read-only property is embodied so that
operating an RDD will generate a new RDD rather
than change the contents of original RDD. The new



552 Tsinghua Science and Technology, October 2018, 23(5): 550–560

and original RDDs form a dependent relationship: the
original RDD is named father RDD, the new one is
named son RDD. Each RDD records its dependency
with other RDDs in its dependency list. From the
first RDD to the last RDD, all RDDs form a
Directed Acyclic Graph (DAG)[17] that can be directly
transformed from Spark applications. Therefore, we can
analyze DAGs instead of Spark applications to achieve
the same purpose. Figure 2 shows a DAG with several
different RDDs.

In Fig. 2, RDDs are denoted as uppercase alphabets
from A to G. The different RDD operations are denoted
by the words such as map, union, etc. RDD operation
refers to a function that acts on an RDD to generate
a new RDD. These operations can be divided into
transformation operation and action operation. Here,
transformation operation is an inert operation, which
means the transformation operation between two RDDs

Fig. 2 A DAG with several RDDs.

is not executed immediately, but waits to be triggered
by an action operation. In addition, action operation
triggers the submission of Spark jobs. Table 1 shows
common RDD operations.

2.2 Reuse mechanism of Spark

Reuse refers to an effective utilization of the original
information. In the fields of software development and
databases, reuse techniques are widely adopted, which
can greatly reduce the overhead of data processing
by avoiding data to be repeatedly uploaded, built
or calculated. In most databases, reuse is generally
implemented by caching mechanisms, such as data
blocks, pages, tables, tuples, and semantic cache[14, 18].

Until now, the reuse of RDDs in a single application
is the only reuse technique in Spark. To store RDDs for
resue, users need to perform manual programming by
using the built-in cache function or persist function in
Spark. Then, users can retrieve RDDs from the cache
to reuse them by utilizing unpersist function. However,
in real cases, it is difficult for users to decide when
to save RDDs for resue and how to organize, manage
and utilize these reusable RDDs. These characteristics
restricts reuse in Spark.

2.3 Scheduling mechanism of Spark

In distributed clusters, cluster resources are not usually
enough to use. Thus, the scheduling problem[19] still
exists. Common scheduling algorithms in distributed
clusters are First-In First-Out (FIFO)[20], round-robin
scheduling[21], priority scheduling[22], and fairness
scheduling[23].

Until now, the scheduling mechanism of Spark can
be divided into two levels: The first level is scheduling
between different applications and the second is
scheduling within an application. They adopt different
scheduling algorithms. The FIFO scheduling algorithm

Table 1 The common RDDs operations.

map.f W T D> U / W RDDŒT � D> RDDŒU �

filter.f W T D> Bool/ W RDDŒT � D> RDDŒU �

flatMap.f W T D> SeqŒU �/ W RDDŒT � D> RDDŒU �

Transformation groupByKey./ W RDDŒ.K; V /� D> RDDŒ.K; Seq.V //�

reduceByKey.f W .V; V / D> V / W RDDŒ.K; V /� D> RDDŒ.K; V /�

union./ W .RDDŒT �; RDDŒT �/ D> RDDŒT �

join./ W .RDDŒ.K; V /�; RDDŒ.K; W /�/ D> RDDŒK; .V; W /�

count./ W RDDŒT � D> Long

col lect./ W RDDŒT � D> SeqŒT �

Action reduce.f W .T; T / D> T / W RDDŒT � D> T

save.path W String/ W Outputs RDD to storage system; e.g., HDFS I



Jianchao Tang et al.: A Scheduling Optimization Technique Based on Reuse in Spark to Defend Against APT Attack 553

is adopted in the first level: Applications are placed
into an application queue according to their submission
orders. Then, the cluster resource scheduler tests the
cluster resources. If the current cluster resources can
meet the need of the first application in queue, this
application will obtain the corresponding resources and
be immediately executed; if not, the resource scheduler
will continue to test other applications behind the first
one in the queue.

The second level in Spark schedules different jobs
decomposed from an application by constructing
scheduling pools which are like containers. A
scheduling pool has three main parameters to
implement its scheduling:

(1) Scheduling mode: This parameter supports FIFO
scheduling algorithm and FAIR scheduling algorithm.
Here, FAIR algorithm adopts round-robin to guarantee
every job fairly obtains cluster resources.

(2) Weight: This parameter reflects that one
scheduling pool owns the amount of the cluster
resources compared with other scheduling pools. Its
default value is 1, which means that all the scheduling
pools obtain the same amount of cluster resources.
Users can set this parameter in the configuration file.

(3) MinShare: This parameter reflects that every
scheduling pool can obtain the amount of minimum
resources. In FAIR scheduling algorithm, every
scheduling pool must obtain the minimum resources
according to the minShare value.

2.4 Optimization problems and optimization
algorithms

In practical applications, we often need to find the
maximum or minimum value of a function from all
feasible values; this problem is called an optimization
problem. Common optimization problems include
solving the objective function to obtain the maximum
or minimum value in a linear programming problem[24]

and solving the shortest travel distance in a traveling
salesman problem[25].

Optimization problems can be solved by a certain
algorithm, called the optimization algorithm. The
common optimization algorithms include hill climbing
algorithm[26], simulated annealing algorithm[27], and
GA[28]. Here, GA simulates biological evolution. After
several iterations, GA can usually obtain the optimal
solutions of problems. In each iteration, the best
individuals are selected from parent population to form

a progeny population by GA selection function, which
guarantees that the progeny population is superior to the
parent population. In addition, some individuals in the
progeny population are forced to cross and mutate to
produce some new individuals. There, GA can jump out
of the local optimal solution and get the global optimal
solution in GA. Compared to hill climbing algorithm
and simulated annealing algorithm, GA usually has
better solutions for optimization problems.

3 Reuse Degree

From this section, we discuss the proposed scheduling
optimization technique based on the reuse of DAGs in
Spark, and we begin by defining the reuse degree, which
is the first part of the technique.

In Section 2, we mention that a DAG composed
of many RDDs can be transformed from a Spark
application. From Fig. 3, we can find two different
DAGs and each DAG has an RDDC. If the RDDC
generated in Fig. 3a is stored into the cache in advance,
we would only need to directly read the RDDC
results from the cache when the DAG in Fig. 3b is
executed. This is the reuse technique investigated in this
study.

3.1 Definition of reuse degrees

The execution of RDDs transformation operations
requires time. We define this execution time as the
execution cost of these operations. The formula for

(a)

(b)

Fig. 3 Two different DAGs.



554 Tsinghua Science and Technology, October 2018, 23(5): 550–560

calculating the execution cost is shown as Eq. (1).
OPi D Sdi �Wti (1)

Here, OPi denotes the execution cost of the i -th
transformation operation of RDDs, Sdi denotes the
input data size of the i -th transformation operation,
and Wti denotes the relative weight of the i -th
transformation operation compared with the map
operation, which we view as the basic transformation
operation. To calculate the relative weight of the i -th
transformation operation operationi , we propose a
simple algorithm as shown in Algorithm 1.

In Algorithm 1, the size of input data remains
unchanged to calculate the execution time Ti , and the
algorithm is run on the same hardware configuration.
We test the Ti severally and calculate the average,
denoted as T i . Then, we can obtain the relative weight
of transformation operations by comparing the average
execution times. The formula to calculate the relative
weight is shown as Eq. (2).

Wti W Wtj W � � � W Wtk D T i W T j W � � � W T k (2)

Here, Wti , Wtj , and Wtk denote the relative weight
of the i -th, j -th, and k-th transformation operations,
respectively. Likewise, T i , T j , and T k denote
the average execution time of the i -th, j -th, and
k-th transformation operations, respectively. Table 2
shows the relative weight of some common RDDs
transformation operations (approximate ratio).

Algorithm 1 The algorithm to the execution time of
operationi

1: rdd1 <- sc.textFile(path1)
2: rdd2 <- rdd1.saveAsTextFile(path2)
3: T1 <- Trdd1 C Trdd2

4: rdd1 <- sc.textFile(path1)
5: rdd3 <- rdd1.operationi

6: rdd2 <- rdd3.saveAsTextFile(path2)
7: T2 <- Trdd1 C Toperationi

C Trdd2

8: Ti <- T2 � T1

Table 2 The relative weight of different operations.
Operation Relative weight

Map 2

Fliter 2

FlatMap 3

Union 4

Distinct 4

Join 5

ReduceByKey 6

GroupByKey 7

When the relative weight of transformation
operations is obtained, we can calculate their execution
cost by Eq. (1). The reuse degree is defined based on the
execution cost: the sum of execution cost of reusable
RDDs between two different DAGs. For example,
the reuse degree of DAGs in Fig. 3 is the sum of the
execution cost of map operation and filter operation.

3.2 Calculation of reuse degree

Once the reuse degree is defined, the formula for
calculating it can be derived from its definition. For
arbitrary two DAGi and DAGj , the formula for
calculating the reuse degree between them is shown as
Eq. (3).

Cr D

nX
iD1

Ci (3)

Here, Cr denotes the size of the reuse degree between
the two DAGs, and Ci denotes the execution cost of
the i -th reusable RDD of the two DAGs, which can be
calculated as Eq. (4).

Ci D

nX
iD1

OPi � ni (4)

Here, OPi can be calculated by Eq. (1), and ni

denotes the number of the i -th transformation operation
appearancing in the i -th RDD. For example, for the two
DAGs in Fig. 3, assuming the size of input data is 10
MB, referring to Table 2, the size of the reuse degree
between the two DAGs is Cr D OPmap COPf ilter D

2 � 10C 2 � 10 D 40.
However, our goal is to obtain the reuse degree of a

DAG sequence. For a DAG sequence, the total size of
reuse degree can be calculated by the formula shown as
Eq. (5).

Cra D

nX
iD1

nX
jDiC1

Crij (5)

Here, Crij denotes the size of reuse degree between
DAGi and DAGj , which can be calculated by Eq. (3), n

denotes the number of DAGs in the DAG sequence, and
Cra denotes the total size of reuse degree of the DAG
sequence. Our goal is to maximize the Cra.

4 Global Optimization Function

The global optimization function is the second part
of the scheduling optimization technique, which is
designed to obtain the maximized Cra. To achieve this
goal, we propose two novel concepts: relative location
and redundant operation.



Jianchao Tang et al.: A Scheduling Optimization Technique Based on Reuse in Spark to Defend Against APT Attack 555

4.1 Relative location

To reuse different DAGs, the reusable calculation
results must first be stored into the reuse warehouse of
Spark. Obviously, this warehouse cannot be infinite.
The warehouse may not have enough capacity to store
reusable calculation results when very many DAGs
are processed simultaneously. In addition, the cached
results in the reuse warehouse have to be replaced by
some replacement strategies.

For two DAGs with reusable parts, the reuse
results are different for different locations in the DAG
sequence: If they are close to each other, the reuse
probability is relatively higher. Otherwise, it is much
likely that the reusable parts in the reuse warehouse
have been replaced by some other calculation results
when the second DAG is executed, which means the
probability of reusing the two DAGs is much smaller.
Therefore, to realize reuse, the location of DAGs in a
DAG sequence must be considered.

We propose the concept of relative location to denote
the distance between two DAGs in a DAG sequence.
The formula for calculating the relative location is
shown as Eq. (6).

Lij D jj � i j (6)

Here, i denotes the location subscript of DAGi in
the DAG sequence, j denotes the location subscript
of DAGj in the DAG sequence, and Lij denotes the
relative location of the two DAGs. For two DAGs, the
larger the size of their reuse degrees, the smaller their
relative location. We define the size of relative location
to reflect this trait. The formula for calculating the size
of relative location is shown as Eq. (7).

Clij D Clij =Lij (7)

Here, Clij denotes the size of the relative location
between DAGi and DAGj ; Crij and Lij denote the size
of reuse degree in Eq. (3) and relative location in Eq. (6)
between DAGi and DAGj , respectively. From Eq. (7),
we can find that the size of reuse degree and the relative
location between two DAGs are both considered in the
size of relative location. When Crij is large and Lij is
small, then, Clij will be large. This suggests the two
DAGs should be reused, which is reasonable.

4.2 Redundant operation

As Fig. 4 shows, the two different DAG sequences have
the same DAGs but different DAG orders. In Fig. 4a,
the second DAG can reuse the calculated RDDB results
of the first DAG, and the third DAG can reuse the

(a)

(b)

Fig. 4 Two different DAG sequences.

RDDC results of the first DAG. The reuse process is
as follows: The first DAG calculates RDDB and RDDC
and caches the two results into the reuse warehouse of
Spark. The second and third DAGs directly read the
calculated RDDB and RDDC results from the reuse
warehouse, respectively.

In Fig. 4b, the situation is different. The second
DAG reuses the RDDB result in the first DAG, so
the first DAG needs to first calculate the RDDB
and then cache the result into the reuse warehouse.
Meanwhile, the third DAG reuses the RDDC result
in the second DAG. However, the first DAG and the
second DAG belong to different applications, and the
second DAG has to calculate RDDC from RDDA,
which will consume much execution time. Therefore,
compared with the DAG sequence in Fig. 4a, the DAG
sequence in Fig. 4b needs more execution time.

To describe the above phenomenon, we propose
the concept of redundant operation, whereby DAG
sequence has different DAG orders. To realize the reuse
of DAGs, some orders of the DAG sequence need
some extra RDD operations; these operations are called



556 Tsinghua Science and Technology, October 2018, 23(5): 550–560

redundant operations. For example, relative to Fig. 4a,
the redundant operation in Fig. 4b is the map operation
between RDDA and RDDB. We define redundant
operation gain based on redundant operation. The
redundant operation gain refers to the reduced execution
time of some DAG orders of a DAG sequence because
the execution of redundant operations is avoided. The
formula for calculating redundant operation gain for
some parts of a DAG sequence is shown as Eq. (8).

Cs D

nX
iD1

OPi (8)

Here, OPi denotes the execution cost of the i -th
redundant operations, n denotes the number of
redundant operations in this part, and Cs denotes the
redundant operation gain for some parts of the DAG
sequence. The larger the redundant operation gain of
a DAG sequence is, the more its execution time is
reduced. The redundant operation gain of the total DAG
sequence is shown as Eq. (9).

Csa D

mX
iD1

Csi (9)

Here, Csi denotes the redundant operation gain of
the i -th part of DAG sequence, and Csa denotes the
redundant operation gain of the total DAG sequence.

4.3 Design of the global optimization function

The global optimization function is designed based on
the relative location and redundant operation. The input
of the function is the reuse degree information of a
DAG sequence. First, the size of relative location and
redundant operation gain of the DAG sequence are
calculated by this function according to the reuse degree
information. Then, the function seeks out the optimal
DAG sequence with the largest size of relative position
and redundant operation gain. Finally, the function
outputs the optimal DAG sequence. The core part of the
global optimization function is to calculate the optimal
DAG sequence, which has the least execution time. The
implementation of the global optimization function is
discussed in next section.

5 Cost Optimization Algorithm Based on
GA

To implement the global optimization function, we
propose a GA-based cost optimization algorithm,
which is the third part of the scheduling optimization
technique. GA is chosen as the basic algorithm in this
paper for the following reasons:

(1) Compared with hill climbing algorithm, simulated
annealing algorithm and other common iterative
algorithms, GA can overcome the disadvantage of
falling easily into local optimal solutions and obtain the
global optimal solution.

(2) Compared with traditional enumerated and
heuristic optimization algorithms, GA converges easily,
which ensures less execution time.

(3) Considering the studied problem, GA does not
require too much, and it is well suitable as a DAG
sequence is analogous to a chromosome and the DAGs
in the DAG sequence to the genes of a chromosome.

The GA process is described as follows: According
to the size of the fitness function, GA chooses a certain
proportion of individuals from the parent population
to form the progeny population. To ensure that the
number of individuals in the progeny population is
the same as that in the parent population, these
chosen individuals are crossed to produce new progeny
individuals according to a certain crossover rule.
Then, some individuals in the progeny population are
chosen to randomly mutate to produce some new
progeny individuals. After the mutation, one iteration is
completed. The above process is repeated until the final
iteration. Next, We introduce some innovative modules
of the GA-based cost optimization algorithm.

5.1 Algorithm encoding

GA cannot directly deal with the actual problem
space of parameters. These parameters need to be
converted into individuals with a genetic structure that
GA can deal with. This process is called encoding.
Considering the one-to-one correspondence between
DAGs in the DAG sequence and their subscripts, these
subscripts are integers. Therefore, we adopt integer
encoding to encode the problem space. For example,
a DAG sequence encoded with five DAGs is shown as
Table 3.

5.2 Fitness function

In GA, the fitness function is used to evaluate the quality
of different individuals in a population to select the
best. In Section 4, we have discussed that the global
optimization function has two factors: relative location
and redundant operations. Therefore, we design the

Table 3 An encoded DAG sequence.
1 2 3 4 5



Jianchao Tang et al.: A Scheduling Optimization Technique Based on Reuse in Spark to Defend Against APT Attack 557

fitness function with two factors: the size of relative
location and the redundant operation gain. To address
the problem of the fitness function with two factors, the
relative weight is proposed, which considers the weight
of the size of relative position in the fitness function
denoted as wl and the weight of the redundant operation
in the fitness function denoted as ws . The formula for
calculating the fitness function in the cost optimization
algorithm is shown as Eq. (10).

Cf D Cla � wl C Csa � ws (10)

Here, Cla denotes the size of the relative location of
the DAG sequence, calculated as Eq. (7); Csa denotes
the redundant operation gain of the DAG sequence,
calculated as Eq. (9); and Cf denotes the fitness
function. The relationship between wl and ws is shown
as Eq. (11).

wl C ws D 1 (11)

The relative weight reflects the significance of each
factor in the fitness function. How to set the relative
weight values depends on the real cases. We set wl as
0.6 and ws as 0.4 in our subsequent experiments.

5.3 Crossover function

The discrete crossover function, single-point crossover
function, and multi-points crossover function are the
common crossover functions. However, these crossover
functions are too random, and in many cases, their
effects are not acceptable. To avoid this problem, we
adopt a novel crossover function, named revolving
double heuristic crossover function. The detailed
process of this function is described as follows:

(1) Two DAG sequences are randomly selected from
a population (they must be different, otherwise, the
selection is repeated). For example, two different DAG
sequences with five DAGs have been selected as shown
in Table 4.

(2) The fitness of the first two DAGs of the two
DAG sequences are compared. If the fitness between
DAG 1 and DAG 3 in the first DAG sequence is larger
than that between DAG 4 and DAG 5 in the second
DAG sequence, then the first DAG sequence remains
unchanged in this round of crossover, and the DAGs in
the second DAG sequence are rotated counterclockwise
until DAG 1 reaches the head of the second DAG

Table 4 Two DAG sequences without crossover.

1 3 4 2 5
4 5 3 2 1

sequence and becomes fixed. Again, the remaining
four DAGs are rotated counterclockwise until DAG
3 reaches the second location of the second DAG
sequence. This process is shown as Table 5.

(3) The fitness of the second and the third DAGs of
the two DAG sequences are compared and the above
process is repeated until the last two DAGs in the
two DAG sequences finish their crossovers. Crossing is
stopped when the two DAG sequences are absolutely
the same. The result is shown as Table 6.

(4) One of the original two DAG sequences is
randomly replaced with the new DAG sequence
produced by the above crossover process. The other
original DAG sequence remains unchanged. Therefore,
the output of the crossover function is shown as Table 7
(the first DAG is replaced by the new DAG sequence).

At every step of the above crossover process, the
DAGs are rotated counterclockwise according to the
fitness of DAGs. Therefore, revolving double heuristic
crossover function belongs to the heuristic function and
its effect is much better than those of the common
discrete crossover function, single-point function, and
multi-point random crossover function.

6 Experiments

To prove the efficiency of the GA-based cost
optimization algorithm and the scheduling optimization
technique based on reuse, we discuss the design of two
experiments in this section.

Table 5 Two DAG sequences with the first crossover.
1 3 4 2 5
4 5 3 2 1

+

1 3 4 2 5
1 4 5 3 2

+

1 3 4 2 5
1 3 2 4 5

Table 6 Two DAG sequences with the last crossover.
1 3 2 5 4
1 3 2 4 5

+

1 3 2 5 4
1 3 2 5 4

Table 7 The output of crossover function.
1 3 2 5 4
4 5 3 2 1



558 Tsinghua Science and Technology, October 2018, 23(5): 550–560

6.1 Experiment of the cost optimization algorithm
based on GA

To produce the initial population of the GA-based
cost optimization algorithm, an experiment was carried
out, in which some DAG sequences were randomly
produced by a random function. After several iteration
rounds, the DAG sequence with the largest fitness
in final population was outputted. To verify the
improvement of the GA based-cost optimization
algorithm, the individual fitness of population in each
iteration was outputted to a text file and compared with
those in other iterations.

The experimental parameter settings are as follows:
The size of population is 20, the DAG sequence length
is 10, the number of algorithm iterations is 5, selection
probability is 0.8, crossover probability is 0.6, mutation
probability is 0.02, relative weight wl is 0.6, and ws is
0.4. The size of reuse degree of DAGs is randomly set
from 0 to 50 by a random function in DAG sequence.
The experimental result is shown as Fig. 5.

The horizontal axis in Fig. 5 denotes the individual
of a population; the vertical axis denotes the individual
fitness. The five colors denote five populations at
different iterations as the figure shows. The colored
dots denote the individual of a certain population and
certain individual fitness. The colored broken lines
denote the tendency of individual fitness of different
populations. From Fig. 5, we can find that the further
the population is, the higher the location of the broken
line of the population is in the coordinate system, which
means its individual fitness is larger than that of the
previous populations. This proves that the individual
fitness of different populations is continually improved
by the GA-based cost optimization algorithm. We can

Fig. 5 The exprimental result of the cost optimization
algorithm.

further see that the largest individual fitness of the last
population is more than 140, which is much larger
than the largest individual fitness of the first population,
whose value is less than 100. Thus, the GA-based cost
optimization algorithm can significantly improve the
individual fitness of population.

6.2 Experiment of the scheduling optimization
technique based on reuse

To prove the feasibility of the scheduling optimization
technique based on reuse to defend against APT
attack, our programs are run on three different Spark
systems. Then, we can conclude by comparing the
average turnaround times of applications and the system
throughputs of the three different systems. The three
different Spark systems are the native Spark system,
which is the existing Spark system without any changes,
and it is named as native system; the Spark system
with reuse technique, which is the native system with
a reuse module to realize DAG reuse but is without
any scheduling, and it is named as reuse system;
and the Spark system with the proposed scheduling
optimization technique based on reuse and it is named
as scheduling system.

Our experimental programs are run on a single
machine, whose configuration is as follows: Intel core
i3-3240 processor, 4 cores, 3.4 GHz clock speed, 12 GB
memory, and 500 GB disk capacity. Software includes
Ubuntu 14.04, jdk 1.8.0-60, maven 3.3.9, Spark
1.6.1, and VMware Workstation 11. We constructed a
distributed Spark system with three nodes by simulating
two worker nodes by a virtual machine. The whole
Spark system is faced with resource shortage. Our
experimental data is downloaded from the big data
benchmark data set of AMPLab[29], which is developed
by Pavlo and some other researchers to describe the
site visits suitable for representing log data in APT
attacks. The size of experimental data is 1.1 GB, which
is large enough for our Spark system. We design
three groups of experiment on the aforementioned
three systems. Their corresponding data sizes are
100 MB, 500 MB, and 1 GB. The average turnaround
time of applications of the three systems is shown as
Fig. 6. Here, the horizontal axis denotes the data size
and the vertical axis denotes the average turnaround
time of applications. As shown in Fig. 6, the average
turnover time of applications of the native system is
larger than those of the other two systems regardless
of the data size. This suggests that reuse technique



Jianchao Tang et al.: A Scheduling Optimization Technique Based on Reuse in Spark to Defend Against APT Attack 559

Fig. 6 The average turnaround time of applications.

and the scheduling optimization technique can improve
Spark performance in using log analysis to detect APT
attack. Meanwhile, when the data size is 100 MB,
the average turnaround time of the reuse system is
slightly lower than that of the scheduling system.
The scheduling system may have considerable extra
scheduling overhead at a small data size. However, for
the reuse system, with the increase of experimental
data size, the average turnover time is gradually larger
than that of the scheduling system, which suggests the
scheduling system is much more efficient.

The system throughput of the three systems is shown
as Fig. 7. Here, the horizontal axis denotes the system
throughput and the vertical axis denotes the data
size. From Fig. 7, we can find the system throughput
of the scheduling system continues to increase with
data size and is maximum at 21.63. However, the
system throughputs of the other two systems fluctuate
to some degree and their values are gradually smaller
than that of the scheduling system. This means that
the performance of the scheduling system increases
with data size. Therefore, the effectiveness of our
scheduling optimization technique to detect APT
attacks confirmed.

7 Conclusions

In this paper, we propose a scheduling optimization

Fig. 7 The throughput of system.

technique based on reuse in Spark to defend against
APT attacks. This scheduling optimization technique
combines the reuse technique with scheduling
technique to improve Spark performance, and it
involves three parts: (1) It defines and formulates the
reuse degree of Spark DAGs. (2) It designs a global
optimization function based on relative location and
redundant operation to calculate the optimal DAG
sequence with the least execution time. (3) It designs
a GA-based cost optimization algorithm to implement
the global optimization function. The conducted
experiments shows that the scheduling optimization
technique is efficient in defending against APT attacks
because it greatly reduces the time of log data analysis
in Spark.

Acknowledgment

This work was supported by the National Natural
Science Foundation of China (Nos. 61379144, 61572026,
61672195, and 61501482) and the Open Foundation of
State Key Laboratory of Cryptology.

References

[1] P. Chen, L. Desmet, and C. Huygens, A study on advanced
persistent threats, in Proc. 15th IFIP TC 6/TC 11 Int.
Conf. Communications and Multimedia Security, Aveiro,
Portugal, 2014, pp. 63–72.

[2] J. Vukalović and D. Delija, Advanced persistent threats
detection and defense, in Proc. 2015 38th Int. Convention
on Information and Communication Technology,
Electronics and Microelectronics, Opatija, Croatia, 2015,
pp. 1324–1330.

[3] C. Tankard, Advanced persistent threats and how to
monitor and deter them, Netw. Secur., vol. 2011, no. 8, pp.
16–19, 2011.

[4] R. Brewer, Advanced persistent threats: Minimising the
damage, Netw. Secur., vol. 2014, no. 4, pp. 5–9, 2014.

[5] A. Moscaritolo, Transparency: Operation aurora, SC
Magazine: For IT Security Professionals, vol. 21, no. 3,
p. 14, 2010.

[6] T. M. Chen and S. Abu-Nimeh, Lessons from stuxnet,
Computer, vol. 44, no. 4, pp. 91–93, 2011.

[7] Apache SparkTM, Apache spark project, http://spark.
apache.org/, 2018.

[8] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, Spark: Cluster computing with working sets, in
Proc. 2nd USENIX Conf. Hot Topics in Cloud Computing,
Boston, MA, USA, 2010, p. 10.

[9] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica,
Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing, in Proc. 9th USENIX
Conf. Networked Systems Design and Implementation, San
Jose, CA, USA, 2012, p. 2.

[10] M. Zaharia, T. Das, H. Y. Li, S. Shenker, and I. Stoica,



560 Tsinghua Science and Technology, October 2018, 23(5): 550–560

Discretized streams: An efficient and fault-tolerant model
for stream processing on large clusters, in Proc. 4th

USENIX Conf. Hot Topics in Cloud Ccomputing, Boston,
MA, USA, 2012, p. 10.

[11] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica, Shark: SQL and rich analytics at scale,
in Proc. 2013 ACM SIGMOD Int. Conf. Management of
Data, New York, NY, USA, 2013, pp. 13–24.

[12] N. M. Weber, The relevance of research data sharing and
reuse studies, Bull. Am. Soc. Inf. Sci. Technol, vol. 39, no.
6, pp. 23–26, 2013.

[13] T. K. Sellis, Multiple-query optimization, ACM Trans.
Database Syst., vol. 13, no. 1, pp. 23–52, 1988.

[14] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and
M. Tan, Semantic data caching and replacement, in Proc.
22nd Int. Conf. Very Large Data Bases, Bombay, India,
1996, pp. 330–341.

[15] K. Dursun, C. Binnig, U. Cetintemel, and T. Kraska,
Revisiting reuse in main memory database systems, in
Proc. 2017 ACM Int. Conf. Management of Data, Chicago,
IL, USA, 2017, pp. 1275–1289.

[16] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia,
Learning Spark: Lightning-Fast Big Data Analysis.
California, CA, USA: O’Reilly Media, 2015, pp. 26–30.

[17] L. Wang, Directed acyclic graph, in Encyclopedia of
Systems Biology, W. Dubitzky, O. Wolkenhauer, eds. New
York, NY, USA: Springer, 2013, pp. 1105–1114.

[18] Q. Ren, M. H. Dunham, and V. Kumar, Semantic caching
and query processing, IEEE Trans. Knowl. Data Eng., vol.
15, no. 1, pp. 192–210, 2003.

[19] Wikipedia, Schedule, https: // en. wikipedia. org / wiki /
Schedule, 2018.

[20] R. Sakellariou and H. Zhao, A hybrid heuristic for DAG
scheduling on heterogeneous systems, in Proc. 18th Int.
Parallel and Distributed Processing Symp., Santa Fe, NM,
USA, 2004, pp. 111–123.

[21] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica, Job Scheduling for Multiuser
Mapreduce Clusters. Berkeley, CA, USA: University of
California, 2009.

[22] U. Schwiegelshohn and R. Yahyapour, Fairness in parallel
job scheduling, J. Schedul., vol. 3, no. 5, pp. 297–320,
2000.

[23] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn,
Parallel job scheduling—A status report, in Proc. 10th

Int. Workshop on Job Scheduling Strategies for Parallel
Processing, New York, NY, USA, 2004, pp. 1–16.

[24] T. S. Ferguson, Linear Programming: A concise
introduction, https: // www. math. ucla. edu/�tom/ LP.pdf,
2000.

[25] M. Dorigo and L. M. Gambardella, Ant colony system:
A cooperative learning approach to the traveling salesman
problem, IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 53–
66, 1997.

[26] D. B. Skalak, Prototype and feature selection by sampling
and random mutation hill climbing algorithms, in Proc.
11th Int. Conf. Machine Learning, New Brunswick, NJ,
USA, 1994, pp. 293–301.

[27] S. Z. Selim and K. Alsultan, A simulated annealing
algorithm for the clustering problem, Pattern Recognit.,
vol. 24, no. 10, pp. 1003–1008, 1991.

[28] K. De Jong, Learning with genetic algorithms: An
overview, Mach. Learn., vol. 3, no. 23, pp. 121–138, 1988.

[29] U. C. Berkeley AMPLab, Big data benchmark, https://
amplabcsberkeleyedu/benchmark, 2014.

Jianchao Tang is currently a PhD
student at National University of Defense
Technology. He received the master degree
from National University of Defense
Technology in 2016, and BS degree
from Beijing Institute of Technology in
2014. He achieved best paper awards in
the 11th Chinese Conference on Trusted

Computing and Information Security. His current research
interests include big data security and cloud computing.

Ming Xu is currently a professor and
director of the Network Engineering
Department in the College of Computer,
National University of Defense
Technology. He is a senior member
of China Computer Federation (CCF),
Institute of Electrical and Electronics
Engineers (IEEE), and Association for

Computing Machinery (ACM). He was invited to serve as
program committee of more than 30 international academic
conference proceedings and serve as chairman or the chairman
of the procedural committee four times. Meanwhile, he edited
3 volumes of international conference proceedings of Springer.
He is also a member of editorial board of IASTED International

Journal of Computers and Applications, and Journal of
Communication. His major research interests include mobile
computing, wireless network, cloud computing, and network
security.

Shaojing Fu received the BS and
PhD degrees in Applied Mathematics
from National University of Defense
Technology, China, in 2005 and 2010,
respectively. He has been an associate
professor with College of Computer
at National University of Defense
Technology since December 2015. His

research interests include applied cryptography, and security and
privacy issues for cloud computing.

Kai Huang received the BS degree and
MS degree in Cryptography from Naval
University of Engineering, China, in
2007 and 2009, respectively. Currently,
he is working towards the PhD degree
in the College of Computer at National
University of Defense Technology. His
research interests include cloud computing

and network security.


		2018-08-29T10:41:43-0400
	Preflight Ticket Signature




