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An Efficient EH-WSN Energy Management Mechanism

Yang Zhang, Hong Gao∗, Siyao Cheng, and Jianzhong Li

Abstract: An Energy-Harvesting Wireless Sensor Network (EH-WSN) depends on harvesting energy from the

environment to prolong network lifetime. Subjected to limited energy in complex environments, an EH-WSN

encounters difficulty when applied to real environments as the network efficiency is reduced. Existing EH-WSN

studies are usually conducted in assumed conditions in which nodes are synchronized and the energy profile

is knowable or calculable. In real environments, nodes may lose their synchronization due to lack of energy.

Furthermore, energy harvesting is significantly affected by multiple factors, whereas the ideal hypothesis is difficult

to achieve in reality. In this paper, we introduce a general Intermittent Energy-Aware (IEA) EH-WSN platform.

For the first time, we adopted a double-stage capacitor structure to ensure node synchronization in situations

without energy harvesting, and we used an integrator to achieve ultra-low power measurement. With regard to

hardware and software, we provided an optimized energy management mechanism for intermittent functioning.

This paper describes the overall design of the IEA platform, and elaborates the energy management mechanism

from the aspects of energy management, energy measurement, and energy prediction. In addition, we achieved

node synchronization in different time and energy environments, measured the energy in reality, and proposed the

light weight energy calculation method based on measured solar energy. In real environments, experiments are

performed to verify the high performance of IEA in terms of validity and reliability. The IEA platform is shown to

have ultra-low power consumption and high accuracy for energy measurement and prediction.
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1 Introduction

Wireless Sensor Network (WSN) has promising
applications in structural monitoring, underwater
detection, military, and radiology[1]. The WSN node
senses environmental data, transfers data through muti-
hop networks[2, 3], aggregates the data to the sink node[4, 5],
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and reconstructs the physical status by data process
and analysis[6]. The key factor that restricts the
application of WSN is energy. Although the sink
node usually has sufficient power to meet a higher
performance[7], the energy of sensing nodes is limited.
The operation of WSN, including data aggregation,
extraction, and query[8–10], considers energy efficiency,
which motivates us to investigate methods of prolonging
network lifetime as much as possible. A conventional
WSN uses batteries to provide relatively sufficient energy
for complex calculations and communications, whereas,
its lifetime is limited. Once the battery is depleted,
the WSN is paralyzed. In most practical application
environments, replacing batteries is very inconvenient and
even impossible, thereby reducing the practicability of
WSN.
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To prolong the network lifetime further, Energy-
Harvesting (EH) technology is widely applied in WSN.
EH-WSN is able to harvest environmental energy, such
as light, Radio Frequency (RF), and wind energy, which
are then converted into electrical energy and stored for
WSN nodes. The energy of WSN is mainly stored in
rechargeable batteries or capacitors. With high energy
density, the rechargeable battery-powered WSN nodes
have sufficient energy to operate in a manner similar to
that of a traditional WSN as the networking protocol and
algorithm are investigated sufficiently[11, 12]. The critical
defect lies in the following: the charge cycle times are
limited, and the rechargeable battery requires a large
amount of energy for charging. Once the node loses power,
it needs a long time to wake up or is even unable to restart,
which leads to intolerable network delay and restricts
the network lifetime seriously. A smaller capacitor only
requires a small amount of energy to charge to a relatively
high voltage, thereby achieving shorter network delay
and almost unlimited lifetime compared with that of the
traditional mechanism. Therefore, EH-WSN has to apply
capacitors to store electrical energy. The energy supply
structure of EH-WSN is shown in Fig. 1.

Subject to the cost and size of nodes, EH-WSN is
only able to harvest limited energy. EH-WSN uses a
capacitor within a range of approximately 10–2200 µF,
which is 6–8 orders lower than that of the batteries
used by traditional WSN nodes (such as TELOSB)[13].
The filled capacitor supports EH-WSN to perform a
limited degree of computation and communication. Thus,
EH-WSN must be an intermittent operation platform
where nodes harvest energy continuously and wake
up and perform computation and communication only
when sufficient energy is available to complete necessary
operations. Accordingly, EH-WSN has to solve the
following problems:

(1) Node synchronization. Owing to the limited
energy, EH-WSN is able to communicate for only a
short time, and the nodes have to communicate in a
synchronized time slot[14, 15]. EH-WSN usually runs out
of power due to lack of energy and misses the time slot,
thereby causing low efficiency of network communication
or even paralysis. Nodes lose synchronization when the

Fig. 1 Energy supply of EH-WSN.

network is restarted and require additional energy to
achieve synchronization.

(2) Intermittent operation. Owing to energy shortage,
EH-WSN usually runs out of power before the
computation or communication is finished, thereby
causing failure and energy wastage. Thus, EH-WSN has
to know the exact energy information to plan its operations
and should be able to perform basic energy management
functions to avoid unexpected power cuts.

The traditional WSN adopts batteries to supply power
without the aforementioned problems. Nodes have
sufficient energy to seek the global optimal solution for
energy consumption and plan the network strategy[16, 17].
For EH-WSN, most of the existing algorithms assume
that nodes are synchronized and the harvesting energy
in each time slot is known[18–23]. However, the existing
EH-WSN platform is unable to support its expected
functions[11, 12, 24, 25]; therefore, most of the existing
scheduling algorithms based on EH-WSN can calculate
energy only by relying on energy models. In fact, the
energy harvested and consumed is affected by variable
factors; thus, the calculation based on energy models
encounters a significant error that increases the node
computation. The results of simulated experiments are
significantly different from those of practical applications.
Therefore, EH-WSN is urgently needed for a wireless
sensor platform to provide accurate energy data and
wakeup nodes on time during intermittent operation.

Based on the proceeding discussion, this paper
proposes an Intermittent Energy-Aware (IEA) WSN
platform, which achieves synchronization for intermittent
running nodes in terms of hardware and software and also
provides accurate energy data. The photo of this platform
is shown in Fig. 2. This paper makes the following
contributions:

(1) It presents the design of a practical EH-
WSN platform that is complete and applicable in real
environments. With the double-stage capacitor structure
to store energy, IEA is able to continue working in poor
energy environments. Furthermore, IEA provides support
for intermittent synchronization and intermittent operation

Fig. 2 Photo of IEA platform.
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in terms of software and hardware. IEA achieves the
function of auto power supply such that the quiescent
current is less than 2 µA when powered up, whereas the
quiescent current is less than 0.5 µA when powered down,
ensuring high energy efficiency and preventing loss.

(2) In real environments, the accurate energy
measurement with ultra-low power for EH-WSN is
implemented for the first time. IEA measures power with
a current sensing circuit and uses the analog integrator
to accumulate the amount of charge that is harvested and
consumed within a particular period. Then, the accurate
measurement is realized and the CPU time is reduced
significantly. Experiments show that the energy measured
by IEA is extremely close to the real value with an average
accuracy of 99.89%, and the energy cost is only 157 µW.

(3) According to the circuit model of solar panel
and the charge characteristics of capacitance, this paper
proposes a light-weight energy prediction method based
on solar batteries, of which the average prediction error is
only 0.74%.

The rest of this paper is organized as follows.
Section 2 provides the background and summarizes related
works. Section 3 describes the energy management
implementation in detail. Section 4 evaluates the system.
Finally, Section 5 provides a summary and final remarks.

2 Related Work

Similar to the traditional WSN network, EH-WSN also
senses environmental data, transmits the data to the sink
reliably through a specific network protocol, and restores
the real-world physical information through data query
and mining[26–28]. The difference lies in that EH-WSN
has to consider the influence of energy. Existing EH-
WSN research strategies usually assume that nodes are
synchronized, and the harvested and consumed energy
is known or predictable[20–23]. Ren et al.[23] utilized a
representative energy module expressed as

Bv(t)=min(Bv(t−1)+Qv(t−1)−Sv(t−1)−e, Cv)

(1)

where, Cv refers to the energy stored in the capacitor;
Bv(t) is the stored energy at t moment; Qv(t) and Sv(t)

are the harvested and consumed energy at t moment,
respectively; e refers to the circuit consumption. Nodes
need accurate Bv(T ), Qv(T ), Sv(T ), and Cv to plan
network communication[20, 21]. Previous studies recognized
that the harvesting energy can be estimated from historical
data, and the energy consumed can be calculated according

to the length of communication. Since the capacitance
is known, the available energy is calculated. In practice,
however, the estimated energy is far from the real value.
First, the charge rate of the capacitor is nonlinear, and the
actual rate depends on the initial voltage, source voltage,
and capacitance. Furthermore, the charging rate drops
sharply as the voltage of capacitor increases. Second,
when the node of EH-WSN works, the capacitor voltage
fluctuates with the specific operation, so the harvesting
energy depends not only on the external environment
but also on the state of the node itself. Finally, the
capacitance is not highly accurate, because it is affected
by environmental temperature and voltage, and the error of
the capacitor value is up to 50%. Therefore, based on the
labeled capacitor value, the maximum power and existing
power of the capacitor, which are calculated, are not
reliable. This model cannot support EH-WSN operation
in a real environment; thus, EH-WSN requires true and
reliable energy data to ensure stable operation.

The existing EH-WSN platforms are incapable of
providing various types of energy data. The traditional
WSN can determine the energy state by measuring the
battery voltage. For EH-WSN with a capacitor, most of
the platforms can calculate the stored energy by E =

CV 2/2[13, 19, 24, 29]. However, the method can perceive only
the current residual energy but not the specific harvested
and consumed energy, while the capacitance offset of the
capacitor seriously affects the accuracy of the calculated
energy. Few of the existing EH-WSN platforms have
energy measurement functions. The EnHANT nodes
designed by Gorlatova et al.[12] adopt a current-sensing
amplifier to amplify the current of the energy-harvesting
circuit, whereas, the method by Gorlatova et al. is only
able to measure the instantaneous value of the current.
To sense the energy harvested for a particular period, the
instantaneous current has to be sampled and summed up
to calculate the total charge, thereby requiring a large
amount of CPU time and energy, and interruptting the node
operation seriously. Moreover, the discrete sampling leads
to errors. Hassanalieragh et al.[25] proposed an energy-
harvesting platform called UR-SolarCap with moderate-
power systems based on solar energy. The platform uses
a current-sensing amplifier circuit and collects discrete
current value with a PIC controller to calculate energy;
unfortunately, the energy consumption is only up to
10 mW, which is not applicable for EH-WSN.

In commercial platforms, some companies have
launched development suites for harvesting nodes, such
as Solar Dice by TI, CYALKIT-E03 (with solar energy)
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by CYPRESS, and P2110-EVAL (with RF energy) by
Powercast. In these commercial platforms, energy is stored
in the capacitor for nodes to sense data and communicate
via RF or blue-tooth. However, the nodes work only
when the capacitor voltage exceeds the threshold, and the
wakeup time is uncertain. Furthermore, these platforms
obtain the capacitor voltage but not the specific energy
profile. Therefore, the existing commercial EH-WSN
platform is suitable only for single-hop star networks but is
difficult to employ in the multi-hop topology structure. In
fact, many existing EH-WSN studies and platforms have
not yet considered intermittent operation. Thus far, no
platform is capable of accurately measuring the energy
with ultra-low power consumption, and no platform can
wake up on time in the energy absence environment.

3 Implementation of Energy Management

EH-WSN has multiple energy harvesting sources such
as solar, RF, thermoelectric, and wind energy. In this
study, the IEA platform is not restricted to a specific
energy-harvesting source but is available to various energy
sources. The energy storage of EH-WSN mainly includes
the rechargeable battery and capacitor. The capacity of
the rechargeable battery is much larger than that of the
capacitor. Although the rechargeable battery is able to
ensure that nodes operate continuously with sufficient
energy, the demanded power for charging is much larger
than that for the capacitor. Once the node loses power
due to lack of energy, restarting is difficulty. Thus,
the rechargeable battery is not practical for extensive
application because it does not conform to the original
intention of EH-WSN. The capacitor proposed in this
paper stores energy in a manner characterized by fast
charging, minimal leakage, and low cost. The capacitor
is able to charge to a relatively high voltage by using only
a small amount of energy, thereby ensuring shorter wake-
up periods for EH-WSN. Furthermore, the capacitor can
boundlessly extend the network lifetime of EH-WSN due
to its infinite charging cycles.

The IEA platform contains multiple modules and
functions. This chapter mainly describes the energy
management mechanism of the structure as shown in
Fig. 3. The red lines represent energy flow, and the
blue lines indicate data and signals. The energy obtained
by the energy-harvesting module is directly stored in the
electrolytic capacitor C1, when the voltage reaches a
threshold, the voltage-detection module starts to supply
power and MicroController Unit (MCU) starts to work.
The smaller the capacitor C1 is, the higher the wake

Fig. 3 Energy structure of the IEA platform.

frequency is, and the capacitance usually meets the lower
bound of the demand. MCU can measure real-time energy
data from the energy measurement module. When the
capacitor C1 is overfilled, MCU can trigger the charging
circuit to charge the excess energy into the super capacitor
C2. Before nodes are powered-off due to insufficient
energy, MCU can set the Real-Time Clock (RTC) to
trigger the discharge circuit from C2 on time to ensure
that the nodes wake up synchronously even when energy
is lacking.

3.1 Double-stage energy storage and synchronous
wakeup

The energy, such as solar energy, obtained by EH-WSN
is usually fluctuant. The energy reaches its peak value
under direct sunlight in day-time, usually with more
than the maximum capacitance of the capacitor, whereas
in the evening, as the harvested energy is nearly zero,
the nodes may have no power for a longtime, and this
condition nearly leads to network paralysis. To ensure
that nodes wake up periodically even with lack of energy,
we have to store the excess energy in a super capacitor
when the amount is sufficient. Therefore, we designed a
double-stage capacitor structure for electrolytic and super
capacitors. The harvested energy is stored directly in the
electrolytic capacitor C1, which has small capacitance, to
ensure short wake-up periods of the nodes. The excess
energy is stored in the super-capacitor C2 for use when
energy is lacking. The circuit structure is presented in
Fig. 4.

The charging and discharging circuit for the super
capacitor is in the frame marked by red dots. Since
the capacitance of C2 is much larger than that of C1,
if C1 connects to C2 directly, C2 will suck the voltage
of C1 in an instant, thereby causing the nodes to power
down. Therefore, MCU needs to output a Pulse Frequency
Modulation (PFM) signal to trigger the Metal-Oxide-
Semiconductor Field-Effect Transistor (MOSFET) Q3 and
control the charging current into C2. This method is easy
to apply with low cost, whereas MCU is needed to monitor
the C1 voltage in real time and prevents this voltage from
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Fig. 4 Double-stage capacitor energy management structure.

dropping too low and causing power failure.
When the energy is insufficient, MCU or RTC can

control T1 to discharge C2. Two common situations may
occur: (1) When MCU performs the key computation or
communication and C1 voltage is not enough to complete
the operation, MCU controls C2 to discharge to complete
the key operation. (2) When C1 can not reach the working
voltage, the RTC module controls C2 to discharge based
on a synchronous clock to start the system. Owing to the
large capacitance of the super capacitor, a large amount of
current is needed to charge C2 to a relatively high voltage.
Therefore, using the BOOST converter to lift the discharge
voltage is necessary. As the conversion efficiency of the
BOOST converter can not reach 100%, IEA uses a voltage
detector. Only when the C2 voltage is below 2.7 V, the
BOOST converter can start to work and the output voltage
is stabilized at 3 V. Notably, T1 must be a low drain-source
on-resistance MOSFET to ensure that C2 discharges fully
at low voltage.

In addition, we designed the voltage detection and
regulator circuit as shown in Fig. 4. The circuit starts to
supply power only when the C1 voltage exceeds 2.1 V.
When the C1 voltage is below 2.0 V, the power supply
switches off to avoid wasting energy because the chips
are powered insufficiently and may consume an abnormal
amount of energy[30]. Furthermore, the RTC module
holds the synchronous clock by relying on the internal
capacitor, so the module has to wake up the nodes before
the capacitor voltage is less than 1.1 V, which prevents the
loss of synchronization.

The capacitance of C1 demands careful consideration.

If C1 is extremely small, the nodes may not have sufficient
energy to run large tasks, whereas if C1 is extremely
large, the response frequency of nodes is reduced and
energy is wasted. IEA is preset to send 3 packets of 10
bytes and receive 100 ms of data when it is charged to
2.7 V. The RF chip should work under constant voltage
of 2.1 V with transmission power of 1 dbm (at 25 Kbps),
while the sending current is approximately 14.1 mA, the
duration of a 10-byte packet is approximately 6.6 ms, and
3 packets of energy are approximately 587 µJ. Meanwhile,
the receiving current is 3.3 mA, so the energy of 100 ms
is approximately 693 µJ. Therefore, the capacitor C1 must
have the capacitance to store at least 1280 µJ of energy.
According to E = CV 2/2, as the energy is stored in the
capacitor, the capacitor C1 with the value of 1000 µF meets
the requirement.

3.2 Energy measurement with ultra low power
consumption

The most direct and reliable way to obtain the real energy
data is to take actual measurements. In Fig. 5, the
energy for nodes is stored in C1; thus, the harvested and
consumed energy is the energy that flows into and out of
C1, respectively. As the measurement circuits of energy
harvesting and energy consumption are identical, we take
the energy harvesting measurement as an example to
describe in detail. The harvested energy can be calculated
by E =

∫T
0 U(t)I(t)dt. According to the equation,

knowing the value of voltage and current within T time
is necessary. As the voltage of C1 varies minimally over a
short period of time, U(t) can be approximated by the
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Fig. 5 Energy measurement circuit.

average value, and then the harvested energy can be
calculated as the value of

∫T
0 I(t)dt. The key problems

are how to amplify the weak current signal for MCU
measurement; and how to reduce the energy consumption
for the measurement. The existing platform has used the
current sensing circuit and sampled a set of discrete current
values to obtain the total charge by adding the proceeding
current values, which requires a large amount of CPU time
and energy and seriously interrupts the normal operation
of nodes. Moreover, the discrete samplings may produce
sampling errors that affect the accuracy.

To measure
∫T
0 I(t)dt with the lowest energy and solve

the problem, we used the high-side current sense amplifier
and integrated circuit. The circuit in Fig. 5 includes two
sections, where the left section is the current sense and
amplifier circuit, and the right section is the integral circuit.
When current flows through the sense resistor Rs on the
left side, it produces a slight voltage drop of VRs = IRs ·
RRs, which is amplified by the first-stage amplifier U8-
B with output of VAmp. To simplify the calculation, we
suppose that R1 =R2, R3 =R4 to obtain the output value

VAmp =
R3

R1

VRs, which is placed in the integral circuit of

the right side. To simplify the calculation, we suppose that
R5 = R6, R7 = R8, and then the output value VInteg to
MCU is as shown in Eq. (2):

VInteg =
2

R5C3

∫
VAmp(t)dt=

2R3RRs

R5C3R1

∫
IRs(t)dt (2)

We suppose that the average voltage of capacitor C1

at t time refers to Vc1(t), and then the harvested energy
Eharv(t) at t second is calculated in Eq. (3) as follows:

Eharv(t)=

∫t
t−1

U(t)I(t)dt=

Vc(t)+Vc(t−1)

2

∫t
t−1

IRs(t)dt=

R3RRs

R1R5C3

·VInteg ·(Vc1(t)+Vc1(t−1)) (3)

Once the resistance is determined, MCU is only
demanded to measure Vc1(t) and VInteg once per second
and performs simple multiplication to obtain the harvested
energy (J) in one second, which significantly reduces
the calculation and wake-up time, thereby decreasing
the power consumption. In fact, the integral output
value VInteg represents the electric charge obtained in
this second. As measured once, the MOSFET Q1 is
responsible for discharging the capacitor C3 to reset the
measurement value.

In actual application, setting an appropriate RC value
according to the range and accuracy is necessary. First,
we should ensure that the input offset voltage of the
operational amplifier is amplified with the amplification
of R3/R1, thereby resulting in a significant measurement
error. Generally, the lower the power consumption of
an operational amplifier is, the higher the offset voltage
becomes, so amplification has to be reduced. Second,
when the current flows through the sampling resistor Rs,
the voltage drop affects the stability of the supply voltage;
thus, the Rs value needs to consider both the amplification
and voltage stability. Finally, the value of R5C3 in the
integral circuit refers to the integral coefficient, and the
value depends on the sampling interval and output voltage
range. The aforementioned resistors need 0.1% precision
components. As the capacitance error is relatively large,
we recommend using an LCR meter to determine its
specific value. All of the RC values determine the range
and accuracy of measurements.

As shown in Fig. 5, we adopted a charge pump for the
power supply of the operational amplifier to ensure that the



412 Tsinghua Science and Technology, August 2018, 23(4): 406–418

common mode input voltage is within the operating range.
In addition, the resistor Radc is responsible for reducing
the leakage current when nodes sleep, whereas the larger
resistor Radc requires longer Analog-to-Digital Convertor
(ADC) sampling time.

3.3 Solar energy-harvesting prediction

To plan network strategy in EH-WSN, predicting the
harvesting energy in the next period of time is necessary.
Moreover, different from traditional WSN networks, EH-
WSN requires a higher precision of energy data, while only
a small amount of energy is available for the prediction.
In this section, we take the solar battery as an example
of an energy source to describe in detail. We consider
the overall solar battery characteristics, the offset of
capacitance, and the charging curve to propose a solar
energy prediction method based on the IEA platform. Note
that the Maximum Power Point Tracking (MPPT) method
is not applied here, and the solar batteries are directly
connected to IEA. The charging curve of the capacitor is
shown in Fig. 6, and the variation of voltage with time is
shown in Eq. (4):

V (t)=V (0)+(Vin−V (0)) ·(1−e(−
t

RC
)) (4)

Wherein, V (t) refers to the charging voltage at t time,
V (0) is the initial voltage of capacitor, Vin is the supply
voltage, and R and C are the resistance and capacitance
values, respectively. The charging rate is nonlinear. When
the initial voltage is close to zero, the voltage rises with
the fastest speed. As the voltage rises, the charging current
tends to zero, so it needs almost unlimited time to fill the
capacitor. In fact, filling the capacitor is not necessary
for EH-WSN to operate. What is important is to reach a
voltage that is enough for operation and prediction. We
strike a balance between the task load and the wake-up
frequency.

(1) Once it wakes up, EH-WSN needs to perform
actions of sensing, computation, and communication with

Fig. 6 Charging curve of the capacitor.

enough energy stored in the capacitor. Based on the
assumption that the operating voltage is 2–3 V, the
current is approximately 1–20 mA, and the duration is
approximately 10–100 ms, the energy required is 20–
6000 µJ. According to the calculation of E=CV 2/2, the
capacitance value range is 8–2400 µF. In this range, we
can only utilize an electrolytic capacitor with an error of
10%–50% itself. Therefore, the actual capacitance of the
capacitor should be confirmed before the node energy is
calculated.

(2) The voltage of the capacitor is affected by the
running action of nodes, such as the amount of calculation
and communication, the number of resending, and so on.
In a unit time, the lower the initial voltage of capacitor is,
the more the energy flows into the capacitor. We have to
consider that the capacitor voltage is affected by the action
of nodes when calculating and predicting the energy.

(3) Subjected to the limitation of cost and size of
EH-WSN, the existing environmental energy source is
almost equivalent to a high resistance voltage source,
and the output voltage varies with the current. The
real source voltage Vin and the internal resistance R is
unknown, which actually affects the energy-harvesting
efficiency. Although the capacitance has an Equivalent
Series Resistance (ESR), its resistance is negligible
compared with the internal resistance of the energy source.

To predict the harvesting energy from solar batteries,
the equivalent circuit of solar batteries is taken as a
reference, as shown in Fig. 7. As the diode in the circuit
is a nonlinear component with unknown parameters,
calculating the energy is difficult. In fact, the light from
solar panels varies minimally in a short period (a few
seconds). Therefore, the left section of the equivalent
model of solar batteries can be considered as a constant
voltage source, and the circuit of the energy harvesting
section of IEA is shown in Fig. 8. It is also an
equivalent circuit for many energy components, such as
thermoelectric[31]. From t− 1 to t time, the amount of
obtained charge is Qharv(t), and the amount of consumed
charge is Qcsum(t). As the average harvested current is
Iharv(t)=Qharv(t) from t−1 to t, the average consumed

Fig. 7 Equivalent circuit of solar batteries.



Yang Zhang et al.: An Efficient EH-WSN Energy Management Mechanism 413

Fig. 8 Equivalent energy harvesting circuit of IEA.

current is Icsum(t)=Qcsum(t). The known parameters are
used to calculate the energy source voltage VSolar, internal
resistor Rp, and capacitance C1.

On account of energy data measured by previous
energy measurement circuits, the calculation of the three
unknown parameters in the IEA platform is simple.
In Fig. 8, as the increment of voltage and charge is
known, the true value of the capacitor can be calculated
directly according to C1 = △Q/ △U = (Qharv(t) −
Qcsum(t))/(Vc1(t)−Vc1(t−1)), and then we continuously
measure the current Iharv(t) and the capacitor voltage
Vc1(t) three times. According to VSolar = Iharv(t) ·Rp +
(Vc1(t)+Vc1(t−1))

2
, the energy source voltage VSolar

and internal resistor Rp can be calculated.
In actual environments, since the measured voltage

and charges have errors, the energy source voltage VSolar,
internal resistance Rp, and capacitance C1 calculated
by a single measurement are not so accurate. On
the other hand, these physical parameters may vary
with time. To improve energy prediction accuracy,
we utilized Exponentially Weighted Moving-Average
(EWMA) algorithm[23] to smooth the value, as shown in
Eq. (5).

C1(t)=w ·C1(t−1)+(1−w) ·C1(t) (5)

In the equation, C1(t) is the measured capacitance
value of t time, C1(t) refers to the average capacitance
value after weighting, w is the weight, and 0 < w < 1.
We select an appropriate w value to ensure a balance
between the stability and response speed of changes. In the
smoothing method, the energy source voltage VSolar and
internal resistance Rp are processed in the same principle.

Since the energy consumption of the hardware is
known, EH-WSN nodes can predict the consuming energy
based on the expected operation, such as Eq. (6).

Ecsum =PCtC +PT tTX +PRtRX (6)

Ecsum refers to the consuming energy as predicted; PC ,
PT , and PR refer to the power of computing, sending,
and receiving, respectively; and tC , tTX , and tRX refer to
the expected time for computing, sending, and receiving,

respectively. Once the EH-WSN nodes wake up, they
execute necessary operations within a short time. Most of
the time, however, the nodes stay asleep and tC , tTX , and
tRX can be neglected in energy calculation. According to

E =
CV 2

2
, nodes consume the energy of Ecsum, and then

the C1 voltage drops to
√
V 2
c1(0)−

2Ecsum

C1

. According to

Eq. (7), the energy Eharv can be estimated in the future
t time, or the time t can be estimated by the specified
energy Eharv. Thus, to harvest a large amount of energy,
the stored energy in the nodes has to be consumed to
reduce Vc1(0) and the appropriate charging time t has to
be selected.

Eharv(t)=
C1

2

(
VSolar−

√
V 2
c1(0)−

2Ecsum

C1

)2

·(
1−e

(− 2t
Rp·C1

)
) (7)

4 Experiments

In this section, the IEA platform is evaluated from
four aspects: power consumption, energy management,
measurement, and prediction. First, the experiment setting
is introduced.

The IEA platform prototype uses an MSP430FR6972
micro-controller with an ultra-low-power consumption
and takes a nonvolatile Ferromagnetic Random Access
Memory (FRAM) with 64 KB. In the experiments, IEA did
not adopt the operating system, but it optimized the source
code to minimize the power consumption to the most
extent. The parameters of the prototype are set as follows:
the voltage range is 0–6 V; the node starts automatically
when the voltage is higher than 2.36 V and powers down
when the voltage is less than 2.0 V. MCU is powered
by Low Dropout regulator (LDO) and works stably at
2.1 V. Capacitor C1 has a capacitance of 1000 µF with
ESR as 80 mΩ, and super capacitor C2 has a capacitance
of 0.1 F with ESR as 200 Ω. In energy measurement,
IEA uses the operational amplifier (type TSV714), of
which the consumption current is 9 µA/channel under
3 V supply, the input offset voltage is 0.2 mV, and the
gain bandwidth is 120 kHz. Sensors mainly include light,
temperature, and acceleration sensors (type ADXL327).
The RF chip is SX1211 with communication frequency
of 868 MHz, bit rate of 25 Kbps, and antenna gain of
2.5 dBi. All components are Commercial Off-the-Shelf
(COTS), and consider performance and cost. The
instruments used in the experiments are an oscilloscope
Keysight MSOX3024A, a digital multimeter Keysight
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34461A, a signal generator Rigol DG4102, and an
illuminance meter UNI-T UT381.

4.1 Running energy consumption test of IEA

As an energy-harvesting platform, IEA itself must have
low enough consumption to save more energy for
computation and communication. In this section, we
measured the power consumption of the IEA platform in
sleep, standby, computation, and communication modes,
and then conducted a running test of IEA.

(1) Power consumption in sleep mode
Sleep mode is the situation when the voltage of

capacitor C1 is below 2 V. At this point, the chip is unable
to work and IEA is powered down automatically. Figure 9
shows the current variation in which IEA consumes itself
when the voltage increases from 0–3 V in 30 s. To ensure
that the measurement result is not affected by the charging
capacitor, we did not add the capacitor C1. IEA is set to
sleep mode after booting without further computation and
communication. As shown in Fig. 9, when the voltage
is lower than 2.36 V, the average current consumption of
IEA is 0.496 µA; when the voltage reaches 2.36 V, the
consumption is approximately 3.7 mA in 16 ms. IEA
produces the peak current of 3.7 mA due to power up and
charging the internal capacitors, and then the current drops
to 21 µA. After flowing 216 ms from the peak, the MCU
starts to initialize with the duration of 153 ms and average
current of 347 µA. Then, the node goes to sleep mode with
the current of 3.46 µA. In fact, when the voltage is constant
at 1.8 V, the sleep current of IEA is less than 1 µA, which
is only approximately 1/20 compared with the current of
the most power-saving Wireless Identification and Sensing
Platform (WISP) nodes on the existing platforms.

(2) Power consumption in running mode
Operation mode is the situation when the voltage of

capacitor C1 is higher than 2 V. At this point, IEA is
powered and capable to perform the computation and
communication tasks. Figure 10 shows the current
variations of IEA at the constant voltage of 2.5 V at the
action of sleep, computation, and communication.

Fig. 9 IEA booting power consumption.

Fig. 10 IEA current in different modes.

First, IEA is in sleep mode with the current
consumption of 48.9 µA mainly for the energy
measurement module. After 1 s, MCU wakes up and
computes with the current consumption of 333 µA. At
3 s, IEA comes into the receiving state with the current
consumption of 3.284 mA. At 4 s, IEA sends three
data packets with sending power of −8 dBm, 10 bytes
per packet, and consumption current of 12.9 mA. After
sending, MCU goes to sleep with the current of 48 µA.

(3) IEA running test
This section tests the energy-harvesting efficiency of

the IEA platform under different illumination conditions
including direct sunlight, cloudy day, and indoor lamp.
IEA wakes up every second and measures energy. If it
detects that the voltage exceeds 2.5 V, it sends a data
packet of 10 bytes with the power of −8 dBm. At midday,
when the sun is shining directly, IEA can send a packet
every second with the voltage remaining at approximately
5.8 V. In fact, in direct sunlight, IEA nodes are free to
compute and communicate without considering the energy
limitation. In cloudy days, by the window, IEA can send
a packet every second with illuminance of 2000 lx, and
the voltage is maintained at approximately 4.2 V. At night,
under lamp-light (LED), the IEA communication cycle is 3
s, and the voltage variations of nodes are shown in Fig. 11.

4.2 Energy storage and synchronous wake-up test

The IEA platform is able to continue working in an
environment with lack of energy. In the experiments,
the node was placed beside the window to monitor the
variation of light in an entire day. The node was

Fig. 11 Variation of IEA voltage.
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synchronous with the sink every minute and needed time
to initialize. Therefore, RTC had to wake up the node
one second before synchronization to measure the current
illumination, and then transmit data in synchronous time.
The test was conducted from 9:00 am to 9:00 am of the
following day. The experimental data are shown in Fig. 12.

As observed, from 7:00 pm to 9:00 pm, the intensity
of illumination rises in the light of the fluorescent lamp;
after 9:00 pm, the intensity of illumination stays in low
position as the light is switched off. As early as 4:00
am, the light gradually intensifies because of sunrise. For
24 hours, the maximum voltage value of capacitor C2 is
5.77 V, the minimum value is 3.34 V, and the transmission
success rate is 98.3% in the time window of 60 ms. We can
observe that the IEA platform can meet the communication
requirements of the network in an environment where no
energy is harvested, such as at night. If more data are
to be transferred, we can use a larger super capacitor that
requires more energy.

4.3 Experiment for energy measurement

As the principle and structure of energy-harvesting
measurement and energy consumption measurement are
identical, we compared only the measured harvested
energy with real values. IEA is powered by a solar
battery and works 100 s continuously. The node wakes
up per second to measure current energy, receive 50
ms of data, send a 10-byte data packet, and then falls
asleep. In circuit, R1=R2=10 KΩ, R3=R4=R5=R6=R7=
R8=2 MΩ, C3=1 µF. The resistor Rs refers to 10 Ω in the
energy measurement; based on the calculation of Eq. (3),
when the sampling period is one second, the amplification
factor is 1000, and the measuring range is 1 mA. Figures
13–15 show a comparison between the measured results
and real values of the IEA platform. In Fig. 14, we
can observe the comparison of the energy measurement
between the IEA platform and the actual value, and also
the measuring error for each time.

As shown in Fig. 13, the current measured by IEA

Fig. 12 Data synchronization test.

Fig. 13 Comparison of current measuring values.

Fig. 14 Comparison of energy measurement values.

Fig. 15 Error of energy measurement.

is very close to the real value with an average error of
−0.16%, and the standard deviation of error is 0.32%.
Figure 14 compares the energy measured by IEA with that
of the actual value. As shown in Fig. 15, the average error
is 0.11% and the standard deviation of error is 0.35%. We
can see that the energy measurement accuracy of IEA is
high enough to support further network routing algorithm
and promote the energy efficiency significantly. The power
of the IEA energy measurement is approximately 157 µW,
which can be further reduced by a low-power operational
amplifier such as TSU104. The power of TSU104 may
be less than 10 µW, but the measurement accuracy may
decrease as well.

4.4 Experiment on energy prediction

In the experiment of energy prediction, we set the IEA
node to sense the environmental data once per second and
transmit the data every 10 s. The actual harvested energy is
recorded by a multimeter and compared with the predicted
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value. The results are shown in Fig. 16. After operating
for 100 s continuously, the capacitance of capacitor C1

calculated by IEA is 953.4 µF, which is 6.8 µF less than
the actual value. The voltage of the solar panel is 5.71 V,
and the internal resistance is 6357 Ω. In Fig. 16, the red
line stands for real harvested energy, and the blue line
indicates the harvesting energy per second in prediction.
The average prediction error is −9.67%, and reasons
affecting the accuracy are the following: First, due to the
restriction of the multimeter, the measured real voltage
value is not instantaneous value but average value per
second, which affects the accuracy of real energy. Second,
the energy measurement module consumes the energy
when MCU is asleep, thereby leading to higher harvesting
energy in actuality than that in prediction. The error can be
reduced by adopting an amplifier with lower power. Third,
the IEA node consumes less energy when not transferring
data, so the voltage value varies minimally. Thus, the
deviation of measurement and prediction of energy takes
a larger proportion, leading to a relatively high error.
We can observe that the accuracy of energy prediction
is evidently higher when the IEA node is transmitting
data. By the time of transmission and the following three
seconds, the average error of prediction is 0.74% and the
standard deviation for the error is 4.63%. In fact, the node
requires exact prediction for energy when handling heavy
tasks; when performing light tasks, the energy is relatively
abundant and a lower accuracy of prediction can meet the
requirement.

5 Conclusion

In this paper, we proposed a universal IEA EH-
WSN platform, which provides an optimized energy
management mechanism for intermittent operations. The
IEA platform ensures that the network runs at a minimal
level in an environment without energy harvesting,
measures the energy with 99.89% accuracy, consumes only
157 µW of power, and provides strong support for EH-

Fig. 16 Comparison of energy prediction values.

WSN. With regard to node performance and cost, the IEA
platform adopts COT components. Thus, IEA is not only
an experimental platform for EH-WSN, but is also an
instrument with practical value.
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