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AutoGDeterm: Automatic Geometry Determination for
Electron Tomography
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Abstract: Electron Tomography (ET) is an important method for studying cell ultrastructure in three-dimensional

(3D) space. By combining cryo-electron tomography of frozen-hydrated samples (cryo-ET) and a sub-tomogram

averaging approach, ET has recently reached sub-nanometer resolution, thereby realizing the capability for gaining

direct insights into function and mechanism. To obtain a high-resolution 3D ET reconstruction, alignment and

geometry determination of the ET tilt series are necessary. However, typical methods for determining geometry

require human intervention, which is not only subjective and easily introduces errors, but is also labor intensive

for high-throughput tomographic reconstructions. To overcome these problems, we have developed an automatic

geometry-determination method, called AutoGDeterm. By taking advantage of the high-contrast re-projections of

the Iterative Compressed-sensing Optimized Non-Uniform Fast Fourier Transform (NUFFT) reconstruction (ICON)

and a series of numerical analysis methods, AutoGDeterm achieves high-precision fully automated geometry

determination. Experimental results on simulated and resin-embedded datasets show that the accuracy of

AutoGDeterm is high and comparable to that of the typical “manual positioning” method. We have made AutoGDeterm

available as software, which can be freely downloaded from our website http://ear.ict.ac.cn.
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1 Introduction

Electron Tomography (ET) is an important method for
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studying cell ultrastructure in three-dimensional (3D)
space. By combining cryo-electron tomography of
frozen-hydrated samples (cryo-ET) with a sub-tomogram
averaging approach[1, 2], ET has recently reached
sub-nanometer resolution[3, 4]. Visualizing the high-
resolution structure of macromolecular assemblies in three
dimensions can provide direct insights into function and
mechanism[2]. In ET, a series of two-dimensional (2D)
projection micrographs (tilt series) are taken at different
orientations and then used to reconstruct the 3D density
of the cell ultrastructure, based on the projection-slice
theorem[5]. A typical projection geometry is the single-
axis tilt series in which the specimen is rotated about
a single fixed axis (Y -axis) perpendicular to the optical
axis (Z-axis) in the microscope[6]. The tilt angle of ET is
limited to within −70◦ to +70◦ to ensure that a reasonable
number of electrons can pass through to form reliable
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images. The absence of high-tilt angles results in missing-
wedge artifacts[7]. Usually, the projection environment is
unstable due to mechanical instability and the inevitable
transformation and deformations of the sample, which lead
to a mismatch in the tilt series. To obtain a high-resolution
3D reconstruction, the projection parameters of the tilt
series must first be accurately calibrated.

In recent years, the topic of alignment in ET has
been widely discussed and many high-precision alignment
algorithms have been proposed. These algorithms can
be classified into two main types that generate either
the following: (a) marker-based or (b) marker-free
alignment. Marker-based alignment[8–12] requires that
fiducial markers be embedded in the sample. With high-
contrast conditions, fiducial markers can be precisely
located, which greatly improves alignment accuracy.
However, the embedding of fiducial markers may interfere
with the sample and cause undesirable artifacts in
the reconstruction. In contrast, marker-free alignment
requires no embedding of fiducial markers in the sample.
Examples include cross-correlation[13], common lines[14],
iterative alignment methods that combine cross-correlation
with reconstruction and re-projection[6, 15], and feature-
based alignment methods that use features as fiducial
markers[16–18]. Marker-free alignments are usually limited
by their low Signal-to-Noise Ratio (SNR) and the
intrinsic biological structure of the sample. More general
treatments of the alignment problem can be found in
Ref. [19].

One problem related to alignment is the determination
of the reconstruction geometry, in which the geometry
of the 3D reconstruction is described with respect to a
fixed coordinate system, including the direction of the tilt
axis (azimuth angle), the tilt angle offset, the thickness
of the sample, and the z-shift of the reconstruction[9].
Some alignment algorithms (e.g., Refs. [6, 12, 17])
include the determination of geometry in the alignment
procedure. However, the most common methods for
determining the geometry depend on human intervention,
herein referred to as “manual positioning”, such as
the successful and widely used ET tool IMOD[9]. In
manual positioning, a boundary model is created that
contains several manually selected position features of the
3D reconstruction, which is then used to calculate the
geometric parameters. Although manual positioning has
high accuracy, two key issues remain to be solved. First,
as high-resolution sub-tomogram averaging demands high-
throughput tomographic reconstructions[2], the need for
human intervention in manual positioning will become a

bottleneck in any high-efficiency automatic ET alignment
and reconstruction. Second, the manual selection of
position features is fairly subjective and easily introduces
errors, especially in cryo-ET reconstruction, in which the
extremely low SNR and ray artifacts caused by the missing
wedge make the position features difficult to identify.

To overcome these problems, we have developed
an automatic ET geometry-determination method called
AutoGDeterm. AutoGDeterm uses numerical analysis
methods and re-projections of the Iterative Compressed-
sensing Optimized Non-Uniform Fast Fourier Transform
(NUFFT) reconstruction, a compressed-sensing-
based[20, 21] ET reconstruction algorithm referred to as
ICON[22]. AutoGDeterm has two advantages. First, its
ICON-based reconstruction suffers less from ray artifacts
and has a higher SNR[22]. Using the re-projections
of ICON, AutoGDeterm realizes much clearer position
features, which is essential for high-precision automatic
geometry determination. Second, ICON can partially
restore the unsampled information in ET reconstruction[22],
and thereby generate a clear re-projection of the
reconstructed volume at 90◦ (which is normally too blurred
when identified by other ET reconstruction algorithms,
such as ART[23], SIRT[24], and WBP[25]), so the azimuth
angle can be directly determined. AutoGDeterm has also
been developed into a software program and can be freely
downloaded from our website http://ear.ict.ac.cn.

2 Method

2.1 Geometry

The geometry of ET reconstruction is shown in Fig. 1.
The projection coordinate system (X , Y , Z) is fixed with
respect to the microscope, with the Y -axis being the tilt
axis and the Z-axis the optical axis (projection along

Fig. 1 The geometry of ET reconstruction.
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the negative direction of the Z-axis). Volume V is the
3D density of the specimen with thickness T , which is
reconstructed from the aligned tilt series. The alignment
procedure aligns the tilt axis of the tilt series perpendicular
to the X-axis[12]. Thus, the reconstruction coordinate
system (X ′, Y ′, Z ′) can be defined relative to (X , Y , Z)
by a rotation about the X-axis at angle θaz (azimuth angle)
(where the Y ′-axis is the actual tilt axis), a rotation about
the Y ′-axis at angle −θto (where θto is the tilt angle offset)
and a shift −dz along the Z-axis (where dz is the z-shift).

Normally, alignment and geometry determination
problems are intrinsically three dimensional, so errors are
introduced by determining θto and θaz separately using re-
projections[19]. However, θaz and θto are usually small
for an aligned tilt series and the errors introduced by
determining θto without considering θaz are small enough
to ignore (see Eq. (1)). So, we regard −θto as an
approximate rotation about the Y -axis.

Eθto = θto−θ′to,

θ′to =arctan(cos(θaz) ·tan(θto)) (1)

where θ′to is the determined tilt angle offset using re-
projections in AutoGDeterm, we should notice that, before
rotating by −θto, the re-projection on XZ-plane is always
parallel to the X-axis with any θaz; Eθto is the error of
determining θto without considering θaz. When θto = 5◦

and θaz =5◦, Eθto =0.0189◦.

2.2 ICON re-projection

ICON is an iterative ET reconstruction algorithm based
on the theoretical framework of “compressed sensing”.
Taking advantage of prior knowledge of biological
structural density and NUFFT, ICON can partially restore
unsampled information, especially for the low-frequency
information in Fourier space, and generate a high-contrast
reconstruction[22]. Due to the limitation of tilt angles, a
−90◦ projection of specimens can not be sampled, so
traditional ET reconstruction algorithms can not generate a
clear −90◦ re-projection. However, by restoring “missing
information”, ICON generates a much clearer −90◦ re-
projection (Fig. 2b) than WBP (Fig. 2a). With a clear −90◦

re-projection, we can automatically determine the azimuth
angle θaz. To then determine the tilt angle offset, we re-
project the reconstruction along the Y -axis to generate
an X90-re-projection. The X90-re-projection of ICON
(Fig. 2d) has better contrast than WBP (Fig. 2c). With this
clear X90-re-projection, we can automatically determine
the tilt angle offset θto. We can also determine the z-shift

Fig. 2 −90◦ re-projections and X90-re-projections
of WBP and ICON (resin-embedded ET dataset is
reconstructed). (a and b) −90◦ re-projections of WBP
and ICON, respectively; (c and d) the X90-re-projections
of WBP and ICON, respectively.

and the thickness of the reconstructed volume using X90-
re-projection. Because of the ray artifacts, the thickness of
the reconstructed volume is always greater than the actual
thickness of the specimen. All the −90◦ re-projections in
this paper are rotated in-plane by −90◦ and only the central
areas are used for the determination.

2.3 Geometry determination

There are four geometric parameters to be determined,
including the z-shift, thickness, tilt-angle offset, and
azimuth angle. Figure 3 shows the AutoGDeterm
workflow.

In the “Determine z-shift & thickness” step, we first
divide the X90-re-projection into a series of sub-images
using a sliding window with size Sw and overlap So

(Fig. 4a). In this paper, Sw = 50 and So = 40. Then,
for each sub-image, we re-project it along the X-axis
and normalize this re-projection to generate a normalized
(in the range [0, 1]) 1D re-projection (solid line in
Fig. 4b). This normalized 1D re-projection approximates
a rectangular function (dashed line in Fig. 4b, generated

Fig. 3 The geometry of ET reconstruction.
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Fig. 4 Determination of z-shift and thickness
corresponding to the test on resin-embedded ET dataset
in Section 3.3. (a) Division of the X90-re-projection with
a sliding window; (b) normalized 1D re-projection and
rectangular function.

by Eq. (2)). We determine the z-shift and thickness for
each sub-image by solving an optimization problem, as
shown in Eq. (3). Then, we use Eq. (4) and the maximum
Normalized Correlation Coefficients (NCC) to generate
weights for each sub-image, and calculate the overall z-
shift dz and thickness T using the weighted accumulation
(Eqs. (5) and (6)). Practically speaking, it is better to
reconstruct a volume with a thickness about 10 to 20 pixels
greater than the actual thickness of the specimen[9]. In this
paper, we determine a thickness that is 10 pixels greater
than the specimen thickness.

f(x,zi, ti)=

1, zi−⌊ ti
2
⌋<=x<= zi+⌈ ti

2
⌉;

0, otherwise
(2)

maxNCCi =maxzi,tincc(reproj1Di,f(zi, ti)),

s.t., zi, ti <s (3)

where subscript i corresponds to the i-th sub-image,
ncc(reproj1Di,f(zi, ti)) calculates the NCC values
between the 1D re-projection reproj1Di and f(zi, ti), s

is the size of reproj1Di, zi and s are used to calculate the
z-shift and ti is thickness.

wi =
maxNCCi∑
jmaxNCCj

(4)

dz =
∑
i

wi ·
(s
2
−zi

)
(5)

T =
∑
i

wi · ti+10 (6)

In the “Determine tilt angle offset” step, the X90-
re-projection is used to calculate a series of zi and wi

using Eqs. (3) and (4). The center positions ci (on the
X-axis) of each sub-image are also recorded. Then, we
fit dataset (ci,zi) with a linear function using a weighted
least squares method (Eq. (7)). The tilt-angle offset is
determined using Eq. (8).

mink,b

∑
i

wi ·(z′
i−zi)

2,z′
i = k ·ci+b (7)

θto =arctan(k),

k=

∑
i
(wi ·zi)

∑
i
(wi ·ci)−

∑
i
(wi ·zi ·ci)∑

i
(wi ·ci)2−

∑
i
(wi ·c2i )

(8)

In the “Determine azimuth angle” step, we use the
−90◦ re-projection instead of the X90-re-projection. The
same procedure is used to determine the azimuth angle as
that used to determine the tilt-angle offset.

3 Results and Discussion

3.1 Test dataset

We tested AutoGDeterm using simulated and resin-
embedded ET datasets.

We generated simulated ET datasets using a Serial
Block-face scanning Electron Microscopy (SBEM) 3D
reconstruction of brain tissue extracted from a mouse
cerebellum. The SBEM data was generated using a Zeiss
Merlin scanning electron microscope equipped with an
ultramicrotome (Gatan 3View system). Each image was
collected by detecting the backscattered electrons, with
the microscope operating at an acceleration voltage of
1.9 kV. During the acquisition process, we used a digital
micrograph to automatically invert the contrast to make
the images resemble transmission electron microscopy
micrographs[26]. To test the precision of AutoGDeterm
under different SNRs, we generated three simulated ET
tilt series with different noise levels (noise-free, SNR=1
and SNR=0.5), as shown in Figs. 5a–5c. We generated
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Fig. 5 Test datasets. (a) Noise-free simulated dataset; (b)
simulated dataset with SNR=1; (c) simulated dataset with
SNR=0.5; (d) resin-embedded ET dataset.

the tilt series using IMOD. The image size was 512×512

pixels and the tilt angles ranged from −60◦ to +60◦ with
increments of 2◦. The simulated geometric parameters
were 5 pixels for the z-shift, 63 pixels for the thickness,
2.2◦ for the azimuth angle, and 2.5◦ for tilt-angle offset.

We downloaded the resin-embedded ET dataset (file
“BBa.st”, Fig. 5d) from the IMOD website[9]. Fiducial
markers were embedded in the dataset to guarantee
accurate alignment. The original image size was 1000×
1000 and the tilt angles ranged from −60◦ to +60◦ with
2◦ increments. In this paper, the image was binned with a
factor of 2 and the final pixel size was 2.02 nm.

3.2 AutoGDeterm test using simulated dataset

In this section, we evaluate the precision of AutoGDeterm
with three simulated aligned tilt series with known
geometric parameters. We use the geometry determination
module TOMOPITCH in IMOD[9] to illustrate the
performance of AutoGDeterm, because IMOD is a
successful and widely used ET suite. However, we note
that, even with our best effort, the parameters determined
using TOMOPITCH (by manually selecting the position
features) may be subjective and the accuracy may be
improved with more experienced operation. In practice,
readers can choose geometry determination methods
according to personal preference. The TOMOPITCH
procedure can be briefly described as follows: first, several
XZ-slices from the bottom, middle, and top areas of

the tomogram are reconstructed using WBP. Then, the
position features are manually selected from these slices
to generate a boundary model. Lastly, the geometric
parameters are calculated using the boundary model.
To reduce subjectivity, we repeated each TOMOPITCH
determination ten times and used the average parameters
for comparison.

First, we tested AutoGDeterm using the noise-free
simulated dataset. Figures 6a–6c show the boundary
model used in TOMOPITCH and Figs. 6d–6e show the
re-projections used in AutoGDeterm. For the noise-free
dataset, the reconstructed XZ-slices have a comparable
contrast with the re-projections and the position features
are sufficiently clear to be correctly identified. The
accuracy of AutoGDeterm is comparable to that of
TOMOPITCH (Table 1). For θaz and θto, the errors of
AutoGDeterm and TOMOPITCH are no greater than 0.2◦.
The thicknesses of AutoGDeterm and TOMOPITCH are
both about 10 pixels greater than the actual thickness. As
for the z-shift, the error of AutoGDeterm is 1.4 pixels,
which is slightly larger than that of TOMOPITCH (0.9
pixels). For visual validation, Figs. 6f and 6g show the
corrected re-projections of AutoGDeterm.

Next, we tested AutoGDeterm with two noisy datasets
(SNR=0.5, 1). To avoid duplication, Fig. 7 shows
only the SNR=0.5 dataset determination. Because of
the extremely high noise level, the reconstructed XZ-
slices (Figs. 7a–7c) used in TOMOPITCH have poorer
contrast than the ICON re-projections (Figs. 7d–7e), which
still show clear position features. Low contrast makes
it difficult to correctly identify position features from
single reconstructed slice, which means greater effort
is needed to make an accurate determination. As the
noise level increases, the accuracies of TOMOPITCH and

Fig. 6 AutoGDeterm test using noise-free simulated
dataset. (a–c) Boundary models used in TOMOPITCH;
(d) X90-re-projection used in AutoGDeterm; (e) −90◦

re-projection used in AutoGDeterm; (f) corrected X90-
re-projection by AutoGDeterm; (g) corrected −90◦ re-
projection by AutoGDeterm.
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Table 1 Geometric parameters of simulated dataset determined using TOMOPITCH and AutoGDeterm.
SNR Simulated θaz (2.20) θto (2.50) Thickness (63) z-shift (5)

Noise-free TOMOPITCH 2.17 (−0.03) 2.39 (−0.11) 76 (+13) 5.9 (+0.9)

Noise-free AutoGDeterm 2.26 (+0.06) 2.49 (−0.01) 73 (+10) 6.4 (+1.4)

1 TOMOPITCH 1.92 (−0.28) 2.72 (+0.22) 75 (+12) 6.1 (+1.1)

1 AutoGDeterm 2.35 (+0.15) 2.64 (+0.14) 71 (+8) 6.4 (+1.4)

0.5 TOMOPITCH 1.83 (−0.37) 2.28 (−0.22) 73 (+10) 6.5 (+1.5)

0.5 AutoGDeterm 2.29 (+0.09) 2.80 (+0.30) 70 (+7) 6.3 (+1.3)

Fig. 7 AutoGDeterm test using noisy simulated dataset
(SNR=0.5). (a–c) Boundary models used in TOMOPITCH;
(d) X90-re-projection used in AutoGDeterm; (e) −90◦

re-projection used in AutoGDeterm; (f) corrected X90-
re-projection by AutoGDeterm; (g) corrected −90◦ re-
projection by AutoGDeterm.

AutoGDeterm decrease (Table 1). However, the accuracy
of AutoGDeterm is comparable to that of TOMOPITCH
and it generates a good correction (Figs. 7f and 7g).

3.3 AutoGDeterm test using resin-embedded ET
dataset

Since the actual geometric parameters in real ET datasets
are not known, we used the relative difference between
AutoGDeterm and TOMOPITCH and visual validation
to evaluate the accuracy of AutoGDeterm. Figures 8a–
8e show the boundary models used in TOMOPITCH
and the re-projections used in AutoGDeterm. Although
the sample is slightly bent, the correction of the re-
projections by AutoGDeterm is good (Figs. 8f and 8g),
which demonstrates the robustness of AutoGDeterm with
respect to sample deformation. Also, the absolute
differences between TOMOPITCH and AutoGDeterm are
small (Table 2), which demonstrates the comparable
accuracy of AutoGDeterm to that of TOMOPITCH in the
geometry determination of real ET dataset.

For visual validation, we reconstructed the tilt
series using WBP and then corrected the reconstruction
using the geometric parameters from TOMOPITCH and
AutoGDeterm, respectively. Figure 9a shows the 281th
XY -slice (the 256th XY -slice is the central slice) of

Fig. 8 AutoGDeterm test using resin-embedded ET
dataset. (a–c) Boundary models used in TOMOPITCH;
(d) X90-re-projection used in AutoGDeterm; (e) −90◦

re-projection used in AutoGDeterm; (f) corrected X90-
re-projection by AutoGDeterm; (g) corrected −90◦ re-
projection by AutoGDeterm.

Table 2 Geometric parameters of resin-embedded
ET dataset determined using TOMOPITCH and
AutoGDeterm.

θaz θto Thickness z-shift

TOMOPITCH 2.23 0.31 65 −0.4

AutoGDeterm 2.29 0.47 64 −1.49

abs (difference) 0.06 0.16 1 1.09

Fig. 9 Corrected reconstructions of TOMOPITCH
and AutoGDeterm. (a) 281th XY-slice of uncorrected
reconstruction; (b) 281th XY-slice of corrected
reconstruction by TOMOPITCH; (c) 281th XY-slice
of corrected reconstruction by AutoGDeterm.

an uncorrected tomogram, because of the azimuth angle,
the bottom part of slice is out of the sample. Figures 9b
and 9c show the same XY -slices of corrected tomograms,
in which we can see that both corrections generate flat
reconstructions and the AutoGDeterm result is visually
identical to that of TOMOPITCH.
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4 Conclusion

In this paper, we proposed an automatic ET geometry
determination method, called AutoGDeterm. Our focus
was to solve two key issues that arise in the use of the
traditional “manual-positioning” method and to provide
an automatic high-precision geometry determination
framework by the introduction of ICON re-projections
and a series of numerical analysis methods. We tested
AutoGDeterm using simulated datasets and a resin-
embedded dataset. The experimental results demonstrate
that the accuracy of AutoGDeterm is high and comparable
to that of TOMOPITCH.

However, we note that AutoGDeterm depends on a
full reconstruction rather than the reconstruction of several
slices, as performed by TOMOPITCH, which means more
time is needed to complete AutoGDeterm’s automatic
geometry determination procedure. In future work, an
improvement in speed will be made possible by employing
several parts rather than a whole reconstruction in the
determination.
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