
ISSN 1007-0214 11/13 pp333–346
DOI: 10.26599 / TST.2018.9010082
Volume 23, Number 3, June 2018

BLE Mesh: A Practical Mesh Networking Development
Framework for Public Safety Communications

Bo Zhang, Yufeng Wang∗, Li Wei, Qun Jin, and Athanasios V. Vasilakos

Abstract: Owing to advanced storage and communication capabilities today, smart devices have become the basic

interface between individuals and their surrounding environment. In particular, massive devices connect to one

other directly in a proximity area, thereby enabling abundant Proximity Services (ProSe), which can be classified

into two categories: public safety communication and social discovery. However, two challenges impede the quick

development and deployment of ProSe applications. From the viewpoint of networking, no multi-hop connectivity

functionality component can be directly operated on commercially off-the-shelf devices, and from the programming

viewpoint, an easily reusable development framework is lacking for developers with minimal knowledge of the

underlying communication technologies and connectivity. Considering these two issues, this paper makes a two-

fold contribution. First, a multi-hop mesh networking based on Bluetooth Low Energy (BLE) is implemented,

in which a proactive routing mechanism with link-quality (i.e., received signal strength indication) assistance is

designed. Second, a ProSe development framework called BLE Mesh is designed and implemented, which can

provide significant benefits for application developers, framework maintenance professionals, and end users. Rich

application programming interfaces can help developers to build ProSe apps easily and quickly. Dependency

inversion principle and template method pattern allow modules in BLE Mesh to be loosely coupled and easy to

maintain and update. Callback mechanism enables modules to work smoothly together and automation processes

such as registration, node discovery, and messaging are employed to offer nearly zero-configuration for end users.

Finally, based on the designed ProSe development kit, a public safety communications app called QuoteSendApp

is built to distribute emergency information in close area without Internet access. The process illustrates the easy

usability of BLE Mesh to develop ProSe apps.

Key words: public safety communications; device to device; bluetooth low energy; mesh networking; development
framework

• Bo Zhang, Yufeng Wang, and Wei Li are with Nanjing
University of Posts and Telecommunications, Nanjing
210023, China. E-mail: wfwang@njupt.edu.cn.

• Qun Jin is with Department of Human Informatics and
Cognitive Sciences, Waseda University, Saitama 359-1192,
Japan. E-mail: jin@waseda.jp.

• Athanasios V. Vasilakos is with Department of Computer
Science, Electrical and Space Engineering, Luleå University
of Technology, Sweden. E-mail: th.vasilakos@gmail.com.

∗ To whom correspondence should be addressed.
Manuscript received: 2017-12-11; accepted: 2018-01-23

1 Introduction

Recently, Proximity Service (ProSe) has become a
promising mobile industry, which aims to discover
valuable instances of the applications running on devices
within proximity of each other, and ultimately exchange
application-related contents. People’s interactions in ProSe
become inherently location-centric and tied to their current
physical neighborhood. The purely local, ephemeral, and
decentralized characteristics of ProSe can facilitate sharing



334 Tsinghua Science and Technology, June 2018, 23(3): 333–346

of experiences between users in real time and in a specific
place. ProSe provides users additional spatial and temporal
semantics, i.e., a sense of “here and now”, on which
abundant proximity applications can be built easily.

Existing technologies used to serve the ProSe can be
broadly divided into Over-The-Top (OTT) and Device-to-
Device (D2D) solutions[1]. In the OTT model, a server
(usually located in the cloud) receives periodic location
updates from user mobile devices (typically using GPS),
and the server then determines proximity based on location
updates and interests. The constant location updates not
only result in a significant battery impact because of
GPS power consumption and the periodic establishment
of cellular connections, but also causes serious privacy
problems. Moreover, many scenarios are characterized by
a lack of adequate access to mobile telecommunications
because of extra-ordinary events that can disable disrupt or
overwhelm mobile telecommunications infrastructure. In
these scenarios, D2D communication is the only approach
to realize proximity communication.

Different from OTT, D2D schemes forgo centralized
processing in identifying relevancy matches, and instead
autonomously determine relevance at the device level by
transmitting and monitoring relevant attributes. According
to the spectrum bands used D2D communications, D2D
can be classified into licensed D2D (exploiting the cellular
spectrum for both D2D and cellular links, e.g., LTE
Direct) and unlicensed D2D communications (exploiting
industrial, scientific, and medical bands, or the so-called
ISM band)[2]. Considering that abundant commercially
available mobile instruments and D2D applications have
been deployed in an unlicensed spectrum partially because
of the tedious processes to obtain usage permission from
licensed spectrum owners, this study focuses on the
design and implementation of the development framework
in an unlicensed spectrum, such that this framework
could be deployed to widely commercial mobile devices.
Typical D2D-enabled communication technologies in
the unlicensed spectrum include Bluetooth (including
Bluetooth Classic and Bluetooth Low Energy or BLE) and
Wi-Fi Direct.

Generally, most proximity service applications can
be classified as two categories of scenarios: public
safety communication and social discovery. In particular,
public safety communication implies that D2D links can
operate unimpeded in a disaster-hit area where all BSs are
paralyzed. In fact, 3GPP (Third Generation Partnership)
Release 12 of the LTE-Advanced standard specifies a
general concept of Proximity-based Services (ProSe) that

allows physically close devices to discover themselves
and communicate via direct links[3]. ProSe is meant for
public safety communication and commercial applications
although Release 12 solely emphasizes on the public
safety. Public safety communication covers a variety
of situations including: (a) war or terror attacks, where
infrastructure may be purposefully targeted; (b) adverse
weather that may disrupt logistical supply chains to mobile
communications infrastructure, e.g., energy supply, or
affect the infrastructure itself, or both; (c) disasters such
as earthquakes, floods, bush fires or fire storms which may
damage, inundate or isolate mobile communication assets
through various means, including disabling the back-haul
that connects the assets to the rest of the network, thereby
reducing the effective range of the cellular signal, e.g.,
due to heat and smoke from fire-storms; and (d) civil or
other emergency where a surge in demand overwhelms the
infrastructure capacity to provide service[4].

1.1 Research motivation

With the growing popularity of proximity service, several
proximity solutions or applications have been presented.
However, the absence of practical proximity solutions
in the market is a concern. Among other issues, two
challenges impede the quick development and deployment
of ProSe services: from the viewpoint of networking, no
multi-hop mesh connectivity functionality component can
be directly operated on commercially off-the-shelf devices
(i.e., without customizing/rooting those devices), and from
the programming viewpoint, there is a lack of easy-
to-use and reusable development frameworks that allow
application developers to exploit the potential advantages
of proximity service with minimal knowledge of the
underlying communication technologies and connectivity.

Traditionally, D2D networking mainly consists of
local, opportunistic, and single-hop communication,
whereas multi-hop message forwarding schemes are
typically needed to extend the coverage of ProSe
applications. Typically, two categories of multi-hop
enabling schemes exist:

• Store-carry-forward multi-hop schemes (or
asynchronous schemes), in which, single-hop direct
networking technologies are intrinsically utilized. That is,
users in single-hop contact area exchange and store data,
and through users’ mobility, the data could be propagated.
These schemes are based on single-hop direct networking
(not mesh networking).

• Wireless mesh schemes (or synchronous schemes),
in which, each mobile terminal simultaneously connects to



Bo Zhang et al.: BLE Mesh: A Practical Mesh Networking Development Framework for Public Safety Communications 335

more than one other terminal, and relays data to widen the
communications range in a synchronous manner.

Although exploiting user mobility and utilizing the
store-carry-forward pattern, single-hop networking based
ProSe apps can disseminate content in larger local areas.
However, static scenarios (e.g., public transports systems,
campuses, bars, concerts, and others) are also popular
in ProSe applications. Therefore, D2D-based mesh
networking is also necessary. However, in practice,
creating D2D-based mesh networking is challenging
because typical mobile devices do not implement the
configuration, routing, and name resolution functions
required to operate in an ad-hoc scenario. Software
restrictions on modern mobile operation systems, such
as Android and iOS, even prevent mobile devices
from actively participating in ad-hoc networks without
circumventing vendor barriers. Of course, “rooting”
enables to access to advanced capabilities, but we do
not take consider this possibility because the rooting
process requires skills that are beyond what the average
user possesses, and the process renders the warranty null
and void. Thus, we only act upon application-layer
functionalities, i.e., no changes can be performed at the
transport or network layer.

Besides the multi-hop networking issue, from the
programming viewpoint, to create ProSe applications,
developers would have to begin with deciding how
to handle ProSe’s requirements in different layers,
including communications technologies, peer discovery,
connectivity maintenance, routing policy, profile
matching, and various specific application requirements.
Occasionally, the process may be extremely complex if
developers decide to implement applications from scratch.
An appropriate ProSe development framework can help
app designers address these demands and highlight
meeting the application-specific requirements by realizing
the required functionalities in middle framework which
can be efficiently and stably reused by ProSe developers.

1.2 Main contributions

The contributions of our study are two-fold. First,
a BLE-based multi-hop mesh networking is proposed.
Specifically, besides the traditional routing metric of
the number of hops, D2D link quality represented as
RSSI is incorporated into the routing selection. Then,
a ProSe development framework called BLE Mesh is
designed and implemented, which can provide significant
benefits for various ProSe stakeholders, such as app
developers, framework maintainers, and end users. Rich

APIs help developers to build ProSe apps easily and
quickly. Dependency inversion principle and template
method pattern make modules loosely coupled and easy to
maintain and update the BLE Mesh framework. Callback
mechanism enables modules to efficiently work together
and automation processes such as registration, node
discovery, and messaging are utilized to offer end users
nearly zero-configuration of applications. Finally, based
on the designed ProSe development kit, a public safety
communications app called QuoteSendApp is built (to
distribute emergency information in a close area with
Internet), which illustrates the easy usability of BLE Mesh
to develop ProSe apps.

The rest of this paper is structured as follows. In
Section 2, we briefly discuss several typical development
ProSe frameworks, the existing ProSe mesh networking
schemes, and their weakpoints. Section 3 describes the
designed BLE based ProSe development framework, BLE
Mesh, including the fundamental components and their
implementation, and the proposed link-quality assistant
routing path selection method is also offered. Section 4
provides a public safety communications service built on
the BLE Mesh framework called QuoteSendApp, which
illustrates the easy usability of BLE Mesh to develop ProSe
applications. Finally, this paper is concluded.

2 Related Work

2.1 Existing multi-hop mesh networking schemes

As described in the preceding section, by exploiting users’
mobility and utilizing store-carry-forward patterns, single-
hop networking based ProSe services can disseminate
contents in a large local area. However, static scenarios
are also popular in ProSe applications. Besides, most
traces have highlighted that nodes are stationary for a large
portion of time interrupted by mobility events. Therefore,
mesh networking schemes are also necessary.

WiFi is one of the major occupants in the unlicensed
band, which is actually an indispensable component for
all commercial mobile devices. WiFi-based solutions for
direct connectivity include WiFi ad-hoc and WiFi Direct.
However, none of them can be directly used to construct
mesh networking without rooting/customizing the device
and operating systems.

Specifically, ad-hoc mode is one of the two standard
modes for WiFi, but almost no commercial mobile
terminals and mobile operating systems support this mode,
partly due to lack of security, inability to be used in parallel
with infrastructure mode, and other issues. Based on WiFi



336 Tsinghua Science and Technology, June 2018, 23(3): 333–346

virtualization technologies, Ref. [5] presented an approach
for WiFi infrastructure mode ad-hoc networks, in which
mobile devices simultaneously function as AP and as a
station to mesh with other mobile devices that assume
both roles, thereby establishing multi-hop communication
networks in WiFi infrastructure mode.

WiFi Direct builds upon the successful IEEE 802.11
infrastructure mode, and enables devices to negotiate
who will take over the roles of AP-like functionalities
(i.e., P2P Group Owner (P2P GO)) and P2P Clients.
Although Wi-Fi Direct specification states that these two
logical roles could be executed simultaneously by the
same device through multiple physical/virtual interfaces,
for example, by using different frequencies (if the device
has multiple physical radios) or time-sharing the channel
through virtualization, which can facilitate building the
mesh networking structure, it cannot actually support the
simultaneous connection until now. In detail, after the
GO is elected, the role of each peer remains unchanged
during the entire group session. Only when the GO leaves
the group do the peers become disconnected and a new
group must be created; in practice, direct communication
between clients in a formed P2P group (without relaying
through P2P GO) is not supported yet.

Although the available WiFi Direct cannot conceive
two virtual interfaces simultaneously, Refs. [6, 7] designed
a multi-hop communication technology on Android mobile
devices, based on the idea that a WiFi device can enable
two network interfaces: the conventional standard WiFi
interface and the P2P GO interface for WiFi Direct
connection. Therefore, integrating these two interfaces can
create a multi-group physical topology (i.e., bridge nodes),
enable these two interfaces on a mobile device, and allow a
GO (in WiFi Direct mode) to be a legacy client in another
group. Indeed, each group represents a different WiFi
Basic Service Set.

Instead of the continuous multi-hop networking, a
method introduced by Ref. [8] achieves intermittent
multi-hop communication among open-source, non-
rooted Android devices using Wi-Fi Direct Technology.
Specifically, this method makes all devices become GO
when no data transmission occurs. In this way, all devices
are ready to be discovered and connected. If a device is
trying to initiate data transmission, it must first remove
its GO status and connect to the target device as a WiFi
P2P client. Once the connection is completed, the device
is allowed to send the data; after the target device has
received the data, it disconnects from the group and
removes the client status. Then the device becomes a group

owner again and prepares for the next transmission cycle.
To support simultaneous and multi-hop connection

on commercially available smartphones, a multi-hop
connectivity framework called BWMesh is proposed by
combining Bluetooth and WiFi Direct technologies, in
which devices with those two wireless interfaces are
enabled to act as bridges for mesh networking[9].

All these works based on virtualization and/or
multiple physical interfaces are complicated and unstable.
Furthermore, all WiFi-based D2D technologies in mobile
devices are limited by powersaving features. Basically,
the device publishing a service has to keep broadcasting
information about the service, even if there are no clients
nearby, while the device searching for a service has to
keep listening, even though nobody around is providing
the necessary service. In the worst case scenario, the
battery drain would never get rewarded, thereby making
the technology unsatisfactory to end users.

Recently BLE has gained significant momentum.
However, the original design of BLE focused on star
topology networking, which limits network coverage range
and precludes end-to-end path diversity. Scatternets[10],
where a Bluetooth master device is also a slave in a
different network, are standardized, but a single device
still encounters difficulty in scanning and establishing the
connection at once. Bluetooth 4.1 and later versions have
been modified to be able to connect to multiple centrals to
standardize BLE mesh networks[11]. That is, a BLE device
can act as both Central (i.e., master in traditional BLE) in
a piconet and Peripheral (i.e., slave in traditional BLE) in
another piconet, which naturally enables mesh networking,
i.e., scatternet topology[12].

BLE Mesh Network (BMN) is a Directed Acyclic
Graph (DAG) based routing solution designed over
Bluetooth 4.1, and its operation consists of three phases:
construction, maintenance, and optimization[13]. The
goal of the construction phase is to establish link layer
connections between neighboring devices, determining
nodes’ parents, and creating routing tables. The
maintenance phase aims to improve BMN parameter
settings and forward packets to their intended destinations.
The optimization phase is intended for node weight
balancing so that all nodes in the network have nearly equal
distance to the DAG root.

Reference [14] proposed an algorithm to form
scatternets and on-demand routing for Bluetooth 4.1; the
algorithm consists of two phases: scatternet formation and
route discovery. In the scatternet formation phase, masters
create a list of their connected slaves and vice versa. Nodes



Bo Zhang et al.: BLE Mesh: A Practical Mesh Networking Development Framework for Public Safety Communications 337

that perform both roles elaborate both slave and master
lists. To allow connection establishment between a new
node and its neighbors, the node alternates scanning and
advertising states. The node assumes the master or slave
role depending on its role as a scanner or an advertiser,
at connection establishment time. In route discovery, the
source node first sends a route request to its master. If
the target destination is not in the slave list of the master,
the latter initiates a breadth-first search by forwarding the
route request to any slave in its piconet that participates
in another piconet. Such slaves resend the route request
to their masters in other piconets. This process continues
until the destination is found. However, most of these
routing algorithms are based on hop count because the
D2D wireless link quality varies significantly and at times,
the chosen path may not be stable enough.

2.2 Existing ProSe development kit

To facilitate and improve the efficient of the development
process of ProSe applications, it is imperative to develop
a reusable framework that allows application developers to
exploit the proximity, mobility, and more communication
technologies, quickly leverages existing solutions to solve
the issues in different layers, and emphasizes the provision
of specific functions or services in various scenarios. Aside
from helping developers with their work, the development
kit should also consider the easy maintenance of the suite
itself and the usage convenience to the end user. In the
literature, several ProSe development kits are described.

Serval Mesh allows smartphones to build self-
organized mesh networks using WiFi in AP and client
modes and a store-and-forward protocol without the
need for a mobile phone operator. Normally complex
processes, such as network address allocation, have been
solved in a completely transparent manner, relieving end
users of the demands of such tasks. This feature is
important to increase the solution’s utility among people
with low technological literacy. Based on mesh network,
Serval Mesh provides rich functions such as mesh-based
telephone calls, text messaging, and file distribution[15].

Another kit, Proxima, is a framework that employs ad-
hoc D2D connections and proactive mesh routing for a
decentralized topology with proximity-based rich content
dissemination. The Proxima framework provides a fully
asynchronous, thread-safe API and can be used by multiple
client applications on a single device. Thus, API users
need not to worry about how to discover neighbors and
what services are available; the framework itself takes
care of these low level details. Communication with

the framework is conducted using asynchronous method
calls with user-supplied callback functions. For mobile
application developer, using the Proxima framework to
build ProSe apps only requires registering the application
with the framework as a client at the beginning. Then,
the framework will send the devices found in the
neighborhood to the developer, and any changes in
the network will be updated via self-defined callback
function. Furthermore, Proxima provides a nearly zero-
configuration interface. The only aspect that has to
be configured is the device/user name (similar to that
of the Bluetooth device name) which can be achieved
programmatically with a simple API call. However, this
framework needs root access to the device to enable Wi-Fi
ad-hoc, which is difficult to promote among off-the-shelf
devices[16].

Another framework, USABle, offers developers
multi-hop and carry-and-forward strategies and a
set of technology-independent interfaces to handle
communication requirements such as neighbor discovery,
connection and disconnection, and message delivery. This
framework is based on a modular, extensible, and layer-
based architecture that permits developers to plug in
new communication technologies and routing strategies,
and reuse most of the existing functionalities. USABle
follows the layered architectural style and is divided into
three layers (connection-aware layer, network layer, and
application layer) to improve modularity and adaptability;
any layer can be adapted or modified according to
application requirements[17].

In brief, the aforementioned development kits mainly
exploit the ad-hoc networking technologies or store-carry-
forward methodology to form multi-hop network and
forward messages. The former is difficult to adopt and
deploy directly on off-the-shelf mobile terminals, and the
latter cannot meet the real-time feature of ProSe apps in
relatively static scenarios. Therefore, investigating the
D2D-based mesh networking schemes, especially those
applicable for off-the-shelf terminals, is necessary.

3 Design of BLE Mesh Framework

3.1 System architecture of BLE Mesh

As shown in Fig. 1, the system structure of BLE Mesh
mainly consists of three modules in middle layers: one-
hop direct connection, message management, and multi-
hop networking. The direct connection module utilizes the
underlying D2D communication interface to enable peer
discovery, connection, and bitdata transmission between



338 Tsinghua Science and Technology, June 2018, 23(3): 333–346

Fig. 1 System architecture of BLE Mesh kit.

directly connected devices in close range. Then, based
on the core functionalities provided by one-hop direct
connection module, the message management module
designs a variety of message types, manages the message
transmission/receipt, and maintains connectivity among
devices. Subsequently, the multi-hop module realizes
multi-hop networking functionality including routing
selection and topology maintenance. Finally, based on
the layering principle, those three modules open their
core interfaces for the ProSe developer to quickly build
abundant featured apps.

3.1.1 Direct link module
BLE defines a complete protocol architecture to enable low
power communication between devices, consisting of two
main parts: the Controller, which performs radio interface
tasks, and the Host, which offers higher layer functionality
and supports applications. The communication between
Host and Controller is conducted through the Host
Controller Interface. In particular, GATT in the Host
part defines client and server roles, whose procedures
can be classified into three basic types: discovery, client-
initiated, and server-initiated procedures. Specifically,
BLE devices can have two different roles, either as central
(i.e., scanner) or peripheral (i.e., advertiser). In the
discovery phase, central is responsible for scanning
other surrounding devices, and peripheral for constantly
advertising to be seen by other devices. When a scanner
finds the beacon of another advertiser, and if the advertiser
opens the GATT server, then the GATT client of the
scanner can start the connection request. After accepting
the connection from the scanner, the advertiser’s GATT
client launches the connection to its peer’s GATT server.
Once successfully completed, the peer connection can
be built between those two devices. To comply with

the procedure, the BLE-based direct link module in
our architecture is divided into the following four sub-
components.

• BLE Central, which provides the ability to start/stop
scanning and inform the GATT Client of the scanning
results;

• BLE Peripheral, which provides the ability to start
and stop advertising/broadcasting;

• BLE GattServer component configures, opens, and
stops the GATT server. When the server is open, it can
receive the outside connection establishment request and
process the data if the connection is accepted;

• BLE GattClient component is responsible for
initiating a connection request to the server, and sends data
to the server after the connection is established.

Table 1 illustrates the main APIs provided by one-hop
direct link module.

3.1.2 Message management module
The message management module is based on the direct
connection module and is responsible for managing
service discovery and sending and receiving specific
messages with designated formats. Messages in different
formats are used for various specific services, including
identity message, routing message, and application-
dependent message. All specific types of message are
inherited from the base class SessionMessage. Its header
contains the following basic fields: “TYPE” (type of
message), “BODY LENGTH” (length of message body),
“ID” (unique ID of message), and “MAC ADDRESS”
(MAC address of the message sender). Customized
SessionMessage header and body can be extended from
the base class, and their semantic meanings are interpreted
by the upper layers. In the current BLE Mesh framework,
three types of messages are defined, and all messages
are stored and transmitted in JSON (JavaScript Object
Notation) format.

• IdentityMessage. This message is used by the local
node to send its identity to other nodes. In addition to

Table 1 Main APIs in direct connection module.
public abstract void startDiscovery();

//simultaneously launch advertising and scanning

public abstract void advertise(); // Only start advertising

public abstract void scanForPeers(); //Only start scanning

public abstract void stop(); //Stop advertising and scanning

public abstract boolean sendData(byte[] data, Set<String> identifier);

//Broadcast data to the peers in identifier set

public abstract boolean sendData(byte[] data, String identifier);

//Send data to the designated identifier



Bo Zhang et al.: BLE Mesh: A Practical Mesh Networking Development Framework for Public Safety Communications 339

all fields in base class SessionMessage, “ALIAS” field
is added to the header area, to indicate the user-defined
human-readable name. The body of this message area is
empty.

• GraphMessage. This message is designed to
describe the change of network topology, when nodes
join or leave the network, which stores the information
of the changes of nodes and links in the mesh
network. In GraphMessage, two extra header fields
are appended. “REMOTE ACTION” (the value can
be set as “Join” or “Leave”) represents the type of
network change: “Join” indicates a new node joining
the network and “Leave” indicates that some node leaves
the network. “CAST FORM” represents the mode of
message dissemination: “Unicast” is used to exchange
mesh information when two close nodes within one-hop
range are connected to each other; “Broadcast” is used to
notify other nodes about the changes in network topology.
The body of GraphMessage consists of two parts:
“VERTEXES” composed of all nodes’ information and
“EDGES” composed of all links’ information, including
the link quality characterized by RSSI.

• DataTransferMessage. This message is used to
carry multi-hop application-related data. The following
fields are appended to the header area: “DESC” (address
of destination device), “SEND DATE” (send time),
“SOURCE” (address of source device), and “TTL” (time-
to-live, lifetime of message). The message body carries the
application-related data.

In brief, all message types are extended from the base
class SessionMessage, and composed of the customized
message header and body. Furthermore, SessionManager
class manipulates all types of messages.

The main APIs provided by the message management
module is reported in Table 2.

3.1.3 Multi-hop networking module
By exploiting the customized messages in GraphMessage,
the multi-hop network module can obtain the topology and
quality of links between nodes in the mesh network. Then

Table 2 Main APIs provided by message management
module.

public void broadcastMessage(SessionMessage message);

//Broadcast message

public synchronized void sendMessage(SessionMessage message,

Peer recipient); //Send the customized message to the directly

connected peer “recipient”

public Set<Peer> getAvailablePeers(); //List all directly connected

peers

the link-quality assistant routing mechanism can be used
to select a data path, and then DataTransferMessage is
utilized to send a message to the designated destination
along the selected path. In particular, the path
selection and routing table maintenance are integrated
into the PeersGraph/LocalGraph Networking Maintainer
Sub-Module. PeersGraph is a generic class used to
describe mesh information. LocalGraph, inheriting from
PeersGraph, adds a set of methods to maintain and update
local network information, and calculates the routing path
and next hop to the specified node.

Several main APIs enabled by multi-hop networking
maintainer class LocalGraph are listed in Table 3.

With the help of LocalGraph, the core service,
BLEMeshService, which interacts with the upper
application, will provide the core APIs shown in Table 4.
These APIs will help developers quickly implement user
registration, device discovery, and messaging features.

3.2 Low coupling of modules

We have to consider how to maintain and update the ProSe
development kit to smoothly incorporate the latest and
future emerging D2D communications technologies. A
mainstream approach is to reduce coupling of modules. In
the software design, the dependency inversion principle is

Table 3 Main APIs in multi-hop maintainer, LocalGraph.
synchronized public void newDirectRemote(Peer remoteNode);

//Discovery new direct node and connect

synchronized public void mergeGarph(Peer remoteNode,

PeersGraph otherGraph); //Receive the updating information of

network topology, and merge it into the current node’s local graph

synchronized public void lostDirectRemote(Peer remoteNode);

//The direct connection to the peer “remoteNode” broken

synchronized public void trimGraph(Peer remoteNode, PeersGraph

otherGraph); //Find the unreachable nodes and delete it from local

graph (i.e., trim graph)

public void calCluateShortestPath(); //Calculate the paths from

the local node to other nodes

public Peer getNextReply(String desc); //Return the next hop to the

designated node “desc”

Table 4 Main APIs in multi-hop networking module.
Public void registerLocalUserWithService(String userAlias, String

serviceName);//Register the local node with human-readable name

“userAlias”

public void startDiscovery();//Start the device discovery

public LocalPeer getLocalPeer()//Return the instance of local node

public void send(byte[] data, Peer recipient);//Send data to the

designated node “recipient” in the multi-hop network



340 Tsinghua Science and Technology, June 2018, 23(3): 333–346

an important principle to reduce the module coupling. The
core idea is that the dependency between modules should
rely on abstraction instead of detailed implementation.
From a programming viewpoint, this idea implies that
the implementation class depends on the abstract class
or interface, not vice versa. BLE Mesh uses the
template method pattern to enforce the principle of inverse
dependency, making the development kit easily plug in
new emerging D2D communications technologies or new
multi-hop networking scheme.

For example, Fig. 2 depicts the design of the
direct connection module. Transport is an abstract
class that defines the main method, while the
specific implementation functions are deferred to the
corresponding subclasses. Currently we use BLE as
underlying D2D communication technology, so the
inherited class BLETransport is defined and functions
in Transport are performed in BLETransport. If
other alternative communication technologies would be
adopted, a new derived class can be realized to replace
BLETransport, without affecting the upper layer.

BLE Mesh uses the template method pattern to
enforce the principle of inverse dependency, thereby
enabling the development kit to easily plug into emerging
D2D communications technologies or new multi-hop
networking schemes.

3.3 Lightweight configuration of BLE Mesh

Generally, end users want to use modern applications
without extremely complex operations. A suitable ProSe
development kit should help developers to design easy-
to-use applications for end users. We argue that, for

easy configuration, the development framework should
smoothly realize the core functionalities required by ProSe
applications, including user registration, node discovery,
and multi-hop messaging. These tasks can be performed
by using the asynchronous method calls along with
developer-supplied callback functions.

For easy configuration, the upper modules have to
invoke the APIs provided by lower modules to use the
functionality in lower modules. Equally importantly, the
lower modules should notify the upper modules about
interesting events in an asynchronous manner such that
the upper modules can correspondingly deal with them
in real time through the automatic event response. For
example, to find the nodes within multiple hops, a one-
hop direct link module should notify the event of finding
a new node to the message management module, and
the message management module updates the network
information table and sends the table to the multi-hop
networking module for topology maintenance and path
calculation.

As shown in Fig. 3, the BLE Mesh framework utilizes
the callback mechanism, that is, some callback notification
interfaces are defined and inserted between two
neighboring upper and lower modules The upper module
is responsible for implementing callback interfaces, and
the references of the implemented interfaces are passed
to the lower module. In brief, the functionalities in the
lower modules can be explored through invoking the APIs
in the lower module, and the events of interest to the
upper modules can be asynchronously notified through the
callback functions, such that all modules can collaborate
efficiently. Then, the BLE Mesh can smoothly provide the

 

Fig. 2 Class diagram for transport using template method pattern.



Bo Zhang et al.: BLE Mesh: A Practical Mesh Networking Development Framework for Public Safety Communications 341

Fig. 3 Illustration of asynchronous methods and developer-supplied callback functions.

necessary procedures required by all ProSe apps, including
user registration, node discovery, and message sending and
receiving, which in turn, allow users to operate the system
as simply as possible. Figure 4 shows the automation
procedures, including the interactions among end users
(i.e., ProSe apps) and three core modules in BLE Mesh
development kit.

• User registration. End users only need to input
the nickname, and then BLE Mesh performs other
tasks such as using a nickname to build a local node
instance, constructing instances of underlying modules,
and completing local node registration.

• Node discovery. Once started by the user, BLE
Mesh automatically calls the direct connection module
to discover directly connected nodes and interacts with
them to transmit network information and notify the

multi-hop networking module. Then the multi-hop
module updates network information and informs network
topology changes to the application layer.

• Message sending. After the user sends application-
dependent messages to a specific target node, the multi-hop
networking module calculates the routing path to the next
hop node based on the routing policy discussed in Section
3.4, and then forwards the message to the next hop node.

• Message receiving. When the direct connection
module receives the message, it reports the event to the
multi-hop network module, which then judges whether the
destination node of the message is the local node itself. If
yes, report the message to the application layer for further
processing; if not, the message is forwarded to the next hop
in the route path.

With the automatic procedures implemented, BLE



342 Tsinghua Science and Technology, June 2018, 23(3): 333–346

Fig. 4 Workflow of main services provided by BLE Mesh: user registration, node discovery, and message sending and
receiving.

Mesh makes the main functions of multi-hop mesh
networking easy to configure and use. Applications
only need to set a nickname, start discovery, and send
application related data to a selected destination, and then
other configurations are entirely done by BLE Mesh.

3.4 Path selection with link-quality assistance

High node mobility may cause the routes to break
frequently and force the source to switch between routes
(if available) or rediscover new routes, thereby increasing
both packet losses and latency. Basically, hop count is used
as a routing metric in most routing schemes. However,
the shortest-hop routes may contain weak links that are
likely to break due to the change of link quality caused

by complex physical environment and user mobility.
In BLE Mesh, we designed and implemented a link-

quality assistant path selection mechanism, in which the
Received Signal Strength Indicator (RSSI) along with hop
count is combined to select a more stable and efficient
route. Intuitively, the larger a link’s RSSI value is, the
better the link quality level is. We set up an RSSI
threshold value, for example, −90 dB, and a path with link
quality worse than −90 dB will be processed separately.
We assume that R is the original multi-hop path to a
destination node, and R′ is another optional new path. Q

(Q′) is the link quality sequence of the path R (R′), which
is sorted in ascending order, that is, Q[i] (Q′[i]) represents
the link quality level of the i-th worst link in R (R′), and



Bo Zhang et al.: BLE Mesh: A Practical Mesh Networking Development Framework for Public Safety Communications 343

then Q[1] (Q′[1]) is the worst quality level in path R (R′).
The following simple rules are used to compare and

select between the two paths R and R′.
• First, we determine whether the worst link quality is

less than the RSSI threshold, that is, if Q[1] is less than
−90 dB, and Q′[1] is larger than the threshold, R can be
considered unstable and R′ is selected to replace R. The
rationality lies in that although the hop count of R′ might
be larger, each hop is reliable.

• When Q[1] and Q′[1] are both greater than the
threshold, we simply select the path based on hop count,
since none of these two path are reliable enough.

• When Q[1] and Q′[1] are both less than the
threshold, the path with the smaller hop count is selected to
improve efficiency. If the hop count is the same, then the
link quality level sequences of two paths are recursively
compared: starting with the worst link (i=1), if Q′[i] is
less than Q[i], the new path R′ is to be chosen; if Q[i]
and Q′[i] are equal, the Q[i + 1] and Q′ [i + 1] will be
compared.

4 Usage of BLE Mesh Framework

The engineering structure is shown in Fig. 5. The
BLE Mesh kit exists in the form of a library module,
with the package name “com.blemesh.sdk”. To develop
applications using BLE Mesh, the first step is to import
BLE Mesh library module and compile it. Once the
dependencies are established, App developer can use all
services provided by BLE Mesh for development.

To illustrate the convenience of the designed
development kit and the efficiency of routing policy in

Fig. 5 Engineering structure of BLE Mesh (applications
compiling BLE Mesh SDK and then using its services).

the multi-hop mesh network, we have developed a public
safety communications application on Android using the
BLE Mesh framework, QuoteSendApp, which helps users
spread emergency information when wide Internet access
is not functional.

Based on the main functions provided by BLE Mesh,
the use case of QuoteSendApp is shown in Fig. 6. We
use three Android phones to test the quickly built app,
including two Xiaomi 4C phones and one Huawei 4A
phone. All devices maintain their native system and do
not have root access.

Figure 7 shows typical snapshots of the QuoteSendApp
in test devices Xiaomi.1, Xiaomi.2, and Huawei.1. After
the process of peer discovering, the left device “Xiaomi.1”

Fig. 6 Use cases of QuoteSendApp.



344 Tsinghua Science and Technology, June 2018, 23(3): 333–346

Fig. 7 Snapshots of QuoteSendApp: Xiaomi.1 (left) sending information to Xioami.2 (right) via the relay device Huawei.1.

spreads information to the right device Xiaomi.2 via
Huawei.1 as the relay node. The snapshot show that the
quote message from Xiaomi.1, as relayed by Huawei.1,
has been successfully forwarded to the next hop, and
the destination Xiaomi.2 has received the message and
displays it on the screen.

5 Conclusion

In this paper, we have created a multi-hop mesh
development framework called BLE Mesh, which has
several distinctive features. First, the designed mesh
networking scheme does not require breaching the
software restrictions on modern mobile operation systems,
and the scheme can be directly developed and deployed
on commercially available off-the-shelf mobile terminals
without rooting a device to access advanced capabilities,
thereby making this scheme convenient for developers
and end users. Second, the BLE Mesh framework is
easily reusable and beneficial for various stakeholders
such as app developers, framework maintainers, and
end users in ProSe field. Furthermore, the BLE Mesh
development kit can be used to quickly build a public
safety communications app called QuoteSendApp, which
distributes emergency information in close areas without
Internet access. The development process illustrates the
easy usability of the BLE Mesh framework.

Note that BLE Mesh is an open framework that
utilizes the unlicensed D2D technology BLE as the
underlying communications infrastructure. While open
architectures with dynamically recruitable resources can
bring up significant security and privacy risks, they
can also improve system efficiency (through resource
sharing), resilient (through dynamic reconfiguration
leveraging redundant resources), and capability, thereby

enabling abundant applications, especially for public
safety communication scenarios in which wide cellular
infrastructure may not be functional.

Acknowledgment

The study was supported by the National Natural Science
Foundation of China (No. 61171092), Jiangsu Educational
Bureau Project (No. 14KJA510004), and NUPTSFs (Nos.
NY215177 and NY217089)

References

[1] Y. F. Wang, L. Wei, A. V. Vasilakos, and Q. Jin, Device-
to-Device based mobile social networking in proximity
(MSNP) on smartphones: Framework, challenges and
prototype, Future Gen. Comput. Syst., vol. 74, pp. 241–
253, 2017.

[2] A. Asadi, Q. Wang, and V. Mancuso, A survey on device-
to-device communication in cellular networks, IEEE
Commun. Surv. Tut., vol. 16, no. 4, pp. 1801–1819, 2014.

[3] S. Y. Lien, C. C. Chien, F. M. Tseng, and T. C. Ho, 3GPP
device-to-device communications for beyond 4G cellular
networks, IEEE Commun. Mag., vol. 54, no. 3, pp. 29–35,
2016.

[4] P. Gardner-Stephen, The serval project: Practical wireless
ad-hoc mobile telecommunications, http://developer.
servalproject.org/files/CWN Chapter Serval.pdf, 2011.

[5] H. Wirtz, T. Heer, R. Backhaus, and K. Wehrle,
Establishing mobile ad-hoc networks in 802.11
infrastructure mode, in Proc. 6 th ACM Workshop on
Challenged Networks, Las Vegas, NV, USA, 2011, pp.
49–52.

[6] Y. F. Duan, C. Borgiattino, C. Casetti, C. F. Chiasserini, P.
Giaccone, M. Ricca, F. Malabocchia, and M. Turolla, Wi-
Fi direct multi-group data dissemination for public safety,
in Proc. World Telecommunications Congress 2014, Berlin,
Germany, 2014, pp. 1–6.



Bo Zhang et al.: BLE Mesh: A Practical Mesh Networking Development Framework for Public Safety Communications 345

[7] C. Casetti, C. F. Chiasserini, L. C. Pelle, C. Del Valle, Y.
F. Duan, and P. Giaccone, Content-centric routing in Wi-Fi
direct multi-group networks, in Proc. IEEE 16th Int. Symp.
A World of Wireless, Mobile and Multimedia Networks,
Boston, MA, USA, 2015, pp. 1–9.

[8] K. C. Liu, W. L. Shen, B. Yin, X. H. Cao, L. X. Cai, and
Y. Cheng, Development of mobile Ad-hoc networks over
Wi-Fi direct with off-the-shelf Android phones, in Proc.
2016 IEEE Int. Conf. Communications, Kuala Lumpur,
Malaysia, 2016, pp. 1–6.

[9] Y. F. Wang, J. Tang, Q. Jin, and J. H. Ma, BWMesh:
A multi-hop connectivity framework on Android for
proximity service, in Proc. 12 th Int. Conf. Ubiquitous
Intelligence and Computing and 12th Int. Conf. Autonomic
and Trusted Computing and 15th Int. Conf. Scalable
Computing and Communications and Its Associated
Workshops, Beijing, China, 2015, pp. 278–283.

[10] K. E. Persson, E. Manivannan, and M. Singhal, Bluetooth
scatternets: Criteria, models and classification, Ad Hoc
Netw., vol. 3, no. 6, pp. 777–794, 2005.

[11] K. H. Chang, Bluetooth: A viable solution for IoT? IEEE
Wirel. Commun., vol. 21, no. 6, pp. 6–7, 2014.

[12] S. M. Darroudi and C. Gomez, Bluetooth low Energy mesh
networks: A survey, Sensors, vol. 17, no. 7, p. E1467,

2017.
[13] S. Sirur, P. Juturu, and H. P. Gupta, P. R. Serikar, Y. K.

Reddy, S. Barak, and B. Kim, A mesh network for mobile
devices using Bluetooth low energy, in Proc. 2015 IEEE
Sensors, Busan, South Korea, 2015, pp. 1–4.

[14] Z. L. Guo, I. G. Harris, L. F. Tsaur, and X. B. Chen,
An on-demand scatternet formation and multi-hop routing
protocol for BLE-based wireless sensor networks, in Proc.
2015 IEEE Wireless Communications and Networking
Conf., New Orleans, LA, USA, 2015, pp. 1590–1595.

[15] P. Gardner-Stephen, R. Challans, J. Lakeman, A. Bettison,
D. Gardner-Stephen, and M. Lloyd, The serval mesh: A
platform for resilient communications in disaster & crisis,
in Proc. 2013 IEEE Global Humanitarian Technology
Conf., San Jose, CA, USA, 2013, pp. 162–166.

[16] J. L. Salmon and R. Yang, A proximity-based framework
for mobile services, in Proc. 2014 IEEE Int. Conf. Mobile
Services, Anchorage, AK, USA, 2014, pp. 124–131.

[17] M. E. F. Maia, R. M. C. Andrade, C. A. B. De Queiroz
Filho, R. B. Braga, S. Aguiar, B. G. Mateus, R. Nogueira,
and F. Toorn, USABle—A communication framework for
ubiquitous systems, in Proc. 28 th Int. Conf. Advanced
Information Networking and Appl., Victoria, Canada,
2014, pp. 81–88.

Bo Zhang is a senior experimentalist
in School of Natural Sciences,
Nanjing University of Posts and
Telecommunications (NUPT), China.
She received the master degree from
NUPT, China, in 2013. Her research
interests are complex networks and
theoretical physics.

Qun Jin is a tenured professor at
the Networked Information Systems
Laboratory, Department of Human
Informatics and Cognitive Sciences,
Faculty of Human Sciences, Waseda
University, Japan. He has been engaged
extensively in research work in computer

science, information systems, and social and human informatics.
He seeks to exploit the rich interdependence between theory
and practice in his work with interdisciplinary and integrated
approaches. Dr. Jin has published more than 150 refereed papers
in the world-renowned academic journals and international
conference proceedings. His recent research interests cover
ubiquitous computing, human-centric computing, human-
computer interaction, behavior and cognitive informatics, life
logs and big data mining, user modeling, information search and
recommendation, e-learning, e-health, and computing for well-
being.

Li Wei received the BS and master
degrees from Nanjing University of Post
and Telecommunications (NUPT), in
2014 and 2017, respectively. His main
research interests include mobile social
networks and proximity service.

A. V. Vasilakos is currently a professor
with Department of Computer Science,
Electrical and Space Engineering, Luleå
University of Technology, Sweden. He
has authored or co-authored over 200
technical papers in major international
journals and conferences. He is the
author/coauthor of five books, 20 book

chapters in the areas of communications. He served as
general chair, TPC chair, and symposium chair for many
international conferences. He served or is serving as an editor
or/and guest editor for many technical journals, such as IEEE
TSMC-Part B, IEEE TITB, IEEE TWC, IEEE Communications
Magazine, ACM TAAS. He is the founding editor-in-chief of
the journals: International Journal of Adaptive and Autonomous
Communications Systems, International Journal of Arts and
Technology. His research interests are intelligent systems, etc.



346 Tsinghua Science and Technology, June 2018, 23(3): 333–346

Yufeng Wang received the PhD degree
from Beijing University of Posts and
Telecommunications (BUPT), China, in
2004. Currently, he acts as a full
professor in Nanjing University of Posts
and Telecommunications, China. From
2008 to 2011, he was an expert researcher
in National Institute of Information and

Communications Technology (NICT), Japan. He is a guest

researcher at Media Lab, Waseda University, Japan. His research

interests focus on cyber-physical-social systems, mobile social

networks, etc.


