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Novel Model Using Kernel Function and Local Intensity
Information for Noise Image Segmentation

Gang Li, Haifang Li, and Ling Zhang∗

Abstract: It remains a challenging task to segment images that are distorted by noise and intensity inhomogeneity.

To overcome these problems, in this paper, we present a novel region-based active contour model based on local

intensity information and a kernel metric. By introducing intensity information about the local region, the proposed

model can accurately segment images with intensity inhomogeneity. To enhance the model’s robustness to noise

and outliers, we introduce a kernel metric as its objective functional. To more accurately detect boundaries, we

apply convex optimization to this new model, which uses a weighted total-variation norm given by an edge indicator

function. Lastly, we use the split Bregman iteration method to obtain the numerical solution. We conducted an

extensive series of experiments on both synthetic and real images to evaluate our proposed method, and the

results demonstrate significant improvements in terms of efficiency and accuracy, compared with the performance

of currently popular methods.
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1 Introduction

Image segmentation is a worthy and important problem
in computer vision and image processing, for which
researchers have proposed many algorithms for image
segmentation based on various theories[1, 2]. Due to their
solid foundations, the models based on evolution curves
and geometric active contours are widely used.

With respect to energy functions that use different
image information, these models can generally be
divided into two categories: edge-based[3–7] and region-
based[8–15]. Edge-based models, which utilize changing
gradient information to guide the evolving curve to object
boundaries, exhibit good performance when the image
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segments have strong edges, but fail to detect objects
with weak boundaries. In addition, they are sensitive to
image noise. Region-based models mainly utilize region
descriptors (such as the mean, variance, etc.) to construct
the fitting term. Unlike edge-based models, they do not
rely on image gradients but exploit statistical information
about image regions, so they can segment objects with
weak boundaries and are less sensitive to noise.

One of the most famous region-based models (active
contour without edges) is the CV model[9] proposed by
Chan and Vese, which is a unique model using Mumford-
Shah segmentation[8] model. This model is based on the
assumption that the distribution of gray values within each
image sub-region is uniform, and its energy functional is
established based on the difference between each pixel and
the regional average. However, this model cannot obtain
accurate segmentation results for some images that are
corrupted by non-uniform intensity and noise.

To deal with the above problems and overcome
intensity inhomogeneity, Li et al. proposed a Region-
Scalable Fitting (RSF) model[10] that utilizes local region
information as a constraint in spatially varying local
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regions. However, the RSF model requires four
convolution calculations, which means it has high
computational complexity. Zhang et al. also used local
information to construct a local image fitting energy[11].
Their model achieves similar results to those of the
RSF model with less computational cost. The Local
Intensity Clustering (LIC) model[12], proposed by Li et al.,
derives an LIC property of image intensities. However,
by using only the intensity means as its classification
standard, this method may not be able to accurately extract
object boundaries. Wang et al. employed Gaussian
distributions to model the local Gaussian fitting energy[13],
which overcomes the difficulties presented by intensity
inhomogeneity. However, since means and variances are
spatially varying functions, the computation in this method
is also expensive. Apart from cost, these models are
also sensitive to the location of the initial contours to
some extent and cannot obtain better results for images
with high noise levels. Recently, Xie et al. proposed
a Robust Level Set Method (RLSM)[15] that exploits the
difference between local statistical information and global
information to suppress high noise levels. However, the
evolution of the curve is unstable where the local intensity
information is similar to the global information, so the
RLSM model does not achieve satisfactory results for
images with varying high noise levels. In addition, the
above models base their measurements on the Euclidean
distance, so the segmentation results are susceptible to
noise.

To overcome the limitations of the CV model, which
fails to detect objects with intensity inhomogeneity and
has a slow processing speed, in this paper, we introduce
local image information into the CV model, based on
the assumption of a piecewise constant. We also use
a kernel function metric to construct a robust non-
Euclidean distance measurement, whereby the evolution of
the contour can overcome the impacts of inhomogeneity
and noise on the segmentation results. Moreover, we
utilize the global optimization method to obtain a global
convex segmentation model, which overcomes the impact
of initialization on the segmentation results. Lastly,
to increase computational efficiency, we use the split
Bregman method to realize a fast solution.

The remainder of this paper is organized as follows: In
Section 2, we briefly describe the Chan-Vese model and the
kernel theory. In Section 3, we describe our model and its
numerical method. In Section 4, we validate our proposed
method in a series of experiments on synthetic and real
images and compare our results with those of various other

methods. We present our conclusions in Section 5.

2 Previous Work

2.1 Chan-Vese model

Chan and Vese proposed their model[9] based on the
assumption that an image is composed of two parts of
constant intensity, in which the energy functional is defined
as follows:

Ecv(c1, c2,C)=λ1

∫
inside(C)

(I(x,y)−c1)
2dxdy+

λ2

∫
outside(C)

(I(x,y)−c2)
2dxdy+υ · length(C) (1)

Let C be a closed active contour in the image domain
Ω , which separates image I into two regions: the target
region ΩC = inside(C) and the background region Ω \
ΩC = outside(C), where λ1, λ2, and υ are nonnegative
constants, c1 and c2 represent the intensity averages of
regions inside(C) or outside(C). The first and second
terms are data terms that guide the evolution curve to the
desired object boundary. The last term is the length of
curve C, which smooths the contour.

We introduce the level set function ϕ(x,y) to minimize
the energy functional, as follows:

ϕ(x,y)> 0, (x,y)∈ΩC ,

ϕ(x,y)= 0, (x,y)∈C,

ϕ(x,y)< 0, (x,y)∈Ω \ΩC

(2)

With a level set representation, the energy functional
can be written as follows:

Ecv(c1, c2,ϕ)=λ1

∫
Ω

(I(x,y)−c1)
2H(ϕ(x,y))dxdy+

λ2

∫
Ω

(I(x,y)−c2)
2(1−H(ϕ(x,y))dxdy+

υ ·
∫
Ω

δ(ϕ(x,y))|∇ϕ(x,y)|dxdy (3)

where H(ϕ) and δ(ϕ) represent the Heaviside and Dirac
functions, respectively. Using a variational method, we
derive the function as follows:

∂ϕ

∂t
= δ(ϕ) [−λ1(I(x,y)−c1)

2+λ2(I(x,y)−c2)
2 +

υdiv

(
∇ϕ

|∇ϕ|

)]
(4)

where c1 and c2 are defined as follows:
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c1(ϕ)=

∫
Ω
I(x)H(ϕ(x))dx∫
Ω
H(ϕ(x))dx

(5)

c2(ϕ)=

∫
Ω
I(x)(1−H(ϕ(x)))dx∫
Ω
(1−H(ϕ(x)))dx

(6)

The CV model utilizes region information to segment
images, but cannot effectively segment images with weak
edges. Furthermore, this model does not consider the local
region information in the image, so it cannot accurately
deal with images with complex backgrounds and non-
homogeneities. Also, since the CV model uses the
Euclidean distance to measure the distance between the
pixel and the fitting center, which ignores differences
between noisy and normal pixels, all pixels are given
the same weight in the calculation. Therefore, the
distance measurement cannot accurately segment images
with intensity inhomogeneity.

2.2 Kernel theory

Using a nonlinear mapping function to map n-dimensional
feature vectors into a high-dimensional space H , we
can construct a new classification function to achieve
classification. Following Mercer’s theorem[16], we can
represent the inner product of the high-dimensional space
by a kernel function, as follows:

K(x,y)= ⟨Φ(x),Φ(y)⟩=Φ(x)ᵀΦ(y) (7)

The Gaussian radial-basis function is a frequently used
kernel function, which is defined as follows:

K(x,y)= exp

(
−∥x−y∥2

σ2
k

)
(8)

The kernel function metric between vectors x and y can
be represented as follows:

∥Φ(x)−Φ(y)∥2 =(Φ(x)−Φ(y))(Φ(x)−Φ(y))ᵀ =

Φ(x)Φ(x)ᵀ−2Φ(x)Φ(y)ᵀ+Φ(y)Φ(y)ᵀ =

K(x,x)−2K(x,y)+K(y,y) (9)

where K(x,x) =K(y,y) = 1. Thus, we can simplify the
kernel metric as follows:

∥Φ(x)−Φ(y)∥2 =2(1−K(x,y)) (10)

The introduction of the kernel functions makes the
new classification function linearly separable in high-
dimensional space, and improves the accuracy of the
measurement. The inner product in the high-dimensional

feature space can be realized implicitly by the kernel
function in the input space, without increasing the
complexity of the algorithm.

3 Proposed Model

3.1 Local piecewise model based on kernel function

To overcome the influence of high noise levels and
intensity inhomogeneity on the segment results, we
propose a novel active contour model based on a kernel
function and local intensity information. For a given pixel
x ∈ Ω , we consider x to be the center point, and ρ the
radius of the circular neighborhood Ox , y : |x−y|<ρ.
Assuming that an image consists of a disjointed sub-region
{Ωi}Ni=1 and satisfies the following relationship: Ω =∪N

i=1
, Ωi

∩
Ωj = ∅, i ̸= j, for each pixel x ∈ Ωi, we

can define the local energy as follows:

Ei
x =

∫
Gσ(x−y)∥Φ(I(y))−Φ(ci)∥2dy (11)

where I(y) is the intensity value of point y in
neighborhood Ox, the size of the neighborhood Ox is
controlled by the Gaussian function Gσ, and the constant
ci is the average intensity in the sub-region Ωi. The local
energy is defined based on the kernel function metric of
the intensities of all points within its neighborhood and the
average intensity of the region. We can define a truncated
Gaussian function, as follows:

Gσ =


1√
2πσ

exp
(

|u|2

2σ2

)
, |u|6 ρ;

0
(12)

where σ is the standard deviation of the Gaussian function,
such that

∫
G(x − y) = 1 for x ∈ Ox, and ρ is the

radius of neighborhood Ox. We consider that there is a
certain correlation between the intensity of point x and
other points in neighborhood Ox. With G(x− y) as the
weight assigned to the values ∥Φ(I(y)) − Φ(ci)∥2, the
contribution of intensity I(y) near the center point x gives
greater weight to energy Ei

x. To obtain the target boundary
over the entire domain, we must find a closed contour C
that minimizes the local energy for all x in image domain
Ω . We define an energy function for the integral of Ei

x over
all the center points x in image domain Ω . Therefore, we
can define the following energy functional:

E=

N∑
i=1

∫
Ωi

Ex
i dx (13)

With the Ex
i value in Eq. (11), we can rewrite the
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energy functional as follows:

E(c1, c2,C)=

N∑
i=1

∫
Ωi

(

∫
Gσ(x−y)∥Φ(I(y))−

Φ(ci)∥2dy)dx (14)

3.2 Numerical implementation of the model

We consider a two-phase case in which the image domain
is segmented into two disjointed regions, Ω1 and Ω2. In
this case, regions Ω1 and Ω2 can be represented with their
membership functions defined by M1(ϕ) = H(ϕ) and
M2(ϕ) = 1−H(ϕ), respectively. We then convert them
to a level set formulation to solve the energy minimization
problem, and rewrite the energy functional in Eq. (14) as
shown below:

E(c1, c2,ϕ)=

N∑
i=1

∫
(

∫
Gσ(x−y)∥Φ(I(y))−

Φ(ci)∥2dyMi(ϕ(x)))dx (15)

For convenience, we represent the constants c1 and c2
with the vector c=(c1, c2), and can thus rewrite the energy
as follows:

E(c1, c2,ϕ)=

N∑
i=1

∫
ei(x)Mi(ϕ(x))dx (16)

where ei is a function defined by the following:

ei =

∫
Gσ(x−y)∥Φ(I(y))−Φ(ci)∥2dy, i=1,2 (17)

By Eq. (10), we can simplify this function as follows:

ei =

∫
Gσ(x−y)(1−K(I(y), ci))dy, i=1,2 (18)

Then, we can write the entire objective energy function
for the image segmentation, as follows:

E(c1, c2,ϕ)=
N∑
i=1

∫
ei(x)Mi(ϕ(x))dx+

υ ·
∫
Ω

δ(ϕ(x))|∇ϕ(x)|dx
(19)

where the second term is a length term that smooths
the contour by penalizing its length. By the calculus of
variations, while keeping c1, c2 fixed and minimizing the
energy functional with respect to ϕ, we can derive the
following gradient descent flow:

∂ϕ

∂t
=−δε(ϕ)(e1−e2)+υδε(ϕ)div

(
∇ϕ

|∇ϕ|

)
(20)

where e1 and e2 are functions given in Eq. (18). Keeping
ϕ fixed, we obtain the functions c1, c2 by the following:

c1 =

∫∫
Gσ(x−y)I(y)K(I(y), c1)H(ϕ(x))dydx∫∫
Gσ(x−y)K(I(y), c1)H(ϕ(x))dydx

(21)

c2 =

∫∫
Gσ(x−y)I(y)K(I(y), c2)(1−H(ϕ(x)))dydx∫∫
Gσ(x−y)K(I(y), c2)(1−H(ϕ(x)))dydx

(22)
With the intuitive explanation obtained from Eqs. (21)

and (22), the proposed model has robustness to both
noise and outliers. It is evident that we use the kernel
function K(I(y), ci) to determine the degree of similarity
between the average intensity ci and the intensity I(y) in
a neighborhood. When I(y) is from noise or outliers, the
distance from a point of intensity to the average intensity is
very far, so the value of the kernel function will be small,
and therefore the influence exerted by I(y) in updating
c1 and c2 can be suppressed by the additional weight
K(I(y), ci).

In this paper, the size of the kernel function is an
important parameter in the image segmentation result. As
proposed by the authors in Refs. [17, 18], one way to
estimate parameter σk is to utilize the distance standard
deviation from the image intensities. The distance standard
deviation can be used to automatically adjust parameters
according to the degree of polymerization of the gray
value in different regions, which we define as follows: we
assume that the number of pixels in an image is N , and the
mean intensity of the whole image is as follows:

I0 =

∑N

i=1
I0(xi)

N
(23)

We compute the absolute distance between I0(xi) and
I0, which is defined as di = |I0(xi)− Ī0|. So, the average
value of di can be expressed by Eq. (24).

d=

∑N

i=1
di

N
(24)

Thus, we can define the size parameter σk based on the
distance standard deviation as follows:

σk =

(∑N

i=1
(di−d)2

N−1

) 1
2

(25)

3.3 Convex optimization of the energy functional

The energy functional in Eq. (15), as represented by the
level set function, is non-convex, so it can easily fall
into a local minimum. Chan and Nikolova proposed a
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global convex segmentation method[19], which we adopt
in our proposed model to reconstruct the corresponding
expression. With loss of generality, we introduce a new
parameter η and set υ = 1, so Eq. (20) can be rewritten as
follows:

∂ϕ

∂t
=−δε(ϕ)η(e1−e2)+δε(ϕ)div

(
∇ϕ

|∇ϕ|

)
(26)

Using the global convex segment method, the stable
solutions of Eq. (26) and Eq. (27) are equivalent.

∂ϕ

∂t
=−η(e1−e2)+div

(
∇ϕ

|∇ϕ|

)
(27)

The above simplified flow represents the gradient
descent for minimizing the energy:

E(ϕ)=

∫
|∇(ϕ(x))|dx+

∫
ϕ(x)s(x)dx (28)

where
s(x)= e1−e2 (29)

To obtain the global minimum, we constrain the level
set function ϕ to fall within a finite interval [a,b], so we
can obtain the global minimum, as follows:

min
ϕ∈[a,b]

E(ϕ)= min
ϕ∈[a,b]

(|∇ϕ|1+⟨ϕ,s⟩) (30)

where ⟨ϕ,s⟩ =
∫
ϕ(x)s(x)dx. When we obtain the

optimum solution ϕ, we can truncate the level set function
by a threshold value to obtain the segmentation results[20]:

Ω1 = {x :ϕ(x)>α},α∈ (a,b) (31)

where α is the threshold value. In this paper, we choose
α = a+b

2
. To utilize edge information, we introduce a

weighted Total-Variation (TV) norm, as proposed by the
authors in Ref. [21], to replace the standard TV norm:

TVg(ϕ)=

∫
g|∇ϕ|= |∇ϕ|g (32)

where g is a nonnegative edge indicator function, which is
usually defined as follows:

g(ξ)=
1

1+β|ξ|2
(33)

where β is a constant used to determine the level of
detail in the segmentation. Thus, we obtain the following
minimization problem:

min
ϕ∈[a,b]

E(ϕ)= min
ϕ∈[a,b]

(|∇ϕ|g+⟨ϕ,s⟩) (34)

3.4 Split Bregman method for energy minimization

We utilize the split Bregman method[22] to effectively
minimize the proposed energy functional. First, we
introduce an auxiliary variable d and then use a
quadratic penalty term, d⃗ = ∇ϕ, to strengthen this
constraint, thereby obtaining the following unconstrained
optimization problem:

(ϕ∗, d⃗∗)= arg min
ϕ∈[a,b]

(
|d⃗|g+⟨ϕ,s⟩+ λ

2
∥d⃗−∇ϕ∥2

)
(35)

where λ is a positive constant. Then, we use Bregman
iteration to strictly enforce the constraint d⃗ = ∇ϕ, which
yields the following optimization problem:

(ϕt+1, d⃗t+1)=arg min
ϕ∈[a,b]

(
|d⃗|g+⟨ϕ,s⟩+λ

2
∥d⃗−∇ϕ− b⃗t∥2

)
(36)

b⃗t+1 = b⃗t+∇ϕt+1− d⃗t+1 (37)

By the calculus of variations and keeping d⃗ fixed,
we obtain the Euler-Lagrange equation about ϕ for the
optimization problem Eq. (36), as follows:

△ϕ=
r

λ
+∇·(d⃗− b⃗), a0 <ϕ<b0 (38)

We adopt the central difference and backward
difference schemes for the Laplace operator △ and
divergence operators ∇, respectively. We then obtain the
solution to Eq. (38), as follows:

ai,j = dx
i−1,j−dx

i,j+dy
i,j−1−dy

i,j−
(bxi−1,j−bxi,j+byi,j−1−byi,j),

βi,j =
1
4

(
ϕi−1,j+ϕi+1,j+ϕi,j−1+ϕi,j+1− s

λ
+ai,j

)
,

ϕi,j =max{min{βi,j , b},a}
(39)

Keeping ϕ fixed and minimizing Eq. (36) with respect
to d⃗, we obtain the following:

d⃗t+1 = shrinkg (⃗b
t+∇ϕt+1,

1

λ
)= shrink(⃗bt+∇ϕt+1,

g

λ
)

(40)

where
shrink(x,λ)=

x

|x|
max(|x|−λ,0) (41)

In summary, the algorithm implementation steps are as
follows:

Step 1: Initialize the level set function ϕ and calculate
the initial values of c01 and c02.
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Step 2: Update c1 and c2 using Eqs. (21) and (22).
Step 3: Update s using Eq. (29).
Step 4: Update ϕ using Eq. (39).
Step 5: Update d⃗ using Eq. (40).
Step 6: Update b⃗ using Eq. (37).
Step 7: Ω = {x :ϕ(x)>α}.
Step 8: Check whether the evolution has converged. If

not, return to Step 2.
In this paper, we simply initialize the level set function

as a binary function, and choose a = 2 inside the contour
and b = −2 outside the contour. Then, we can choose
a threshold a+b

2
for α to identify segmented regions.

Experimental results have shown this simple initialization
to be effective[19].

4 Experimental Results

In this section, we demonstrate the robustness and
effectiveness of our proposed method based on the results
of experiments we conducted on synthetic images, medical
images, and the Berkeley Segmentation Dataset. We
compare the results of our method with four representative
methods, including the CV, RSF, recursive least squares
method RLSM, and LIC models. We implemented
the proposed model using Matlab2012a on a computer
with a Pentium CPU 2.50, 4 GB of RAM, and the
Windows 7 operating system. Without other specifications,
we used the following default parameter settings in the
experiments: η = 10, λ = 0.01, β = 255 × 255,
with which our model achieved satisfactory segmentation

results on different types of images. We plotted the initial
and final contours in blue and red, respectively, for all the
experiments.

To quantitatively compare our proposed model with
other active contour models, we used two metrics to
access the segmentation results: the Dice Similarity
Coefficient (DSC)[23, 24] and the Jaccard Similarity
(JS)[24, 25], respectively, which are defined as follows:

DSC=
2 ·N(S1

∩
S2)

N(S1)+N(S2)
, JS=

N(S1

∩
S2)

N(S1

∪
S2)

(42)

where N(•) represents the pixel numbers in the enclosed
set, and S1 and S2 indicate the segmentation results
obtained by ground truth and the proposed model,
respectively. The closer are the DSC and JS values to 1,
the better are the segmentation results.

4.1 Experiments on images with intensity
inhomogeneity

To demonstrate the efficiency of the proposed model,
we conducted experiments on three different images with
intensity inhomogeneity, the results of which are shown in
Fig. 1. These images included one of a cell with blurred
boundaries and some cells very close to each other, a
synthetic image with different shapes and an interior hole,
and a noisy image. The original images and initial contours
are shown in Figs. 1a, 1c, and 1e, and the corresponding
segmentation results are shown in Figs. 1b, 1d, and 1f. We
chose the parameter σ=3 for all three images in this

Fig. 1 Segmentation results using our proposed model for a medical image, a synthetic image with blurred boundaries, and a
noisy synthetic image. (a, c, e) Original images with initial contour. (b, d, f) Segmentation results. (g, h, i) Corresponding final
level set functions with the zero level set in solid blue line.
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experiment. The successful segmentation of all the
images indicates that our method is robust with respect
to blurred object boundaries and noise. By introducing
local information and a kernel distance metric into the
proposed model, the influence of noise and outliers can be
suppressed. Figures 1g, 1h, and 1i show the corresponding
final level set functions.

4.2 Robustness to contour initialization and
parameter σ

To evaluate the proposed model’s robustness to contour
initialization, we applied it to a real image with 15
different initializations. Figure 2 shows five of the 15
initial contours and the final segmentation results. In this
experiment, we set parameter σ = 3. As we can see in the
figure, the initial contours with different shapes are located
in different regions, i.e., outside, inside, and across the
object. Despite the significant differences between these
initial contours, the corresponding results are very similar,
and the object boundaries have been accurately captured.
We quantitatively evaluated the segmentation accuracy by
considering these results in terms of their JS and DSC
values. As shown in Fig. 3, the JS and DSC values of

these results are all above 0.9401, which demonstrates the
robustness of our model to the initial contour.

We also used different scales for parameter σ, which
is a critical parameter in the algorithm, to test the
performance of our proposed model. We applied seven
different values of σ in an image, from 2 to 8. Increasing
the value of parameter σ can introduce more local intensity
information to the model, but a large σ value can lead
to the over-smoothing of a noisy image, wherein even
the boundaries of the object can become blurred. We
computed the JS and DSC values for these seven results,
which are plotted in Fig. 4. As we can see in the
figure, with increases in σ, the segmentation accuracy
is significantly improved when σ 6 3 and gradually
decreases when σ > 3. However, the JS and DSC values
are all greater than 0.9 when the parameter ranges from 2
to 7. This experiment demonstrates the robustness of our
model to parameter σ within a certain range.

4.3 Comparison with CV model, RSF model, RLSM
model

In this section, we compare our results with those of three

Fig. 2 Results of our model with different initial contours on a natural image. The initial and final contours are plotted in
blue and red, respectively.

Fig. 3 DSC and JS values of the results for 15 different
initializations.

Fig. 4 DSC and JS values for different scale parameters
σ.
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typical models known as the CV, RSF, and RLSM models.
As shown in Fig. 5, we tested our method on two
real images from the Berkeley Segmentation[26]. In the
experiment, we used the same initial contours for the four
models. The segmentation results of the CV, RSF, RLSM
and proposed models are presented in the second to the
fifth columns in Fig. 5, respectively. To obtain more
detailed object information, we set parameters σ = 3 and
σ = 4. In the figure, we can see that the segmentation
results of the CV, RSF, and RLSM models are not accurate.
This is because these models use Euclidean distance to
measure the distance between pixels and the fitting center.
As shown in the last column of Fig. 5, our method
successfully extracted the object boundaries. We attribute
the success of this result to our utilization of the robust
kernel distance metric.

4.4 Performance with noisy images

In the next three experiments, we tested the effectiveness of
the proposed method on images with various noise levels.
Figure 6 shows a comparison of the results of our method
with those of the RSF, LIC, and RLSM models on an
infrared image. As we can see in the first row of the figure,
the input image is polluted by salt-and-pepper noise with
noise density levels (from left to right) of 0.05, 0.1, 0.2,
0.4, 0.6, and 0.8, respectively. The segmentation results of
the RSF, LIC, and RLSM models are shown in the second,
third, and fourth rows of Fig. 6, respectively. From left to
right, we chose the parameters σ=2, σ=2, σ=3, σ=3,
σ = 4, and σ = 4, respectively, in our experiment. In the
figure, we can see that when the noise density is 6 0.2, all
the models can accurately capture the object, but when the

noise density is greater than 0.2, the RSF and LIC models
cannot obtain accurate results. The RLSM model works
well on images with salt-and-pepper noise, but as the noise
density increases >0.2, its segmentation results become
worse, and the model wrongly classifies the background
as the object. In contrast, we can see from the last row of
Fig. 6 that our model obtained satisfactory segmentation
results for the challenging noisy images. Table 1 lists the
CPU time and number of iterations for segmentation, in
which we can see that the number of iterations and CPU
time of the proposed model are significantly less than those
of the other three models, due to the introduction of the
split Bregman method. These experimental results show
that our model effectively suppresses the effect of salt-and-
pepper noise to achieve an exact and robust segmentation
result.

In Fig. 7, we compare our model results with those
of two classical active contour models—the RSF and LIC
models—on a real image with various Gaussian noise
levels. In the first row of Fig. 7 (from left to right), the
image had a Gaussian noise level mean of 0.2 and variance
0.05, mean 0.2 and variance 0.1, mean 0.4 and variance
0.2, mean 0.4 and variance 0.4, mean 0.6 and variance
0.6, and mean 0.8 and variance 0.8, respectively. In this
experiment (from left to right), we set the parameter σ=3,
σ = 3, σ = 4, σ = 4, σ = 4, and σ = 5, respectively.
The segmentation results for the RSF, LIC, and proposed
models are shown in the second, third, and last rows of Fig.
7, respectively, in which we can see that the RSF model
failed to segment the objects disturbed by Gaussian noise
because it draws only upon the intensity means in local
regions during the segmentation process. When the

Fig. 5 Comparison of our method with the CV, RSF, and RLSM models for two real images. (a) Original images with initial
contours. (b) Segmentation results of the CV model. (c) Segmentation results of the RSF model. (d) Segmentation results of the
RLSM model. (e) Segmentation results of the proposed model.
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Fig. 6 Segmentation results for an infrared image with various levels of salt-and-pepper noise. First to sixth columns show
noise density levels of 0.05, 0.1, 0.2, 0.4, 0.6, and 0.8, respectively. First row: Original images with initial contours. Second row:
RSF model results. Third row: LIC model results. Fourth row: RLSM model results. Fifth row: Proposed model results.

Table 1 Number of iterations and CPU times for RSF, LIC, RLSM models, and our proposed method for the results shown in
Fig. 6.

RSF model LIC model RLSM model Our method

Iterations Time (s) Iterations Time (s) Iterations Time (s) Iterations Time (s)

Column 1 60 3.524999 250 2.368718 80 2.010718 2 0.262261

Column 2 60 3.789980 200 2.067538 100 2.401176 1 0.262959

Column 3 70 4.279330 200 2.064577 130 2.660697 3 0.279622

Column 4 100 5.862987 250 3.00985 150 2.724729 3 0.278509

Column 5 100 6.170390 300 3.53386 150 2.823181 3 0.281412

Column 6 120 10.723534 300 3.853397 150 2.879318 3 0.285208

variance of the Gaussian noise is low (< 0.4), the
LIC model can effectively segment the boundary of an
object. However, when the variance reaches 0.4 (>
0.4), the LIC model cannot obtain satisfactory
segmentation results. When the variance values are 0.6
and 0.8, the object and background are very similar
in the images, but with the help of the robust kernel
distance metric, our model can accurately distinguish
between the background and foreground. From these
results, we can see that the RSF and LIC models,
which use the Euclidean distance as the sole criterion for

classification, cannot correctly detect the object boundary.
This experiment demonstrates that our proposed model
has better robustness to Gaussian noise than the other two
active contour models.

In the last experiment, we tested for model robustness
to speckle noise with different variances, and compared
our model results with those of the LIC and RLSM models,
as shown in Fig. 8. In the first row of the figure, the infrared
image has been contaminated by speckle noise at variances
of 0.01, 0.05, 0.1, 02, 0.3, and 0.4, respectively, from left
to right. The corresponding results of the LIC, RLSM,
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Fig. 7 Segmentation results of a real image with various levels of Gaussian noise. First to sixth columns show Gaussian noise
levels with a mean of 0.2 and variance of 0.05, mean 0.2 and variance 0.1, mean 0.4 and variance 0.2, mean 0.4 and variance
0.4, mean 0.6 and variance 0.6, and mean 0.8 and variance 0.8, respectively. First row: Original images with initial contours.
Second row: RSF model results. Third row: LIC model results. Fourth row: Proposed model results.

Fig. 8 Segmentation results for an infrared image with various levels of speckle noise. The first to sixth columns have added
speckle noise with variances of 0.01, 0.05, 0.1, 0.2, 0.3, and 0.4, respectively. First row: Original images with initial contours.
Second row: LIC model results. Third row: RLSM model results. Fourth row: Proposed model results.
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and proposed models are shown in the second, third,
and last rows, respectively. In the experiment, we set
parameters σ = 3, σ = 3, σ = 3, σ = 4, σ = 4,
and σ = 4, respectively, from left to right. From these
segmentation results, we can see that the LIC model can
obtain accurate segmentation results when the variance is
60.05. However, the segmentation results become worse
with increasing variance > 0.05. By a visual evaluation
of the last two rows of Fig. 8, we can see that the
segmentation results of the RLSM model appear similar to
those of the proposed model. To quantitatively evaluate the
robustness of our method, we used the metrics described
above. We computed the DSC and JS values of the three
models for the infrared image polluted by speckle noise,
which are listed in Table 2. From the table, we can see that
our model draws upon the local intensity information and,
with the kernel distance metric, achieves more accurate
segmentation results. Moreover, compared with the other
two models, the proposed model is more robust to speckle
noise.

5 Conclusion

In this paper, we presented a new active contour model
in which local information is introduced into the CV
model and kernel function metrics are used to create a
nonlinear energy functional. This model can overcome
the problems associated with sensitivity to noise and
singular values, thereby improving the accuracy of image
segmentation. To reduce the dependence on the location
of the initial curve, we use a convex optimization of the
level set. In addition, we use the split Bregman iteration
method to obtain a numerical solution, thus improving the
accuracy and efficiency of segmentation. Our experimental
results demonstrate the good performance of our method
for images with intensity inhomogeneity. Compared to
other models, our proposed model demonstrates more
robustness to various noise, as well as advantages in terms
of efficiency and accuracy.

Table 2 DSC and JS values for the results shown in Fig. 8.
LIC model RLSM model Our model

DSC JS DSC JS DSC JS

Column 1 0.9956 0.9912 0.9623 0.9576 0.9963 0.9947

Column 2 0.9438 0.9323 0.9563 0.9479 0.9815 0.9799

Column 3 0.8784 0.8523 0.9317 0.9221 0.9528 0.9467

Column 4 0.7938 0.7673 0.8845 0.8652 0.9206 0.9029

Column 5 0.6654 0.6449 0.8527 0.8315 0.9031 0.8926

Column 6 0.5917 0.5702 0.8046 0.7896 0.8912 0.8742
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