
ISSN 1007-0214 07/13 pp288–302
DOI: 10.26599 / TST.2018.9010004
Volume 23, Number 3, June 2018

Truth Discovery on Inconsistent Relational Data

Jizhou Sun, Jianzhong Li∗, Hong Gao, and Hongzhi Wang

Abstract: In this era of big data, data are often collected from multiple sources that have different reliabilities, and

there is inevitable conflict with respect to the various information obtained when it relates to the the same object.

One important task is to identify the most trustworthy value out of all the conflicting claims, and this is known as truth

discovery. Existing truth discovery methods simultaneously identify the most trustworthy information and source

reliability degrees and are based on the idea that more reliable sources often provide more trustworthy information,

and vice versa. However, there are often semantic constrains defined upon relational database, which can be

violated by a single data source. To remove violations, an important task is to repair data to satisfy the constrains,

and this is known as data cleaning. The two problems above may coexist, but considering them together can

provide some benefits, and to the authors knowledge, this has not yet been the focus of any research. In this

paper, therefore, a schema-decomposing based method is proposed to simultaneously discover the truth and to

clean the data, with the aim of improving accuracy. Experimental results using real world data sets of notebooks

and mobile phones, as well as simulated data sets, demonstrate the effectiveness and efficiency of our proposed

method.

Key words: inconsistent data; truth discovery; data cleaning

1 Introduction

Big data provide abundant valuable information but a
number of inherent challenges, one of the most serious
of these is dealing with the poor quality of data that are
often dirty and inconsistent[1]. Even for domains such
as flight and stock, which people consider to be highly
reliable, a large amount of inconsistency has been observed
in data collected from multiple sources[2]. One example
is the incorrect news that United Airlines was filing for a
second bankruptcy, which sent shares tumbling before the
error could be corrected[3]. Decisions based on inconsistent
data often result in serious consequences: incorrect flight

• Jizhou Sun, Jianzhong Li, Hong Gao, and Hongzhi
Wang are with School of Computer Science and
Technology, Harbin Institute of Technology, Harbin
150001, China. E-mail: sjzh@hit.edu.cn; lijzh@hit.edu.cn;
honggao@hit.edu.cn; wangzh@hit.edu.cn.

∗ To whom correspondence should be addressed.
Manuscript received: 2017-07-14; accepted: 2017-08-07

information may cause passengers to miss flights;
errors in stock data may cause financial losses for
shareholders; and wrong diagnoses based on incorrect
medical measurements are life threatening.

Inconsistencies are typically identified as being
violations of data dependencies, such as functional
dependencies and conditional functional dependencies. In
this respect, two main research areas are committed to
solving inconsistency problems, truth discovery, and data
cleaning, and the following sections provide a detailed
presentation of these areas.

1.1 Truth discovery

It is important that big data are obtained from multiple
sources, but due to low reliability of the sources, it is
inevitable that inconsistent values will occur for the same
object. This kind of inconsistency violates the primary
key constraint (a special case of Functional Dependencies,
FDs).

For many years, the truth discovery community has



Jizhou Sun et al.: Truth Discovery on Inconsistent Relational Data 289

been researching how to obtain the most trustworthy
information[4–14]. One common framework used is to
estimate the reliability degrees of the sources and
determine the most trustworthy claims alternately and
iteratively. This means that to determine truths based
on the reliability degrees estimated, greater confidence is
given to higher degree sources, and based on the truths
estimated, sources providing a larger number of correct
values are believed to be more reliable. The process
is repeated iteratively, until a stopping criterion is met
(for example, the maximum number of iterations or no
further changes). The intuition behind this framework
is that sources that are more reliable often provide more
information that is more trustworthy, and that when a
source provides consistently trustworthy information it is
considered to be more reliable. Within this framework,
various studies have adopted different calculation details
or have focused on more specified conditions, such as
the relationship between sources, relationship between
objects, multiple true values, heterogeneous data, and
long-tail phenomena.

1.2 Data cleaning

To automatically improve data quality, it is necessary to
define data quality rules that determine how to detect
and repair errors, and the use of data dependencies
(integrity constraints) is the natural choice in this respect[1].
Classical FDs[15] were the first class of dependencies to be
introduced, and these are almost as old as the relational
database model. However, for data errors to be captured
more proficiently, Conditional Functional Dependencies
(CFDs) were proposed[16] as an extension of classical
FDs, and these incorporate patterns of semantically related
data values. Dependencies may be violated when data
contain errors, and detecting the errors is tractable[17, 18].
A common heuristic way of removing errors once they
have been detected is to instigate a repair involving the use
of a modified database, which satisfies the dependencies
and uses the least number of updates with respect to the
original dirty one. This type of problem is known as the
“data cleaning problem”. It is intractable, and several
methods have been proposed aimed at determining a near
optimum repair[19–22] or a set of repair samples[23, 24].

In addition to FDs and CFDs, several other extensions
have been proposed, such as extended conditional
functional dependencies[25] and conditional dependencies
with built-in predicates[26], and new types of rules
have been proposed, such as editing rules[27], fixing
rules[28], differential dependencies[29], and comparable

dependencies[30]. However, as FDs and CFDs are the most
common data quality rules, and they have attracted the
most research attention, only these two types of rules are
considered in this paper; and the others will be considered
in future work.

1.3 Problems inherent in previous methods

Truth discovery and data cleaning research groups have
provided considerable and valuable research results.
However there are several drawbacks remaining that
require exploration, and those that are related to this study
are presented as follows:

• In most truth discovery methods, all sources start
with uniform weights prior to the iteration process.
A considerable decrease in performance can result
when most sources are unreliable, and therefore, it
is extremely important to improve the initialization of
source reliability[31].
• In truth discovery, it is common that only a few
sources claim for an object, and the discovered values
thus have low confidences.
• When dependencies are available, the output of truth
discovery methods may still violate the dependencies.
A straightforward solution would be to clean the result
by these dependencies; however, this may replace
some correct answers with incorrect ones.
• The tie phenomenon and cost based data cleaning
methods are heuristic and may result in more than one
optimum repairs, which means the same number of
updates are required in the repairs. This then requires
user feedback to determine which one is right, and
such an operation involves a nonautomatic cleaning
process.
• The errors contained in data do not always violate
the dependencies; therefore, the data cleaning methods
cannot even detect these errors, let alone fix them.
The authors have observed two problems coexisting

in many real-world applications. For example, on an
online shopping web site, several sellers may provide
conflicting information about the same product, and
information from one single seller may violate some
dependencies. In another example, systems are developed
to extract product specifications on the web (e.g., Ref.
[32]), and a product often contains many attributes and
dependency relationships between the attributes. In
addition, specifications are collected from a large number
of web sites that can be considered as data sources, and
which have different reliability degrees.

Both truth discovery and data cleaning methods were



290 Tsinghua Science and Technology, June 2018, 23(3): 288–302

studied to improve data quality, and when considered
together, these methods can complement each other. For
example, a source that provides data that are determined
to be extremely inconsistent is therefore less reliable and
should be initialized with low weight. When the score of a
candidate value in truth discovery is associated with the
cost in data cleaning, the cost of the data type changes
from an integer to a real value, which can eliminate the
tie phenomenon. To the author’s knowledge, no previous
studies have yet taken advantage of using these benefits
from both methods.

1.4 Proposed SDTD method

To resolve these problems and exploit the benefits
of using both methods, a Schema-Decomposing based
Truth Discovery (SDTD) framework is considered, which
directly provides results satisfying the dependencies. The
initial pre-processing step decomposes claim-tuples into a
set of source-key-value triples, which is the input of the
truth discovery framework and uses certain decomposing
rules related to the dependencies. Each source is initialized
with a weight depending on the inconsistent values it
provides. The truth discovery iterating process is almost
analogous to that used in previous work; however, in this
paper dependencies are considered when calculating value
scores. After iterations are finished, a post-processing
step joins the key-value pairs back into relational tuples,
which satisfies the dependencies directly. Another benefit
of schema-decomposing is that the claim numbers of
some of the objects are greatly increased, and the results
determined are more confidential. In summary, this paper
makes the the following contributions:

• An SDTD framework is proposed, which seamlessly
combines the disciplines of truth discovery and data
cleaning. Several benefits can be obtained when using
this framework.
• An adequate set of decomposing rules are introduced.
According to the rules, all (conditional) FDs are
considered, and each claim-tuple can be decomposed
into source-key-value triples.
• Dependencies are considered when calculating the
scores of candidate values, and more accurate values
can be determined.
• In this study, experiments are conducted using two
real world data sets and synthetic data sets. The results
demonstrate the effectiveness and efficiency of the
proposed method.
The remainder of this paper is set out as follows:

related research is summarized in Section 2; Section 3

provides a running example to demonstrate our motivation
behind this study; Section 4 formulates the problem, the
proposed method is derived and analyzed; in Section 5,
various experiments are conducted on real world data sets
and synthetic data sets to validate the effectiveness and
efficiency of the proposed method; and Section 6 presents
the conclusions.

2 Related Studies

2.1 Data cleaning

Bohannon et al.[19] modeled the cleaning problem based
on cost and provided an effective heuristic algorithm using
value modification, and Wijsen[21] proposed a theoretical
framework that considers update-based repairing, in which
the problem of constructing nucleus (a single database that
yields consistent answers to a class of queries without the
need for query rewriting) has been studied. More recently,
research groups have focused on user participation. For
example, Yakout et al. developed a data cleaning
system GDR that allows user’s guidance[33], and studied
the problem of guided data repair[34] where updates are
completed in a group-manner.

Xie et al.[35] presented a data cleaning framework
that combines data quality rules (CFDS, CINDS, and
MDs) with user feedback through an interactive process.
Recently, an interactive, deterministic, and declarative
data cleaning system, Falcon, was presented[36], which
encourages users to explore data, identify possible
problems, and develop updates to fix them. Falcon
focuses on addressing the challenge of finding a set of
SQL update queries that is minimal in size, and it also
fixes a large number of errors. Cai et al.[37] proposed a
collective inference model of sanitizing data, to prevent
social network users from attacks. They also constructed
a data-sanitization strategy that can optimize the tradeoff
between data utility and privacy in Ref. [38].

Miao et al.[39, 40] studied the insertion propagation
problem with functional dependency, plenty of analysis
is provided and complexities results are obtained. In
Ref. [41], an iterated local least squares imputation method
is proposed to estimate the missing values in microarray
gene expression data. There are also studies concerning
the currency problem of dynamic data, such as Ref. [42].

Other data cleaning research is not covered here due
to space limitation, but comprehensive and systematical
summaries can be found in the latest survey[43].

2.2 Truth discovery

When the concept of truth discover was first proposed[4],



Jizhou Sun et al.: Truth Discovery on Inconsistent Relational Data 291

the aim was to determine the truth with respect to
conflicting web information. Galland et al.[6] explored
techniques based on corroboration and introduced three
fix point algorithms corresponding to the different levels
of complexity in an underlying probabilistic model.
Pasternack and Roth[7] proposed a method, in which prior
knowledge was translated into propositional constraints
that are integrated into each round of the truth discovery
process; however, the use of linear programming to solve
the problem is very time consuming. A similar study[44]

introduced a new, generalized, fact-finding framework
that can incorporate additional information, such as
uncertainty, when extracting information that is claimed
in documents, such as the attributes of the sources, the
degrees of similarity among claims, and the degrees of
certainty expressed by sources in the truth discovery
process. Furthermore, objects have been clustered
together[45], and the truth discovery task is analyzed in
a clustering manner. Another study[46] presented, for
the first time, a Bayesian interpretation of the basic
mechanism used in truth discovery with information
networks, and a maximum likelihood estimation approach
for truth discovery in social sensing has been proposed[11].
Observations provided by humans can be modeled as
binary variables, and the truth discovery task is formulated
as a maximum likelihood estimation problem, and solved
by an EM algorithm. Truth discovery has been used[13]

to resolve conflicts in heterogeneous data (objects with
heterogeneous attributes), by truth discovery. And a
confidence-aware approach for truth discovery has been
proposed[14], in which accuracy was improved by reducing
the influence of low confidence sources (where low-
confidence means that the sources provide very few
claims). Furthermore, situations that have been studied in
which more than one value can be true for one object, for
example, the authors of a book and the actors in the movie
of the book[9, 47].

Other studies (e.g., Refs. [5, 48, 49]) have also focused
on the relationship between sources, for example, where
one source copies information from another source, and
research has also been aimed at selecting with high-quality
sources to reduce costs and improve the accuracy of truth
discovery methods[50, 51].

Other groups have been committed to determining
truths using probabilistic graphical model-based methods.
For example, a Bayesian probabilistic approach, GTM,
has been proposed that was designed for continuous data
type[10]. The same research group also proposed LTM[9]

at almost the same time, which is a probabilistic graphical

model considering two types of errors under scenarios of
multiple truths: false positives and false negatives. A
further study used a probabilistic model of Ref. [12], where
the source reliability had different semantic meanings in
different settings: it could indicate the probability of a
source asserting the truth, or the probability of a source
both knowing and telling the truth, or even the probability
of a source intending to tell the truth.

The latest survey[31] provides more comprehensive
introduction to truth discovery.

3 A Motivating Running Example

On a shopping web site, many sellers (data sources)
advertise a supply of the same product (an object). Usually,
sellers also provide specifications about their goods, which
include several to tens of attributes. There are often
dependencies between these attributes, and careless sellers
may provide wrong information which may violate these
dependencies. This situation relates to traditional truth
discovery. However, there are dependencies defined on
the attributes which can be violated, making it also a data
cleaning problem.

For example, on a real-world online shopping web site,
two sellers (or sources), s1 and s2, provide information
about three phone models: (Huawei) Honor7, (Huawei)
Mates, and (Sony) Z3. For simplicity, three representative
attributes are considered, i.e., Central Processing Unit
model (CPU for short), number of cores (#Core), and
frequency. In addition to the key dependencies (the phone
models are the key), there are two other FDs between these
attributes:

• φ1 ≡ CPU → #Core indicates that phones with
the same CPU model must contain the same number
of cores.
• φ2 ≡ CPU → Frequency indicates that phones
with the same CPU model must also have an equal
frequency.
Claims and ground truths are listed in Tables 1 and 2,

respectively (where Snapdragon is abbreviated to Dragon
to save space), and wrongly claimed values are underlined.

In a traditional truth discovery framework, s1 and s2
are initialized with uniform weights. With a probability of
0.5, or even higher in some methods because s1 provides
more claims than s2, the wrong value 4 will win out as
Honor7’s core number, which is undesirable. Meanwhile,
only s1 claims on Mates, which will result in a low
confidence, especially when the only claiming source is
of low reliability. Possible results of the truth discovery



292 Tsinghua Science and Technology, June 2018, 23(3): 288–302

Table 1 Claim tuples of mobile phones.
sid Model CPU #Core Frequency (GHz)

s1 Honor7 Kirin935 4 2.2

s1 Mates Kirin935 8 2.2

s1 Z3 Dragon808 4 2.7

s2 Honor7 Kirin935 8 1.5+2.2

s2 Z3 Dragon801 4 2.5

· · · · · · · · · · · · · · ·

Table 2 Ground truth tuples of mobile phones.
Model CPU #Core Frequency (GHz)

Honor7 Kirin935 8 1.5+2.2

Mates Kirin935 8 1.5+2.2

Z3 Dragon801 4 2.5

· · · · · · · · · · · ·

methods are shown in Table 3, where the first two tuples
violate φ1. To resolve this inconsistency, one can either
change 4 in the first tuple into 8, or change 8 in the second
tuple into 4, which introduces a tie and may return a wrong
answer. Furthermore, the tuple for Z3 contains two wrong
values and does not violate the dependencies. Therefore,
the wrong values will not be detected, even though s2 does
claim correct values on Z3.

This example illustrates the problems faced when
resolving data inconsistency and will be employed as a
running example in the following sections to illustrate the
method proposed in this paper.

4 Methodology

4.1 Preliminaries and problem definitions

Several important terms are introduced in this section,
and the truth discovery problem in relational data is then
defined.

Definition 1 Let O be a set of objects, where each
object is a thing or a type of things. A is a set of concerned
attributes of the objects. An entry is an object-attribute
pair, and each entry should be identified by an identifier
(key or eid) and should be assigned with a value as the
truth. Values about the same object can be seen as a
relational tuple.

In Table 2 for example, Honor7, Mates, and Z3 are
objects (phone models), and CPU, #Core, and Frequency

Table 3 Possible truth discovery results.
Model CPU #Core Frequency (GHz)

Honor7 Kirin935 4 2.2

Mates Kirin935 8 2.2

Z3 Dragon808 4 2.7

· · · · · · · · · · · ·

are attributes. The entry corresponding to Mates and CPU,
which can be denoted as Mates[CPU] or Mates.CPU, is
assigned with a value Kirin935 as the truth, meaning that
Mates is equipped with the CPU Kirin935. There are 3
corresponding tuples describing the objects.

Definition 2 Let S be a set of sources (i.e., a set of data
providers) and C a set of claims, each of which is triple
⟨s,k,v⟩, meaning that the source, s, claims a value, v, on
entry with key, k. Sources often provide claims in the form
of tuples, and tuples from all sources are organized as a
claim table, CT . Different sources have differing degrees
of reliability, which are reflected in the differing sources.

For example, in Table 1 there are two sources, s1 and
s2, providing five claim-tuples for the three objects. Note
that sources can conflict with each other, for instance, s1
and s2 claim that the frequencies of Z3 are 2.7 GHz and 2.5
GHz, respectively. However, only one of the conflicting
values actually agrees with the ground truth.

Definition 3 (Refer to Ref. [15]) An FD φ is of the
form

[A1,A2, · · · ,Al]→ [B],

where Ai ∈ A and B ∈ A. The brackets can be omitted
when there is only one attribute on the left (resp. right).
The semantic of φ is that for any two tuples, t1 and t2, one
of the following conditions should be satisfied,

• t1[Ai] ̸= t2[Ai] for some i=1,2, · · · , l or
• t1[B] = t2[B].
The instinctive understanding is that if any two tuples

are equal on the left-hand side attribute of φ, they should
also be equal on the right-hand side attribute. In this paper,
for any tuple, t∈ CT , we say that entry t[B] is covered by
φ if t[Ai] ̸=null for i=1,2, · · · , l. In the running example,
there are two FDs CPU →#Core, CPU →Frequency.
In Table 1, all entries relating to the attributes #Core and
Frequency are covered because there are no null values.
The first two tuples together violate CPU → #Core,
because they are equal for CPU but differ with respect
to the number of cores.

Definition 4 (Refer to Ref. [16]) A CFD ϕ is of the
form

[A1 = v1,A2 = v2, · · · ,Al = vl]→ [B= v0],

where each of Ai,B ∈A, and vi is either a constant value
or an unnamed variable ‘ ’. The semantic of ϕ is that for
any two tuples, t1 and t2, one of the following conditions
should be satisfied,

• t1[Ai]
vi

̸= t2[Ai] for some i=1,2, · · · , l or
• t1[B]

v0= t2[B],



Jizhou Sun et al.: Truth Discovery on Inconsistent Relational Data 293

where t1[A]
v
= t2[A] means that t1 and t2 are equal for

A with a value, v, i.e., t1[A] = t2[A] if v = ’ ’, or
t1[A] = t2[A] = v if v is a constant. On the other hand,
if t1[A]

v
= t2[A] does not hold, t1 and t2 are not equal for

A with a value v, which is denoted by t1[A]
v

̸= t2[A].
The instinctive understanding is that if any two tuples

are conditionally equal on the left-hand side attribute of ϕ,
they should also be equal on the right-hand side attribute,
and they should have corresponding values. For any tuple,
t, that matches the left-hand side of ϕ, in this paper we say
that entry t[A] is covered by ϕ.

For example, if CFD [Model = Mates] → [CPU =

Kirin935], it means that the phone model, Mates, is
equipped with Kirin935, which is satisfied by Table 1, and
the entry Mates[CPU ] is covered. In another example,
the CFD [Model=Z3,CPU = ’ ’]→ [Frequency= ’ ’]
means that the frequency of a phone, Z3, depends on its
CPU.

In this paper, all (conditional) FDs are satisfiable and
non-redundant[16, 17, 52] in default.

The truth discovery task relating to inconsistent
relational data is then formally defined.

Definition 5 Given claim table, CT , about attributes
in mathcalA for objects in O provided by sources in
S, along with a set Σ of FDs and CFDs, the goal is to
determine the most trustworthy values for each object, o,
while satisfying all the dependencies in Σ .

4.2 Schema-Decomposing based Truth Discovery
(SDTD) framework

The straightforward method for determining truths relating
to each entry, and for cleaning the results according to Σ ,
has been shown in the previous problems. In this paper,
an SDTD framework is considered, where the problem
becomes a classical truth discovery problem (except that
the initial weights and truth values require more elaborate
calculations).

This method requires an initial pre-processing step.
Each claim-tuple is decomposed into several source-key-
value triples, using certain decomposing rules with respect
to the dependencies. The aim of this is to consider
the left-hand values with respect to a dependency of a
virtual object and the right-hand value as the claimed
value. After decomposition, a set of source-key-value
triples is obtained, on which a truth discovery algorithm
is conducted. In the claims obtained, it is possible for
one source to claim different values for the same (virtual)
object; therefore, the initial source weights and truth
values in each iteration need to be carefully determined to

provide highly accurate results. After conducting the truth
discovery process, a post-processing step joins the key-
value pairs into relational tuples, which directly satisfies
the dependencies in most real-world situations.

We now discuss several key points within the SDTD
framework in detail.

4.2.1 Decomposing rules
The functional dependency φ≡X →A means that tuples
with the same values for X should be equal for A, where
X is a set of attributes. This semantic happens to coincide
with truth discovery settings, where the same object should
hold the same value. In this respect, we consider extracting
source-key-value triples from the claim-tuples according to
the FDs using Rule 1:

• Rule 1. For each functional dependency, φ,
decompose CT to obtain a new table, Tφ, using the
projection operation, as

Tφ =πsid,X,A(CT ),

where X is the set of attributes on the left-hand side of
φ, and for A on the right-hand side.
For a CFD, ϕ ≡ [B1 = v1,B2 = v2, · · · ,Bl = vl] →

[A = v0], all tuples that match the embedded constant
values should hold the same value for B whenever they
are equal on the left-hand side attributes. Similar to
Rule 1, source-key-value triples from the matched tuples
according to the CFDs are extracted using Rule 2.

• Rule 2. For each conditional functional dependency
ϕ ≡ [B1 = v1,B2 = v2, · · · ,Bl = vl] → [A = v0],
decompose CT to obtain a new table, Tϕ, using the
selection and projection operations,

Tϕ =πsid,B1,··· ,,Bl,A(σBc1=vc1,··· ,Bcn=vcn(CT )),

where Bc1, · · · ,Bcn are attributes embedded with
constant values, vc1, · · · ,vcn, respectively.
In addition, if ϕ in Rule 2 is embedded with a constant

value for the right-hand side attribute, A, it is claimed to be
a correct key-value pair. Rule 3 is employed to represent
the same semantic as follows:

• Rule 3. For each CFD ϕ ≡ [B1 = v1,B2 =

v2, · · · ,Bl = vl] → [A = v0], where v0 is a constant
value, construct a single tuple, tϕ, as shown in Table 4,
and insert it into Tϕ, where Bc1, · · · ,Bcm are attributes
in ϕ bound with constant values vc1, · · · ,vcm, and ssid

is a virtual super source, which always provides true

Table 4 Single tuple constructed from ϕ.
Sid Bc1 Bc2 · · · Bcm A

ssid vc1 vc2 · · · vcm v0



294 Tsinghua Science and Technology, June 2018, 23(3): 288–302

values.
As some entries may not be covered by any

dependency, Rule 4 is introduced to deal with these as
follows:

• Rule 4. If a source, s, claims value, v, on an
uncovered entry, o[A], insert a claim-tuple (s, o.’A’,
v) into the table Trest(sid,key,value).
All the four rules generate tuples that consist of a

source, s, and a key, k, which is composed of the left-hand
side attribute value(s), and a value, v; and the tuples can be
seen as claims in the natural form of ⟨sid,key,value⟩.

For example, if Table 1 is taken as the input claim
table CT , along with three dependencies φ ≡ [CPU ] →
[#Core], ϕ1 ≡ [CPU = Kirin935,#Core = ’ ’] →
[Frequency = ’ ’], and ϕ2 ≡ [CPU = Dragon801] →
[Core = 8], the tables generated according to the
decomposing rules are shown (from Table 5 to Table 8).

All tuples in these tables can be seen as
⟨sid,key,value⟩ triples: the sids can be obtained directly;

Table 5 Tφ generated according to Rule 1.
sid CPU #Core

s1 Kirin935 4

s1 Kirin935 8

s1 Dragon808 4

s2 Kirin935 8

s2 Dragon801 4

· · · · · · · · ·

Table 6 Tϕ1 generated according to Rule 2.
sid CPU #Core Frequency (GHz)

s1 Kirin935 4 2.2

s1 Kirin935 8 2.2

s2 Kirin935 8 1.5+2.2

· · · · · · · · · · · ·

Table 7 Tϕ2 generated according to Rules 2 and 3.
sid CPU #Core

s2 Dragon801 4

ssid Dragon801 8

· · · · · · · · ·

Table 8 Trest generated according to Rule 4.
sid Key Value

s1 Z3.Frequency 2.7 Hz

s1 Honor7.CPU Kirin935

s1 Mates.CPU Kirin935

s1 Z3.CPU Dragon808

s2 Honor7.CPU Kirin935

s2 Z3.CPU Dragon801

s2 Z3.Frequency 2.5 Hz

· · · · · · · · ·

the value corresponds to the last attribute, which is usually
the right-hand side attribute; and all the other attributes
are combined as keys. To identify which attributes do the
values that constitute the key come from, it is necessary
to consider the attribute names as part of the key. For
example, the key corresponding to the first tuple in Table 6
would be “CPU.Kirin935; Frequency.2.2GHz”.

4.2.2 Determining source weights
The basic idea with all truth discovery methods is that
sources have different reliability levels, and that higher
weights should be assigned to sources that are more
reliable. In this paper, the probability of a source, s, of
giving correct values is estimated as its weight.

At the beginning of the iterations, almost all the
existing truth discovery methods start with uniform source
weights. In our setting, a single source may provide
self-conflicting data, which indicates the source has low
reliability. With the self-conflictions, source weights can
be initialized more elaborately.

For example in Table 5, s1 claims two different values,
4 and 8, for the core number of Kirin935, and no more than
one of these can be correct. The upper bound of number
correct claims provided by source s over key k is

us,k =

Ns,k,v, if ∃v(Nssid,k,v > 0);

max
v

(Ns,k,v), else
(1)

where Ns,k,v is the number of claims provided by s for k
with a value v. Equation (1) means that if the super source
claims that v is the absolute true value of k, the upper
bound represents the number of correct claims. However,
if the super source provides no truth value for k, the self-
conflicting value that has the most votes is assumed to
be true. The initial weight of source s can be estimated
according to the upper bounds as

w(0)
s =

∑
k
us,k∑

k,v
(Ns,k,v)

(2)

The denominator is the total claims provided by s

and the numerator is the maximum possible number of
correct ones. Obviously, all weights are in [0,1], and
sources providing less-conflicting values gain higher upper
bounds, as well as higher weights. In particular, if a source
provides no self-conflictions and always agrees with the
super source, it will be initialized with the highest weight,
1.0.

The situation improves during iterations because
estimated truths become available. If the estimated value



Jizhou Sun et al.: Truth Discovery on Inconsistent Relational Data 295

of the key, k, in the i-th iteration is denoted by v(i)
k , the

source weights in the i-th iteration can be then naturally
estimated by

w(i)
s =

∑
k
N

s,k,v
(i)
k∑

k,v
(Ns,k,v)

(3)

i.e., the probability of source s providing correct claims.

4.2.3 Determining truths
With the source weights (or probabilities of providing
correct values) previously estimated, a probabilistic model
is analyzed to determine the truths. By providing the claim
table, CT , the true values can be estimated according to
conditional probabilities.

For a single claim ⟨s,k,v⟩ in CT , the probability of
v being correct, denoted as Pk,v, can be directly assigned
with the probability of s providing correct values, i.e., ws.

However, in our settings, it is possible to have multiple
conflicting claims from the same source over the same key,
and if a claim is involved in a conflict, its probability of
being correct should be reduced. If source, s, provides
Ns,k claims over key k, among which Ns,k,v claims are
with value v, k is composed of m attributes, as shown
in Table 9. In the condition where s provides a correct
value, the probability of the claim ⟨s,k,v⟩ being correct is
naturally estimated by voting, i.e.,

P{⟨s,k,v⟩ is correct|s gives a true value on k}=
Ns,k,v/Ns,k (4)

under the intuition that the value that has more votes is
more likely to be correct.

In the condition that the claims giving v are incorrect,
it is possible for v or a1, · · · ,am to be wrong. It is assumed
that all the m+1 values have an equal probability of being
incorrect, therefore, it can be inferred approximately that

P{ai in k is correct|claim ⟨s,k,v⟩ is incorrect}=
P{v is correct|claim ⟨s,k,v⟩ is incorrect}=m/(m+1)

(5)

With Eq. (4) and Eq. (5), when values claimed by s

Table 9 Claims provided by s over k.
Claim id Sid Key Value

c1 s a1 · · · am v

· · · s a1 · · · am · · ·
cNs,k,v

s a1 · · · am v

cNs,k,v
+1 s a1 · · · am v′

· · · s a1 · · · am · · ·
cNs,k

s a1 · · · am · · ·

over k conflict with each other, the probability of each
value involved being correct should be multiplied by a
discount factor,

dfs,k,v =
Ns,k,v

Ns,k

+
Ns,k−Ns,k,v

Ns,k

× m

m+1
(6)

where m is the number of attributes in key k. Note
that the discount factor depends on the claim table, CT ,
and the set Σ of dependencies only, which means it is
sufficient to calculate it just once before the iterations. The
discount factor is of the largest value, 1, when s provides
no conflicting values for key, k. However, if there are
conflicting values, the discount factor is strictly less than 1.
It is worth noting that when the super-source claims a value
on k, the discount factor can be calculated more accurately
(however, the derivation is similar and is omitted here).

When an entry, e, is involved in more than one conflict,
its probability of being correct should be discounted
multiple times as

P (i+1)
s,k,v =w(i)

s ×
∏

each ⟨s,k′,v′⟩ involving e

dfs,k′,v′ (7)

where k is the key identifying e. Equation (7) estimates the
probability of v being correct in the (i+1)-th iteration.

Consider key, k, and candidate values v1,v2, · · · ,vc, if
it is assumed that there is no relationship between sources
as

P{CT is claimed|v∗
k = v}∝∏

⟨s,k,v⟩

Ps,k,v×
∏

⟨s,k,vj⟩,vj ̸=v

(1−Ps,k,vj )∝

∏
⟨s,k,v⟩

Ps,k,v

1−Ps,k,v

(8)

where v∗
k denotes the true value of key k, and the

conditional probability is abbreviated as P{CT |v∗
k = v}

for convenience. According to Bayesian formula, the
posteriori probabilities can be derived as

P{v∗
k = v|CT }= P{CT |v∗

k = v}×P{v∗
k = v}∑

j
(P{CT |v∗

k = vj}×P{v∗
k = vj})

(9)

We assume that no previous knowledge is available,
and priori probability equals for all candidate values,
therefore,

P{v∗
k = v|CT }= P{CT |v∗

k = v}∑
j
P{CT |v∗

k = vj}
∝

P{CT |v∗
k = v}∝

∏
⟨s,k,v⟩

Ps,k,v

(1−Ps,k,v)
(10)



296 Tsinghua Science and Technology, June 2018, 23(3): 288–302

The value with the highest posterior probability is thus
selected as the truth,

v(i)
k =argmax

v

∏
⟨s,k,v⟩

Ps,k,v

(1−Ps,k,v)
(11)

or equally

v(i)
k =argmax

v

∑
⟨s,k,v⟩

(lnP (i)
s,k,v− ln(1−P (i)

s,k,v)) (12)

4.2.4 Composition process
When truth discovery iterations are terminated, a relational
table, Tc, is constructed from all truth pairs of the form
⟨k,v⟩.

The value for each tuple on attribute A can be filled
using the estimated set T ∗ of truths, along with the
corresponding object, o. In the decomposing process,
every entry value is guaranteed to be covered by a rule.
If it is covered by Rule 4, then the entry value can be
directly set as the discovered v∗

k where k = o.A, and if
it is covered by Rules 1−3, then all corresponding left-
hand values should be filled in advance. The composition
process is illustrated as the Fill procedure, as shown in
Algorithm 1.

In our settings, it is assumed that each attribute is in
the right-hand side of one dependency at most, and that
there are no cycles in the depending relationships that can
be satisfied in most real-world situations. When these
assumptions hold, each entry’s value can be determined by
exactly one key, and no conflicts occur in the composition
process. Other general cases will be considered in future
work.

4.2.5 Algorithm flow
Several key points have already been described. This
subsection summarizes the overall flow for the proposed
SDTD method, shown in Algorithm 2, and this comprises
the following three main steps,

Step 1: Preprocess. SDTD first computes discount
factors for entries according to Eq. (6) (line 1) and then

Algorithm 1 Fill(Tc,o,A,Σ ,T ∗)

1: if o[A] is already filled then
2: return
3: if There is a dependency X →A∈Σ then
4: for Each attribute B ∈X do
5: Fill(Tc,o,B,Σ ,T ∗)
6: Compose key k by values on X and A
7: else
8: Compose key k by o and the attribute A
9: Fill o[A] in Tc with value v∗k , which can be found in T ∗

10: return

decomposes relational tuples into triple-formed claims
according to the four decomposing rules (lines 2−11).

Step 2: Truth discovery iterations. The source weights
are initialized according to Eqs. (1) and (2) (line 12).
The true values are then iteratively estimated and source
weights are updated until a stopping criterion is met (lines
13−19).

Step 3: Postprocess. Truths discovered in key-value
form are composed back into relational tuple form, and Tc

is created (lines 20−24).
The preprocess and postprocess deal with the claim

table, CT , and the truth table, Tc, only once, respectively.
However, it is obvious that there are complexities
O(|CT | ×m) and O(|O| ×m), where m is the number
of attributes. In the truth discovery iterations, there are
|CT |×m entries, and the time complexity is O(|CT |×m×
k), where k is the number of iterations. Thus the overall
complexity is O(|CT |×m× k), which is linear with the
number of claim tuples, indicating a good scalability.

4.2.6 Practical issues
Several practical issues should be considered in the SDTD
framework.

Null values are very common in the database
community due to incompleteness. In the decomposing
process, if a null value occurs in the right-hand side of a

Algorithm 2 SDTD
Input: A relational claim table CT , a set of FDs Σ.
Output: The cleaned relational table Tc satisfying Σ.
1: Calculate the discount factor for each entry according to Eq. (6)
2: for Each dependency ϕ∈Σ do
3: for Each tuple t∈T C do
4: Generate claim c according to Rule 1 or Rule 2 respectively

with ϕ on t
5: Add c into claim set C
6: if ϕ is a constant CFD then
7: Generate claim c according to Rule 3 with ϕ on t
8: Add c into claim set C
9: for Each uncovered entry do

10: Create claim c according to Rule 4 on t
11: Add c into claim set C
12: Initialize source weights according to Eq. (1) and Eq. (2)
13: repeat
14: for Each claim ⟨s,k,v⟩ ∈ C do
15: Compute its relative probability of being true according to Eq.

(7)
16: for Each k do
17: Update the true value of k in T ∗ according to Eq. (12)
18: Update source weights using the estimated values according to

Eq. (3).
19: until A stopping criterion is met.
20: Create a table Tc of tuples for each object, with other attributes

unfilled.
21: for Each tuple representing o do
22: for Each attribute A do
23: Fill(Tc,o,A,Σ,T ∗)
24: return Tc;



Jizhou Sun et al.: Truth Discovery on Inconsistent Relational Data 297

dependency, then the generated triple should be discarded
because it provides no valuable information. If a null value
occurs in the left-hand side of a dependency, the generated
triple should also be discarded, because it creates an
uncertain key-value that causes problems in the iterating
process. In the second case, the right-hand side value
becomes uncovered and should be dealt with using Rule
4, which then ensures complete answers in the final result.

Only categorial attributes have been discussed in this
paper; however, numeric values can be easily integrated
into our framework. A numeric valued attribute seldom
occurs in the left-hand side of a dependency, (if it does,
it can be treated as a categorial attribute). In the truth
discover iterations, the source weights can be calculated
more carefully if numeric values are available, and true
numeric values can be computed as weighted averages
among multiple sources.

In Eq. (12), it is very possible that P (i)
s,k,v equals 0 or 1,

and that it causes invalid numbers. To solve this problem,
a bounded interval is imposed on the probability,

P (i)
s,k,v :=max(P (i)

s,k,v, ϵ),

and
P (i)

s,k,v :=min(P (i)
s,k,v,1−ϵ),

where ϵ is a positive value close to zero, which is set as
0.01 in our experiments.

Finally, when calculating the discount factors and
estimating the values, if the super source claims a value on
the key, the calculations should be adjusted accordingly; as
this is intuitive, formal discussions are omitted here.

5 Experiment

This section analyzes the performance of our method using
two real world data sets and synthetical data sets. The
results show that when data cleaning and truth discovery
tasks are simultaneously considered, a superb data quality
can be obtained when dealing with relational data, which
violates dependencies provided by multiple sources.

5.1 Experiment setup

All experiments were conducted using JAVA and
performed on a Dell desktop with an Octa-Core Intel i7
3.60 GHz CPU, 8 GB of memory, a 1 TB SATA disk, and
with Windows 7 as the underlying operating system.

5.1.1 Data sets
Experiments were conducted on both real-world data and
synthetic data.

The real-world data set contains two subsets:
Notebooks and Phones, which are obtained from one of the
most popular shopping web sites. Many shops (sources)
sell various products (objects) and list their corresponding
specifications (attributes) to customers. The statistical
information of the two subsets is listed in Table 10. For
simplicity, only several attributes are provided for the two
data sets. The Notebooks data set contains three attributes:
scr res (screen resolution), scr rate (aspect ratio), and
scr type (screen type: wide or standard), and there are two
dependencies between the attributes: scr res→ scr rate

and scr rate → scr type. Meta data of the Phone data
set can be found in Section 3. To ensure correctness, all
ground truths were collected manually from corresponding
official web sites; however, although we made our best
efforts to collect ground truths that were as complete as
possible, only a small portion of these were available, as
shown in Table 10. However, the data provided are suitable
for use in an accuracy evaluation.

In the synthetic data sets, 500 sources provided claims
on 10 000 (or ranging from 10 000 to 100 000 in the
scalability test) objects. For each object, o, five sources (on
average) were randomly selected to claim on o; therefore,
there were a total of approximately 50 000 claim-tuples
(ranging from 50000 to 500000). The claiming inaccuracy
(or error rate) of each source was a random value of a well-
known distribution, Beta(α,β), because it is the most
common that is continuous and defined with an interval
[0, 1]. By varying α and β, expectation of the source
inaccuracy ranges from 1% to 10%.

5.1.2 Baseline methods
The proposed method is compared with two latest
algorithms, CRH[13] and CATD[14], as well as the simple
VOTE, where the value with the highest number of votes
is regarded as the truth. Because these three methods
only enabled truth discovery, a cleaning process[19] was
appended to them, and three new methods, CRH+Clean,
CATD+Clean, and VOTE+Clean, were obtained.

For all iteration-based methods, a global threshold
(defaulted 3) of the number of iterations was used for
consideration of fairness.

Table 10 Real world data sets statistics.
Number of

Data set Sources Objects Claim Attributes Ground

tuples truth

Notebooks 12092 5696 60151 3 2494

Phones 11187 1595 37053 3 1337



298 Tsinghua Science and Technology, June 2018, 23(3): 288–302

5.2 Assumptions validation

In this subsection, several assumptions that inspired our
study are validated on two real world data sets.

5.2.1 Self-conflictions of sources
In our settings, an important assumption is that tuples from
a single data source may violate some dependencies; this
is validated in Fig. 1. Each data source is represented by
a point, where the x-coordinate is the number of claims
provided, and the y-coordinate is the number of conflicting
values among the claims. Both of the real world data sets
contained self-conflictions, and a source was more likely
to contain self-conflictions when it provided more claims.
Therefore, by obtaining the self-conflicting information,
initial weights of the sources could be assigned more
wisely.

5.2.2 Tie phenomenon
The number of ties is significant with respect to the
uniform source-weight initialization, because the first
iteration is a simple voting process. Ties play a very
unstable role in truth discovery because more than one
value has an equal probability of being selected as the
true value. In Fig. 2, the tie phenomenon is illustrated

Fig. 1 Relationship between numbers of source claims
and conflictions in real world data sets.

Fig. 2 Relationship between numbers of candidate values
of the entries and ties with real world data sets.

more intuitively. Each point stands for an entry, where
the x-coordinate is the number of candidate values of the
entry, and the y-coordinate is the number of ties. The tie
phenomenon is obvious, particularly in the Phones data
set.

5.2.3 Claim numbers before and after decomposition
This study has discussed that when very few sources
provide claims on an entry, the discovered truth has a low
confidence. Our schema-decomposing based framework
can solve this problem to some extent. The number of
claims made for each entry before and after decomposition
can be counted, and Fig. 3 shows the distribution of the
number of claims. It can also be seen that most entries
are claimed by very few sources. By decomposition,
our method decreases the number of entries that provide
few claims by about 75%, and some entries with a larger
number of claims are created (note that this is plotted using
logarithmic coordinates).

5.3 Results

This subsection presents experimental results relating to
effectiveness and efficiency.



Jizhou Sun et al.: Truth Discovery on Inconsistent Relational Data 299

Fig. 3 Distribution of the number of claims of entries on
real world data sets: (a) Notebooks and (b) Phones.

5.3.1 Accuracy
The accuracy of all methods used with real world data
sets is listed in Table 11. Results show that methods
that did not employ a cleaning process performed badly,
particularly on Notebooks, whereas the cleaning process
significantly improved the accuracy to a certain extent. Of
all the methods evaluated, SDTD performs the best with
both Notebooks and Phone data sets.

Accuracy was evaluated for synthetic data sets, using
different expectations of source-inaccuracy. To obtain
results with a higher confidence, each test was conducted
on synthetic data sets for 10 times, and the average value
was used as the final result. From Fig. 4, it is evident
that the SDTD performs well, even when the sources have

Table 11 Accuracies using real world data sets.

Method Notebooks Phones

crh 0.833600642 0.715781601

crh+clean 0.936246993 0.730740464

catd 0.834402566 0.728496634

catd+clean 0.936246993 0.753926702

vote 0.836407378 0.725504862

vote+clean 0.936647955 0.750186986

sdtd 0.957898957 0.766641735

Fig. 4 Accuracy comparison when varying source
reliability with (a) α+β=5 and (b) α+β=20.

different degrees of reliability.

5.3.2 Convergence rates
One of the important features of a good truth discovery
method is its convergence rate, and this was evaluated
here using real world data sets. Table 12 lists the relative
changes of the different methods in each iteration, and it
can be seen that CATD and SDTD converge fast while
CRH keeps changing (because it gives two different sets
of results in turn).

5.3.3 Scalability
Section 4.2 shows that the running-time of the proposed
SDTD framework is linear with respect to the number of

Table 12 Relative changes in each iteration.

Iter
Notebooks Phones

crh catd sdtd crh catd sdtd

2 1211 201 30 309 79 32

3 1259 16 1 319 1 1

4 1289 0 0 281 0 1

5 1297 0 0 281 0 0

6 1297 0 0 282 0 0

7 1295 0 0 282 0 0

8 1296 0 0 282 0 0



300 Tsinghua Science and Technology, June 2018, 23(3): 288–302

claim tuples. Its scalability is validated by varying the
number of objects (doing so caused a linear increase in
the number of claims). The average running times are
shown to be scattered in Fig. 5, which reflects 10 running
times for each scale with the synthetic data sets. From
this, it is obvious that the data provide a good fit with
linear regression (the red line), with a Pearson Correlation
of 0.9894.

6 Conclusion

This paper studies the truth discovery problem with
relational data and (conditional) FDs. There are several
problems inherent in the use of both truth discovery
and data cleaning, and a framework is established that
considers both methods. A schema-decomposing based
method is then proposed that discovers true values among
sources with different reliability degrees, and the output
truths directly satisfy the given dependencies. Experiments
using both real and synthetic data sets validate the
effectiveness and efficiency of the proposed method.

In future work, more sophisticated situations will be
considered to include, but will not be limited to, the
use of a greater number of general dependency cases (in
this paper, no cycle between dependencies is assumed,
and every attribute is covered by no more than one
dependency). In addition, differential dependencies will
be considered, as will the use of more data quality
constraining types, such as editing rules and fixing rules.

Acknowledgment

This paper was partially supported by the Key Research
and Development Plan of National Ministry of Science and
Technology (No. 2016YFB1000703), the Key Program of the
National Natural Science Foundation of China (Nos. 61190115,
61472099, 61632010, and U1509216), National Sci-Tech
Support Plan (No. 2015BAH10F01), the Scientific Research
Foundation for the Returned Overseas Chinese Scholars of

Fig. 5 Relationship between running time and data size.

Heilongjiang Province (No. LC2016026), and MOE-Microsoft
Key Laboratory of Natural Language Processing and Speech,
Harbin Institute of Technology.

References

[1] W. Fan and F. Geerts, Cleaning data with conditional
dependencies, in Foundations of Data Quality
Management, M. T. Özsu, ed. San Rafael, CA, USA:
Morgan & Claypool Publishers, 2012, pp. 39–86.

[2] X. Li, X. L. Dong, K. Lyons, W. Meng, and D. Srivastava,
Truth finding on the deep web: Is the problem solved?
in Proc. 39th Int. Conf. Very Large Data Bases, Riva del
Garda, Italy, 2013, pp. 97–108.

[3] X. L. Dong, L. B. Equille, and D. Srivastava, Data fusion:
Resolving conflicts from multiple sources, in Handbook of
Data Quality, S. Sadiq, ed. Springer, 2013, pp. 293–318.

[4] X. Yin, J. Han, and P. S. Yu, Truth discovery with multiple
conflicting information providers on the web, in Proc. 13th
Int. Conf. Knowledge Discovery and Data Mining, San
Jose, CA, USA, 2007, pp. 1048–1052.

[5] X. L. Dong, L. B. Equille, and D. Srivastava, Integrating
conflicting data: The role of source dependence, in Proc.
35th Int. Conf. Very Large Data Bases, Lyon, France, 2009,
pp. 550–561.

[6] A. Galland, S. Abiteboul, A. Marian, and P. Senellart,
Corroborating information from disagreeing views, in
Proc. 3rd Int. Conf. Web Search and Web Data Mining,
New York, NY, USA, 2010, pp. 131–140.

[7] J. Pasternack and D. Roth, Knowing what to believe (when
you already know something), in Proc. 23rd Int. Conf.
Computational Linguistics, Beijing, China, 2010, pp. 877–
885.

[8] X. Yin and W. Tan, Semi-supervised truth discovery, in
Proc. 20th Int. World Wide Web Conf., Hyderabad, India,
2011, pp. 217–226.

[9] B. Zhao, B. I. P. Rubinstein, J. Gemmell, and J. Han, A
Bayesian approach to discovering truth from conflicting
sources for data integration, in Proc. 38th Int. Conf. Very
Large Data Bases, Istanbul, Turkey, 2012, pp. 550–561.

[10] B. Zhao and J. Han, A probabilistic model for estimating
real-valued truth from conflicting sources, presented at
the 10th Int. Workshop on Quality in Databases, Istanbul,
Turkey, 2012.

[11] D. Wang, L. Kaplan, H. Le, and T. Abdelzaher, On
truth discovery in social sensing: A maximum likelihood
estimation approach, in Proc. 11th Int. Conf. Information
Processing in Sensor Networks, Beijing, China, 2012, pp.
233–244.

[12] J. Pasternack and D. Roth, Latent credibility analysis, in
Proc. 22nd Int. World Wide Web Conf., Rio de Janeiro,
Brazil, 2013, pp. 1009–1020.

[13] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J.



Jizhou Sun et al.: Truth Discovery on Inconsistent Relational Data 301

Han, Resolving conflicts in heterogeneous data by truth
discovery and source reliability estimation, in Proc. Int.
Conf. Management of Data, Snowbird, UT, USA, 2014, pp.
1187–1198.

[14] Q. Li, Y. Li, J. Gao, L. Su, B. Zhao, M. Demirbas, W.
Fan, and J. Han, A confidence-aware approach for truth
discovery on long-tail data, in Proc. 41st Int. Conf. Very
Large Data Bases, Kohala Coast, HI, USA, 2015, pp. 425–
436.

[15] E. F. Code, Relational completeness of data base
sublanguages, in Data Base Systems, Courant Computer
Science Symposia 6, R. Rustin, ed. Upper Saddle River,
NJ, USA: Prentice Hall, 1972, pp. 65–98.

[16] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A.
Kementsietsidis, Conditional functional dependencies for
data cleaning, in Proc. 23rd Int. Conf. Data Engineering,
Istanbul, Turkey, 2007, pp. 746–755.

[17] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis,
Conditional functional dependencies for capturing data
inconsistencies, ACM Trans. Database Syst., vol. 33, no.
6, pp. 1–48, 2008.

[18] W. Fan, J. Li, N. Tang, and W. Yu, Incremental detection
of inconsistencies in distributed data, IEEE Trans. Knowl.
Data Eng., vol. 26, no. 6, pp. 1367–1383, 2014.

[19] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi, A
cost-based model and effective heuristic for repairing
constraints by value modification, in Proc. Int. Conf.
Management of Data, Baltimore, MD, USA, 2005, pp.
143–154.

[20] J. Chomicki and J. Marcinkowski, Minimal-change
integrity maintenance using tuple deletions, Inf. Comput.,
vol. 197, no. 2005, pp. 90–121, 2005.

[21] J. Wijsen, Database repairing using updates, ACM Trans.
Database Syst., vol. 30, no. 3, pp. 722–768, 2005.

[22] S. Kolahi and L. V. S. Lakshmanan, On approximating
optimum repairs for functional dependency violations, in
Proc. 12th Int. Conf. Database Theory, St. Petersburg,
Russia, 2009, pp. 53–62.

[23] G. Beskales, I. F. Ilyas, and L. Golab, Sampling the repairs
of functional dependency violations under hard constraints,
in Proc. 36th Int. Conf. Very Large Data Bases, Singapore,
2010, pp. 197–207.

[24] G. Beskales, I. F. Ilyas, L. Golab, and A. Galiullin,
Sampling from repairs of conditional functional
dependency violations, VLDB J., vol. 23, no. 1, pp. 103–
128, 2014.

[25] L. Bravo, W. Fan, F. Geerts, and S. Ma, Increasing
the expressivity of conditional functional dependencies
without extra complexity, in Proc. 24th Int. Conf. Data
Engineering, Cancún, México, 2008, pp. 516–525.

[26] W. Chen, W. Fan, and S. Ma, Analyses and validation of
conditional dependencies with built-in predicates, in Proc.
20th Int. Conf. Database and Expert Systems Applications,

Linz, Austria, 2009, pp. 576–591.
[27] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu, Towards certain

fixes with editing rules and master data, VLDB J., vol. 21,
no. 2, pp. 213–238, 2012.

[28] J. Wang and N. Tang, Towards dependable data repairing
with fixing rules, in Proc. Int. Conf. Management of Data,
Snowbird, UT, USA, 2014, pp. 457–468.

[29] S. Song and L. Chen, Differential dependencies:
Reasoning and discovery, ACM Trans. Database Syst.,
vol. 36, no. 16, pp. 1–41, 2011.

[30] S. Song, L. Chen, and P. S. Yu, Comparable dependencies
over heterogeneous data, VLDB J., vol. 22, no. 2, pp. 253–
274, 2013.

[31] Y. Li, J. Gao, C. Meng, Q. Li, L. Su, B. Zhao, W. Fan, and J.
Han, A survey on truth discovery, SIGKDD Explorations,
vol. 17, no. 2, pp. 1–16, 2015.

[32] D. Qiu, L. Barbosa, X. L. Dong, Y. Shen, and D. Srivastava,
DEXTER: Large-scale discovery and extraction of product
specifications on the web, in Proc. 41st Int. Conf. Very
Large Data Bases, Kohala Coast, HI, USA, 2015, pp.
2194–2205.

[33] M. Yakout, A. K. Elmagarmid, J. Neville, and M. Ouzzani,
GDR: A system for guided data repair, in Proc. Int. Conf.
Management of Data, Indianapolis, IN, USA, 2010, pp.
1223–1226.

[34] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and
I. F. Ilyas, Guided data repair, in Proc. 37th Int. Conf. Very
Large Data Bases, 2011, pp. 279–289.

[35] H. Xie, H. Wang, J. Li, and H. Gao, A data cleaning
framework based on user feedback, in Proc. 14th Int.
Conf. Web-Age Information Management, Beidaihe, China,
2013, pp. 514–520.

[36] J. He, E. Veltri, D. Santoro, G. Li, G. Mecca, P. Papotti,
and N. Tang, Interactive and deterministic data cleaning, in
Proc. Int. Conf. Management of Data, San Francisco, CA,
USA, 2016, pp. 893–907.

[37] Z. Cai, Z. He, X. Guan, and Y. Li, Collective data-
sanitization for preventing sensitive information inference
attacks in social networks, IEEE Trans. Depend. Secure.,
doi:10.1109/TDSC.2016.2613521.

[38] Z. He, Z. Cai, Y. Sun, Y. Li, and X. Cheng, Customized
privacy preserving for inherent-data and latent-data, Pers.
Ubiquit. Comput., vol. 21, no. 1, pp. 43–54, 2017.

[39] D. Miao, Z. Cai, X. Liu, and J. Li, Functional dependency
restricted insertion propagation, Theoret. Comput. Sci.,
doi:10.1016/j.tcs.2017.03.043.

[40] D. Miao, Z. Cai, X. Liu, and J. Li, On the complexity
of insertion propagation with functional dependency
constraints, in Proc. 22nd Int. Conf. Computing and
Combinatorics, Ho Chi Minh City, Vietnam, 2016, pp.
623–632.

[41] Z. Cai, M. Heydari, and G. Lin, Iterated local least squares
microarray missing value imputation, J. Bioinf. Comput.



302 Tsinghua Science and Technology, June 2018, 23(3): 288–302

Biol., vol. 4, no. 4, pp. 935–958, 2006.
[42] X. Ding, H. Wang, Y. Gao, J. Li, and H. Gao, Efficient

currency determination algorithms for dynamic data,
Tsinghua Sci. Technol., vol. 22, no. 3, pp. 227–242, 2017.

[43] X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang, Data
cleaning: Overview and emerging challenges, in Proc.
Int. Conf. Management of Data, San Francisco, CA, USA,
2016, pp. 2201–2206.

[44] J. Pasternack and D. Roth, Making better informed trust
decisions with generalized fact-finding, in Proc. 22nd Int.
Joint Conf. Artificial Intelligence, Barcelona, Spain, 2011,
pp. 2324–2329.

[45] M. Gupta, Y. Sun, and J. Han, Trust analysis with
clustering, in Proc. 20th Int. World Wide Web Conf.,
Hyderabad, India, 2011, pp. 53–54.

[46] D. Wang, T. F. Abdelzaher, H. Ahmadi, J. Pasternack, D.
Roth, M. Gupta, J. Han, O. Fatemieh, H. K. Le, and C.
C. Aggarwal, On bayesian interpretation of fact-finding in
information networks, in Proc. 14th Int. Conf. Information
Fusion, Chicago, IL, USA, 2011, pp. 1–8.

[47] X. Wang, Q. Z. Sheng, X. S. Fang, L. Yao, X. Xu, and
X. Li, An integrated bayesian approach for effective multi-
truth discovery, in Proc. 24th Int. Conf. Information and

Knowledge Management, Melbourne, Australia, 2015, pp.
493–502.

[48] L. Blanco, V. Crescenzi, P. Merialdo, and P. Papotti,
Probabilistic models to reconcile complex data from
inaccurate data sources, in Proc. 22nd Int. Conf. Advanced
Information Systems Engineering, Hammamet, Tunisia,
2010, pp. 83–97.

[49] G. Qi, C. C. Aggarwal, J. Han, and T. S. Huang, Mining
collective intelligence in diverse groups, in Proc. 22nd Int.
World Wide Web Conf., Rio de Janeiro, Brazil, 2013, pp.
1041–1052.

[50] X. L. Dong, B. Saha, and D. Srivastava, Less is more:
Selecting sources wisely for integration, in Proc. 38th Int.
Conf. Very Large Data Bases, Istanbul, Turkey, 2012, pp.
37–48.

[51] T. Rekatsinas, X. L. Dong, and D. Srivastava,
Characterizing and selecting fresh data sources, in Proc.
Int. Conf. Management of Data, Snowbird, UT, USA,
2014, pp. 919–930.

[52] A. Silberschatz, H. F. Korth, S. Sudarshan, Functional-
dependency theory, in Database System Concepts Six
Edition, M. D. Bilecki, ed. New York, NY, USA: McGraw-
Hill, 1997, pp. 338–348.

Jizhou Sun is a PhD student at School
of Computer Science, Harbin Institute of
Technology. He received the bachelor
degree from Nanjing University of
Aeronautics and Astronautics in 2009,
and the master degree from China
Aerospace Science and Industry
Corporation in 2012. His research

interests include data quality management and approximate
computing on weak available massive data.

Jianzhong Li is a professor and PhD
supervisor at School of Computer Science
and Technology of Harbin Institute of
Technology, China. He received the
bachelor degree from Heilongjiang
University in 1975. In the past, he worked
as a visiting scholar at the University of
California at Berkeley, as a staff scientist

in the Information Research Group at the Lawrence Berkeley
National Laboratory, and as a visiting professor at the University
of Minnesota. His research interests include data management
systems, sensor networks, and data intensive computing.

Hong Gao is a professor and PhD
supervisor at School of Computer
Science and Technology of Harbin
Institute of Technology, China. She
received the bachelor degree from
Heilongjiang University in 1988, the
master degree from Harbin Engineering
University in 1991, and the PhD

degree in computer science from Harbin Institute of Technology
in 2004. Her research interests include wireless sensor networks,
cyber-physical systems, massive data management, and data
mining.

Hongzhi Wang is a professor and PhD
supervisor at School of Computer Science
and Technology of Harbin Institute of
Technology, China. He received the
bachelor, master, and PhD degrees in
computer science from Harbin Institute
of Technology in 2001, 2003, and 2008,
respectively. His interested research
area includes big data management, data

quality, graph data management, and web data management.


