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Greedy Optimization for K-Means-Based Consensus Clustering

Xue Li∗ and Hongfu Liu

Abstract: Consensus clustering aims to fuse several existing basic partitions into an integrated one; this has been

widely recognized as a promising tool for multi-source and heterogeneous data clustering. Owing to robust and

high-quality performance over traditional clustering methods, consensus clustering attracts much attention, and

much efforts have been devoted to develop this field. In the literature, the K-means-based Consensus Clustering

(KCC) transforms the consensus clustering problem into a classical K-means clustering with theoretical supports

and shows the advantages over the state-of-the-art methods. Although KCC inherits the merits from K-means,

it suffers from the initialization sensitivity. Moreover, the current consensus clustering framework separates the

basic partition generation and fusion into two disconnected parts. To solve the above two challenges, a novel

clustering algorithm, named Greedy optimization of K-means-based Consensus Clustering (GKCC) is proposed.

Inspired by the well-known greedy K-means that aims to solve the sensitivity of K-means initialization, GKCC

seamlessly combines greedy K-means and KCC together, achieves the merits inherited by GKCC and overcomes

the drawbacks of the precursors. Moreover, a 59-sampling strategy is conducted to provide high-quality basic

partitions and accelerate the algorithmic speed. Extensive experiments on 36 benchmark datasets demonstrate

the significant advantages of GKCC over KCC and KCC++ in terms of the objective function values and standard

deviations and external cluster validity.

Key words: K-means; consensus clustering; initialization; greedy optimization

1 Introduction
Cluster analysis aims to separate a set of data points into
several groups so that the points in the same group are
more similar than those in different groups[1], which is
a crucial and fundamental technique in machine learning
and data mining. It has been widely used in information
retrieval, recommendation systems, biological analysis,
health care, supply chain management, marketing,
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business, etc. Much efforts have been devoted to this
research field, and many clustering algorithms have been
proposed based on different assumptions. For example, K-
means is the archetypal clustering method that aims to find
K centers to represent the entire data[2]. Agglomerative
hie-rarchy clustering merges the nearest two points or
clusters at each time until all the points are in the
same cluster[3]; Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) separates the points
by high-density regions[4]. Since cluster analysis is
an unsupervised task and different algorithms provide
different clustering results, it is difficult to select the
best algorithm for a given application. Moreover, certain
algorithms have many parameters to tune, and their
performance is prone to large volatility.

Consensus clustering, also known as ensemble clu-
stering, has been regarded as a robust meta-clustering



Xue Li et al.: Greedy Optimization for K-Means-Based Consensus Clustering 185

algorithm[5]. This algorithm fuses several diverse basic
partitions generated by traditional clustering algorithms
into an integrated partition. It has been widely recognized
that consensus clustering is effective to generate robust
clustering results, detect bizarre clusters, handle noise,
outliers, and sample variations, and integrate solutions
from multiple distributed sources of data or attributes[6].
Unlike the traditional clustering methods which use the
original data, the input of consensus clustering is a set
of basic partitions. Given a dataset, basic partition
generation strategies are used to produce various diverse
basic partitions. For example, Random Parameter
Selection (RPS) applies clustering methods with varied
parameters, while Random Feature Selection (RFS)
conducts clustering on the partial data with traditional
clustering method. Consensus clustering is a fusion
problem in essence, rather than a traditional clustering
problem. It can be roughly divided into two categories:
The first category designs a utility function that measures
the similarity between basic partitions and the final
partition, and solves a combinatorial optimization problem
by maximizing the utility function[6, 7]. The second
category employs a co-association matrix to calculate the
number of times a pair of instances co-occurring in the
same cluster, and then runs a graph partition method for
the final consensus result[8].

Although consensus clustering has several merits
compared to traditional clustering methods, it has several
challenges. First, clustering is an unsupervised task, i.e.,
no label information can be used to guide the fusion
process. Second, the nonorder property makes it difficult
to align the clusters in different partitions. Third, the
basic partitions might have different cluster numbers.
Liu et al. addressed the above challenges in a unified
framework in their K-means-based Consensus Clustering
(KCC) algorithm that transforms consensus clustering to
a (weighted) K-means clustering problem[9, 10]. Although
such transformations provide large benefits in terms of
efficiency and theoretical support, the performance of
KCC can still be unstable because K-means is sensitive to
initialization. Besides, the algorithm fails to generate the
basic partition set.

In this paper, we propose a novel clustering algorithm
by considering the KCC problem, namely Greedy
optimization of K-means-based Consensus Clustering
(GKCC) that is based on greedy center allocation in an
augmented partition feature space. We aim to solve the
sensitivity of K-means initialization and basic partition
generation in a unified framework. Inspired by greedy
K-means, a highly efficient variant of K-means[11] that

initializes the K centers with the previous K − 1 centers
and greedily searches the rest one, greedy K-means is
employed for K-means initialization and basic partition
generation. However, greedy K-means generates n

partitions with one certain cluster number, and only one
partition is selected for the next-step optimization, a
type of waste. Moreover, the time complexity becomes
expensive when n is very large.

Therefore, the intermediate partitions generated by
greedy K-means are further used as the basic partitions
for later consensus fusion. To overcome the high time
complexity, a 59-sampling strategy is used to accelerate the
speed to avoid the brute-force global search. Interestingly,
these intermediate partitions not only can be used for the
consensus fusion, but also provide rich information for the
next-step greedy K-means. Figure 1 shows the framework
of GKCC. The entire process is similar to greedy K-means.
In each phase, the centroids in the previous phase are used
to greedily search one extra center, and then K-means is
conducted to adjust the current centroids. In contrast,
in the proposed GKCC, the intermediate partitions are
also used to enrich the feature space by concatenating
the original features and these partitions. Therefore, the
original data and basic partitions are combined as the new
data for generating subsequent basic partitions. Thus,
we provide a new basic partition generation strategy that
strongly couples the later fusion and builds an end-to-end
process for ensemble clustering.

The benefits of GKCC are three-fold. First, GKCC
seamlessly combines greedy K-means and KCC for a
robust and high-quality clustering. Second, GKCC
involves the original data and basic partitions to generate
subsequent basic partitions and makes the consensus
cluster a one-step process. Third, GKCC overcomes the
sensitivity issue of K-means initialization and provides
a robust and high-quality performance. Extensive
experiments on 36 benchmark datasets show significant
performance improvements of GKCC over rival algorithms
in terms of stability and quality. In summary, the major
contributions of this study are as follows:
• GKCC makes full use of intermediate partitions

generated by greedy K-means to generate subsequent
basic partitions and later fusion.

• Using greedy dynamic search, GKCC incrementally
adds new centers and overcomes the sensitivity of K-
means to initialization. Besides, a random-sampling
strategy is used for the global search of new good
centers, and the randomly generated partitions are used
as the basic partitions in the final fusion stage.

• Extensive experimental results on 36 benchmark datasets
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Fig. 1 Framework of GKCC.

show that GKCC outperforms other state-of-the-art
clustering methods in terms of objective function
values and external metrics.

2 Related Studies

The related studies in terms of consensus clustering and
K-means initialization are described in this section.

2.1 Consensus clustering

Consensus clustering aims to find a single partition
that agrees with several existing partitions as much
as possible. Usually a utility function is designed
to measure the agreements between basic partitions
and the final consensus partition at the partition-
level. In that case, consensus clustering can be
formalized as a (combinational) optimization problem
with a given objective function, and it typically
uses heuristics to find approximate solutions. Many
algorithms have been proposed to solve different objective
functions including the Expectation-Maximization (EM)
algorithm[12], non-negative matrix factorization[13], kernel-
based methods[14], and simulated annealing[15]. Among
these methods, a pioneering work attracted much
attention[16], which uses K-means clustering to find the
solution based on quadratic entropy[17]. Along this line,
Ref. [9] provided a theoretical framework for KCC.
Recently, the variants of KCC were proposed to enrich
this area, such as DIsassemble-ASsemble (DIAS)[7],
Spectral Ensemble Clustering (SEC)[10, 18], Entrpoy-based
Consensus Clustering (ECC)[19], and Infinite Ensemble
Clustering (IEC)[20, 21]. Although these methods achieved
promising results, they all suffer from the sensitivity
of K-means initialization. Another family of methods
measures the similarity at the instance level. They
define a co-association matrix to count the number of
times two instances co-occurring in the same cluster;

this can be regarded as a new similarity matrix. Then,
any graph partition method can be applied on the co-
association matrix to obtain the final result. Some of
these methods include graph-based algorithms[5, 22], co-
association matrix-based methods[8], relabeling and voting
methods[23], locally adaptive cluster-based methods[24],
genetic algorithm-based methods[25], spectral ensemble
clustering[10], and many other methods. Notably, SEC[10, 18]

combines these two types of consensus clustering methods
and indicates that the similarity at different levels can be
interconvertible. More details can be found in a survey
reported in Ref. [26].

2.2 K-means initialization

Since K-means is sensitive to initialization, much efforts
have been made to solve this challenge. The simplest
way is to run multiple K-means algorithms with random
initialization and return the one with the minimum
objective function. K-means++ applies an adaptive
sampling strategy to seed K initial centers; this provides an
algorithm that performs O(logK)-competitive algorithm
with the optimal clustering[27]. Similarly, K-means||
samples several points each time with multiple runs and
conducts a weighted K-means on these sampled points
to produce K clusters for initialization[28]. Greedy K-
means is an incremental approach to dynamically add
one center at a time through a deterministic global
search[11]. Other methods include nearest-neighbor based
method[29], affinity propagation based method[30], and
recursive K-means[31].

Although some studies have been conducted on the K-
means initialization of consensus clustering, this is the first
study to fully solve the initialization sensitivity of KCC.
Inspired by the greedy allocation strategy of greedy K-
means[11], we combine the virtues of greedy K-means and
KCC to design our new algorithm, GKCC. The main idea
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is to use the intermediate partitions discovered by greedy
K-means to define the set of basic partitions and for the
final fusion step. Moreover, the greedy strategy of greedy
K-means completely resolves the initialization problem
that plagues K-means-based approaches. Finally, some
preliminary theoretical support is provided in the form of
error bounds.

3 Preliminary Knowledge and Problem
Definition

In this part, first the preliminary knowledge of KCC and
greedy K-means is provided, and then the problem solved
in this study is defined. Table 1 shows several key notations
used in the following sections.

3.1 KCC

The goal of ensemble clustering is to find a single partition
that agrees with the existing basic partitions as much as
possible. It has been widely recognized that ensemble
clustering generates robust partitions, finds bizarre
clusters, handle noise, outliers, and sample variations,
and integrates solutions from multiple distributed or
incomplete sources of data or attributes[5, 16].

Unlike traditional clustering methods, which separate
a group of data instances into different groups where the
instances in the same group are much more similar to each
other, ensemble clustering fuses several different partitions
into a consensus partition. The input of traditional
clustering methods is the data matrix, whereas the input
of ensemble clustering is a set of basic partitions. Here
basic partitions might be generated by the same clustering
algorithm with different parameters, or by the same
clustering algorithm with different features or even by
several different clustering algorithms. Thus, ensemble
clustering is a fusion problem, rather than a clustering
problem.

Given a set of r basic partitions H = {H(1),

H(2), · · · ,H(r)} of the data matrix X , where the

Table 1 Notations.
Notation Domain Description

n R Instance number

m R Feature number

K R Cluster number

r R Basic partition number

X Rn×m Data matrix

Π Set of r basic partitions

H(i) {0,1}n×Ki i-th basic partition

H∗ {0,1}n×K Consensus partition

C Set of centers

cluster number of H(i) is Ki, the aim of consensus
clustering is to fuse all the basic partitions into a consensus
partition H∗. It can be divided into two categories in terms
of measuring the similarity in different levels.

The first category designs the utility function to
measure the similarity between the final consensus
partition and basic partitions. Usually the following
formula is maximized to solve ensemble clustering.

Γ(H∗,H)=

r∑
i=1

U(H∗,H(i)) (1)

where Γ :N nK ×N nKr 7→R is a consensus function, and
U :N nK ×N nK 7→R is a utility function, i=1,2, · · · , r.

The selection of the utility function is critical
for the success of a consensus clustering. In the
literature, many external measures originally proposed for
cluster validity have been used as the utility functions
for consensus clustering, such as normalized mutual
information[5], category utility function[32], quadratic
mutual information[16], and Rand index[15]. These utility
functions together with the consensus function mainly
determine the quality of consensus clustering.

A contingency matrix is often used for computing the
difference between two partitions. In Table 2, n(i)

kj denotes
the number of data objects present in both cluster C(i)

j

in H(i) and cluster Ck in H∗, nk+ =
∑Ki

j=1n
(i)
kj , and

n(i)
+j =

∑K

k=1
n(i)

kj , 1 6 k 6 K, 1 6 j 6 Ki. Let p(i)
kj =

n(i)
kj /n, pk+ = nk+/n, and p(i)

+j = n(i)
+j/n. Then, we have

the normalized contingency matrix for utility computation.
For instance, the well-known category utility function[32]

can be computed as follows:

Uc(H
∗,H(i))=

K∑
k=1

pk+

Ki∑
j=1

(p(i)
kj /pk+)

2−
Ki∑
j=1

(p(i)
+j)

2 (2)

Thanks to the KCC[6], we can exactly transform the
consensus clustering with categorical utility function into
classical K-means clustering by introducing the following
binary matrix. Let B= {b(x)} be a binary dataset derived
from the set of r basic partitions H as follows:

Table 2 Contingency matrix.
H(i)

C
(i)
1 C

(i)
2 · · · C

(i)
Ki

∑
C1 n

(i)
11 n

(i)
12 · · · n

(i)
1Ki

n1+

H∗ C2 n
(i)
21 n

(i)
22 · · · n

(i)
2Ki

n2+

· · · · · · · ·
CK n

(i)
K1 n

(i)
K2 · · · n

(i)
KKi

nK+∑
n
(i)
+1 n

(i)
+2 · · · n

(i)
+Ki

n
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Fig. 2 Illustration of the binary matrix in Eq. (3).

b(x)= ⟨b(x)1, · · · , b(x)r⟩,
b(x)i = ⟨b(x)i1, · · · , b(x)iKi

⟩,

b(x)ij =

{
1, if H(i)(x)= j;

0, otherwise
(3)

Figure 2 shows an example of the binary matrix in Eq. (3).
Then, K-means is conducted on B for the final con-
sensus partition. KCC builds the connection between
the fusion problem and clustering problem and solves the
complex consensus clustering by the simplest K-means
optimization[6].

3.2 Greedy K-means

The greedy K-means algorithm[11] is a highly effective
variant of K-means and does not involve any random
initialization. It starts with one center, trivially the
centroid of all points, and centers are added incrementally
until a desired maximum number of centers is reached.
Each new center allocation involves a global search
over all the points in the dataset to find the point that
would maximally decrease the objective function if it
were added as a new center. Faster versions of the
global search are available by randomization (see the
next section) or specialized data structures[11]. Greedy
K-means completely solves the problem of initialization
of traditional K-means variants and achieves exceptional
performance in practice, typically performing much better
than other popular algorithms such as K-means++[27].

A recent study[33] provides theoretical justification for
greedy algorithms such as greedy K-means. Let f be the
objective function of K-means for a given set S of cluster
centers:

f(S)=
∑
x∈X

min
c∈S

||x−c||2 (4)

When S⊂X , the function f is weakly-1-supermodular; in
this case, the following holds[33],

f(St)−f(S∗)6
(
1−1/k

)t(
f(S0)−f(S∗)

)
(5)

where St ⊂ X is the set of cluster centers returned by a
greedy algorithm in the t+1 iteration; S0 is the initial set
with only one element; S∗ ⊂ X is the unknown optimal
center set with k elements. Additional results are provided
in Ref. [33] for the case of unconstrained S.

3.3 Problem definition

Inspiringly, KCC solves consensus clustering using
classical K-means with theoretical supports. However,
KCC inherits the simple and efficient character from
K-means, while suffering from the sensitivity of K-
means initialization. Moreover, KCC treats the basic
partition generation and fusion as two separated processes.
For greedy K-means, it produces too many intermediate
partitions without further use and the time complexity
of greedy K-means is O(n2). This prevents itself from
handling large-scale datasets.

The above disadvantages of KCC and greedy K-means
motivated us to propose a novel consensus clustering
algorithm to seamlessly combine the merits and overcome
the drawbacks of these two powerful tools. In this study,
GKCC is proposed to solve the sensitivity of K-means
initialization, high time complexity of greedy K-means,
and separate process of consensus clustering into a unified
framework.

4 GKCC

In this section, we introduce GKCC to solve the
abovementioned challenges simultaneously. GKCC has
three major features: (1) GKCC uses greedy K-means
to generate basic partitions and initialize the centroids
of KCC fusion. (2) Unlike greedy K-means, which
generates partitions in the original feature space, GKCC
concatenates the partitions from the previous stage with the
original data for the next-stage basic partition generation.
(3) The 59-sampling strategy is used to avoid the brute-
force global search of greedy K-means.

Figure 1 shows the framework of GKCC. Because the
optimal centroid for K = 1 is the center of the data,
we start from K = 2 with the two centroids containing
the center of the data and one randomly selected data
instance. This process is repeated 59 times to generate
59 basic partitions (the reason for the selection of 59 will
be illustrated by Lemma 1). For K = 3, the original
data are augmented with the 59 basic partitions generated
in the last stage. If the basic partitions and original
data are directly connected, some problems arise because
the data lie in the continuous feature space, whereas
partitions exist in the discrete partition space. To solve
this problem, the 1-of-K coding is used to transform the
basic partitions into a binary matrix using Eq. (3). Recall
that greedy K-means picks up the winner among the 59
basic partitions according to the objective function of K-
means and then uses the centroid of the winner partition
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to initialize the next stage. Here, the clustering is run in
the augmented space, i.e., the dimensionalities of centroids
with different cluster numbers are different. Although the
original feature space and partition space are different, they
both explore the cluster structure of the data. Notably,
a one-to-one mapping relationship between partitions and
centroids exists in different spaces. In the proposed GKCC
method, the dimensionality gradually increases. At the
very beginning, the data lie in the original space; then the
original feature space is concatenated with the partition
space to provide rich information. In the consecutive
phase, we aim to initialize the centroids by that present
in the last phase. However, the dimensionalities are
different. Owing to the one-to-one mapping relationship
between partitions and centroids, the partition is used in
the last phase to initialize the centroids in the current space.
Therefore, the winner partition obtained from the last stage
(K =2) is used to calculate the two centroids and sample a
new centroid in the augmented space for the initialization
with K = 3. The above process is repeated until the
predefined user cluster number is achieved. Finally, all
the basic partitions with different cluster numbers are
collected.

A few remarks about the 59-sampling strategy are
mentioned above. In the greedy K-means, when the
datapoint is incrementally selected to add to the existing
set of K-means centers, the datapoint that decreases the
objective function the most is sought. However, a naive
implementation of this scheme would require trying each
datapoint to find the winner; this is clearly not possible for
large-scale datasets (it scales as O(n2) for n datapoints).
The 59-sampling strategy simply involves the sampling of
59 points out of the total n points and retaining the best
point. This is motivated by the following (known) result.

Lemma 1 Given a global ranking of all the
datapoints according to how much the objective function
would decrease if a datapoint was added as a new center, at
least ⌈log(1−δ)/ log(1−p)⌉ datapoints should be selected
without replacement to guarantee that; with a probability
of at least δ, the best sampled datapoint is within the top p

in the global ranking.
Proof Let A denote the event where at least one of

the sampled datapoints is within the top p in the global
ranking. If ν is the number of sampled datapoints, we have

δ6P (A)= 1−P (A)6 1−(1−p)ν (6)

where the last inequality is due to the sampling without
replacement. Hence, at least ν > log(1 − δ)/ log(1 −
p) sampled datapoints are needed. The proof is thus

completed. �
Note that the above lemma holds for any value of n

(the total number of points). Applying the lemma with
p = 0.05 and δ = 0.95 shows that we need to sample
ν = 59 different datapoints. During the basic partition
generation of GKCC, the cluster number is varied from 2
to K to increase the diversity of basic partitions. Moreover,
for a certain cluster number k, the k− 1 centers are used
from the previous stage plus the newly added center after
the convergence of K-means from the randomly selected
added point. In this manner, a meaningful partition
is obtained for further fusion rather than some random
partition. The 59-sampling strategy guarantees that in each
step, the optimal point is selected with a probability of at
least 95%.

Overall, during the first phase of GKCC, 59× (K−1)

basic partitions are generated, a large enough number to
obtain a robust consensus clustering in the second phase.
By greedily adding the new centers, GKCC completely
solves the sensitivity of K-means. Besides, the 59-
sampling avoids the brute-force global search, and the
discovered 59 partitions in each center allocation are used
for consensus clustering without waste.

The time complexity of GKCC to generate the basic
partitions is O(InK2m), where I is the average number
of iterations, n is the number of points, K is the cluster
number, and m is the number of features. The time
complexity for consensus clustering is O(InK3). Note
that K ≪ n and m ≪ n. Therefore, the overall time
complexity of GKCC is linear to n, i.e., which means that
GKCC is suitable for large-scale clustering.

GKCC is summarized in Algorithm 1 that organizes
the basic partition generation and KCC initialization in a
unified framework.

5 Experimental Results

In this section, the effectiveness of GKCC on numerous
benchmark datasets is demonstrated in terms of
the objective function values of K-means and their
standard deviations as well as two widely used external
measurements. Besides, the basic partitions generated by
our method are shown to outperform those derived from
the RPS strategy.

5.1 Experimental setting

Datasets. 36 datasets from different domains were used
for evaluation. Table 3 shows the characteristics of these
datasets. Datasets 1–16 are gene expression data[19],
datasets 17–26 are image datasets[21]; the last five
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Algorithm 1: GKCC
Input: X : training data,

K: the cluster number.
% Generate basic partitions
Let Π = ∅ be the set of basic partitions;
Let C= ∅ be the set of centers;
C= C

∪
the center of X ;

Set k=2;
while k6K do

Step 1. Sampling 59 points from X , di with 16 i6 59.
Step 2. Generate basic partitions and update centers.

for i=1, · · · ,59 do
S = ∅;
C′ = C

∪
di;

Run K-means on X with the initial center C′ and return the
partition π′ and the objective function value objCi;
S =S

∪
π′;

end
Π =Π

∪
S;

Build the binary matrix Sb of S by Eq. 3;
X = [X Sb];
Run K-means on X with the initial partition according to
mini objCi and return the new centers as C.

Step 3. k= k+1.
end
% Obtain consensus clustering
Build the binary matrix B of Π by Eq. 3;
Run K-means on X with the initial partition according to
mini objCi and return the final partition π.
Output: Π and π.

datasets were obtained from the UCI Machine Learning
Repository[18].

Tools. Here, our algorithm was tested in a consensus

clustering framework. The compared algorithms include
KCC[6] using standard K-means clustering with random
initialization on binary matrix B and KCC++ using K-
means++[27] for initialization. For fair comparison, same
basic partitions derived from GKCC for other algorithms
were used, and the cluster number K was set as the true
cluster number. Note that each algorithm is run 20 times,
and the average and standard deviations are reported.

Validity measurements. Both the objective function
of K-means and two external measurements, Normalized
Mutual Information (NMI) and normalized Rand index
Rn, were used to evaluate the clustering performance[34].

The NMI measures the mutual information between
the resulting cluster labels and ground truth labels,
followed by a normalization operation to ensure that NMI
ranges from 0 to 1. NMI is defined as follows:

NMI=

∑
i,j
nij log

n·nij

ni+·n+j√
(
∑

i
ni+ log

ni+

n
)(
∑

j
nj+ log

n+j

n
)

(7)

The Rn measures the similarity between two partitions
in a statistical way as follows:

Rn =
2
∑

i,j

(
nij

2

)
−2

∑
i

(
ni+

2

)
·
∑

j

(
n+j

2

)
/
(
n

2

)∑
i

(
ni+

2

)
+
∑

j

(
n+j

2

)
−2

∑
i

(
ni+

2

)
·
∑

j

(
n+j

2

)
/
(
n

2

)
(8)

Each variable is defined in Table 2. Both NMI and Rn are
positive measurements, i.e., a better partition has a larger
NMI or Rn value.

Table 3 36 benchmark datasets from different domains.
No. Name Instance Feature Cluster No. Name Instance Feature Cluster

1 Alizadeh-2000-v1 42 1095 2 19 Caltech101 1415 4096 5

2 Alizadeh-2000-v1 62 2093 3 20 dslr surf 157 800 10

3 Alizadeh-2000-v1 62 2093 4 21 ImageNet 7341 4096 5

4 Armstrong-2002-v1 72 1081 3 22 ORL 400 1024 40

5 Armstrong-2002-v1 72 2194 3 23 SUN09 3282 4096 5

6 Bhattacharjee-2001 203 1543 5 24 USPS 9298 256 10

7 Bredel-2005 50 1739 3 25 VOC2007 3376 4096 5

8 Dyrskjot-2003 40 1203 3 26 web surf 295 800 10

9 Golub-1999-v1 72 1868 2 27 balance 625 4 3

10 Golub-1999-v2 72 1868 3 28 BreastTissue 106 9 6

11 Lapointe-2004 69 1652 3 29 ecoli 336 7 8

12 Risinger-2003 42 1771 4 26 glass 214 9 6

13 Tomlins-2006-v1 104 2315 5 31 iris 150 4 3

14 Tomlins-2006-v2 92 1288 4 32 pendigits 10192 16 10

15 Yeoh-2002-v1 248 2526 2 33 satimage 4435 36 6

16 Yeoh-2002-v2 248 2526 7 34 waveform 5000 21 3

17 amazon surf 958 800 10 35 wine 178 13 3

18 caltech surf 1123 800 30 36 yeast 1484 6 10
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5.2 Clustering performance

Here, the clustering performance is evaluated in terms of
the objective function values and their standard deviations
as well as external measurements.

Figure 3a shows the differences in objective function
values among KCC, KCC++, and GKCC. For better
visualization, the objective function values are condensed
as

∑K

k=1

∑
x∈Ck

||x −mk||2/n2. The positive values in
Fig. 3a indicate that GKCC has smaller objective function
values of K-means, whereas the negative values indicate
KCC or KCC++ outperforms GKCC. In most cases,
GKCC excels KCC and KCC++ by a large margin even
with a condensed objective function value. Figure 3b
shows the standard deviation of KCC and KCC++. Two
points should be mentioned: (i) Because the objective
function values are adjusted by 1/n2, the standard
deviations are adjusted by 1/n4 accordingly. Therefore,
KCC and KCC++ suffer from large violability. (ii) The
standard deviation of GKCC is zero. Although the basic
partitions have some random factors, the final clustering

is deterministic. Note that the core clustering method
of KCC is the standard K-means, whereas the bound of
KCC++ is based on the expectation. Consequently, KCC
or KCC++ are run multiple times for a robust solution. For
GKCC, running for one time is enough, and tremendous
computation costs can be saved when dealing with large-
scale datasets. Note that the deterministic solution is
crucial for practical use.

Next, the performance of GKCC is evaluated in terms
of external measurements, Rn and NMI. Figure 4 shows
the clustering performance of different clustering methods
on 36 benchmark datasets. Because Rn and NMI are both
positive measurements, the higher values of Rn and NMI
indicate a better clustering performance. GKCC almost
achieved the best performance on 36 benchmark datasets.
Notably, GKCC outperforms KCC++ over 40% on dataset-
2 in terms of Rn and exceeds KCC over 50% on dataset-
15 in terms of NMI, exhibiting the benefit of the clustering
solution with a lower K-means objective function. These
experimental results verify the motivation of our study. By

Fig. 3 Differences in objective function values and standard deviations among different clustering methods on 36 benchmark
datasets.

Fig. 4 Clustering performance of different clustering methods on 36 benchmark datasets in terms of Rn and NMI.
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Table 4 Average clustering performance of three clustering
methods on 36 benchmark datasets.

Measurement KCC KCC++ GKCC

Rn 0.2986 0.3139 0.3710

NMI 0.3965 0.4147 0.4560

combining KCC and greedy K-means, GKCC can deliver
high-quality partitions for practical use. Table 4 shows
the average clustering performance of three clustering
methods on 36 benchmark datasets. GKCC has significant
advantages over KCC and KCC++ in the average level.

Finally, the benefit of greedy basic partition generation
over the widely used RPS generation is demonstrated.
RPS uses a single clustering method such as K-means
with different cluster numbers to generate a set of basic
partitions. Here, the cluster numbers were varied from 2 to
K, and the same number of basic partitions was generated
as the greedy strategy for fair comparison. Figure 5
shows the clustering performance with different basic
partition generation strategies on the first 10 datasets for
limited space concern. These two different strategies are
competitive. For example, on dataset-1, RPS outperforms
the greedy strategy by over 30% in terms of Rn. This
can be attributed to the small cluster number of dataset-1.
The greedy strategy exceeds RPS by over 30% on dataset-
2. Thus, this our greedy strategy delivers high-quality
basic partitions for later fusion. Table 5 shows the average
performance of these two strategies on 36 benchmark
datasets. Although RPS can provide a diverse set of basic
partitions by varying the clustering number, the greedy
strategy might generate high-quality basic partitions owing

Fig. 5 Clustering performance with different basic
partition generation strategies on the first 10 datasets.

Table 5 Average clustering performance with different
basic partition generation strategies on 36 benchmark
datasets.

Measurement RPS Greedy (Ours)

Rn 0.3135 0.3710

NMI 0.4151 0.4560

to better initialization. Moreover, the 59-sampling strategy
also provides diverse basic partitions.

6 Conclusion

In this paper, a novel consensus clustering method GKCC
was proposed. GKCC solved the sensitivity of KCC and
combined the basic partition generation and fusion in a
unified framework. Derived by greedy K-means and KCC,
GKCC inherited the merits and overcomed the drawbacks
of its precursors. Moreover, a 59-sampling strategy was
used to further accelerate the speed. Extensive experiments
on 36 benchmark datasets demonstrated the effectiveness
of GKCC over KCC and KCC++ in terms of objective
function values and their standard deviations as well as
external measurements.
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