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Improved Bag-of-Words Model for Person Re-identification

Lu Tian and Shengjin Wang∗

Abstract: Person re-identification (person re-id) aims to match observations on pedestrians from different cameras.

It is a challenging task in real word surveillance systems and draws extensive attention from the community.

Most existing methods are based on supervised learning which requires a large number of labeled data. In

this paper, we develop a robust unsupervised learning approach for person re-id. We propose an improved

Bag-of-Words (iBoW) model to describe and match pedestrians under different camera views. The proposed

descriptor does not require any re-id labels, and is robust against pedestrian variations. Experiments show

the proposed iBoW descriptor outperforms other unsupervised methods. By combination with efficient metric

learning algorithms, we obtained competitive accuracy compared to existing state-of-the-art methods on person

re-identification benchmarks, including VIPeR, PRID450S, and Market1501.
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1 Introduction
Person re-identification[1] is an important task in video
surveillance systems. The key challenge is the large intra-
class appearance variations, usually caused by various
human body poses, illumination, and different camera
views. Furthermore, the poor quality of surveillance
videos makes it difficult to develop robust and efficient
features.

Despite the face that supervised learning methods for
person re-identification usually give superior performance
and recently works based on Convolutional Neural
Networks (CNN) have attracted extensive attention,
unsupervised hand-crafted descriptors are still appealing
for the following reasons: First, annotating IDs for the
pedestrian bounding boxes requires a huge amount of
human labor, and it is usually prohibitive to train a good
model in a practical environment considering if there is a
long recording time and lack of annotated data. Second,
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re-id models based on supervised learning are often camera
specific or dataset specific. A model trained on one dataset
is usually not transferable or performs poorly on other
datasets. This is because it is challenging for a re-id
dataset to cover various camera views, various human
clothes, and all illumination situations. Therefore, models
pre-trained on some public datasets might not succeed in
practical environments. Third, unsupervised methods can
be regarded as global re-id models, adaptive to various
working conditions, and could be integrated with many
supervised methods to improve performance.

Many efforts have been made to design effective and
robust feature representation in person re-identification,
such as, the Ensemble of Local Features (ELF)[2],
Symmetry-Driven Accumulation of Local Features
(SDALF)[3], gBiCov[4], Local Descriptors encoded by
Fisher Vectors (LDFV)[5], and salience match[6]. It remains
an open challenge to design unsupervised descriptors to
cope with various environment changes.

Being one of the most widely used unsupervised
method in many image retrieval systems, the Bag-of-
Words (BoW) model and its variants achieve impressive
performance and have recently been adapted to person
re-identification with competitive results[7]. The BoW
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pipeline consists of 4 steps: (1) feature extraction, (2)
codebook generation, (3) feature quantization and voting,
and (4) score calculation and ranking. For each step,
much effort has been made to improve performance[8,9]. In
feature extraction, effective hand-crafted features, such as
Scale-Invariant Feature Transform (SIFT)[10], Histogram of
Oriented Gradient (HOG)[11], and Color Names (CN)[12,13],
have been proposed. Despite previous efforts, how to
optimize every step and fuse different features for person
re-identification remains unknown and requires extensive
research[14,15].

In this paper, we propose to use superpixels[16] in a
basic pixel segment method to replace traditional patch
approaches. By combining the results of superpixel
partition and an unsupervised foreground extraction
method[17], we extracted perceptually meaningful local
regions and reduced the background influence as much
as possible. Meanwhile, we carefully investigated three
fusion methods: word level fusion[18,19], descriptor level
fusion[20,21], and score level fusion[22,23] and examined
how they influence the final recognition rate in the
BoW model. We formulated feature fusion in the BoW
model as a product quantization[24] problem. Our method
yields competitive accuracy compared with the state-of-
the-art results on existing person re-identification datasets
including VIPeR[25], PRID450S[26], and Market1501[27]. In
summary, our contributions are two-fold: (1) we improve
the conventional BoW model using superpixels as the pixel
segment method, and investigate and clarify feature fusion
methods in the BoW model; and (2) an unsupervised and
robust descriptor is proposed, which achieves state-of-the-
art results.

The rest of this paper is organized as follows. In
Section 2, a brief discussion of work related to person re-
identification is provided. In Section 3 we introduce our
method. The experimental results are shown and discussed
in Section 4. Finally, we draw our conclusions in Section
5.

2 Related Work

Generally speaking, person re-id includes two basic parts:
how to represent pedestrians and how to estimate the
similarity between them. The first category focuses on
discriminative visual descriptor extraction. Gray and Tao[2]

introduced AdaBoost to select good features from 8 color
channels (RGB, HS, and YCbCr) and 21 texture features as
the ELF. Farenzena et al.[3] proposed the SDALF method,
where symmetry and asymmetry are both considered to

handle viewpoint variations, and attribute-based features
are adopted as mid-level representations. Ma et al.[5]

proposed aggregating the local descriptors into an LDFV.
Cheng et al.[28] used Pictorial Structures, where part-based
color information and color displacement were considered
when looking for precise part-to-part correspondence.
Recently, saliency information has been investigated for
person re-identification[6, 29,30]; the 32-dimensional LAB
color histogram and the 128-dimensional SIFT descriptor
are extracted from each 10×10 patch, which is densely
sampled with a step size of 5 pixels. In Ref. [4],
gBiCov is proposed as a combination of Biologically
Inspired Features (BIF) and covariance descriptors. In
Ref. [31], LOMO is proposed to maximize the occurrence
of each local pattern among all horizontal sub-windows
to tackle viewpoint changes. The Retinex transform and
a scale invariant texture operator are applied to handle
illumination variations.

The second category learns suitable distance metrics
to distinguish true and false match pairs. Specifically,
most metric learning methods focus on Mahalanobis-based
metrics, which generalizes Euclidean distance using linear
scaling and rotations of the feature space, and can be
written as

d(x,y)=
√
(x−y)TM(x−y),

where x and y are feature vectors and M is the
positive semi-definite Mahalanobis matrix. Zheng et al.[32]

proposed PRDC to optimize relative distance comparisons.
KISSME[33] is currently the most popular metric learning
method because of its simplicity and efficiency. Hirzer
et al.[34] obtained a simplified formula and promising
performance by relaxing the PSD constraint required in
Mahalanobis matrix. Locally-Adaptive Decision Function
(LADF)[35] uses a joint model of a distance metric and a
locally adapted thresholding rule for person verification,
and extracts local color descriptors from patches. Aside
from the Mahalanobis distance, Prosser et al.[36] modeled
person re-id as a ranking problem, and applied RankSVM
to learn a subspace. In Ref. [37], local experts were
considered to learn a common feature space for person re-
identification across views. XQDA[31] has been recently
proposed as an extension of the Bayesian face[38] and
KISSME[33], in which a discriminant subspace is further
learned together with a metric. It learns the projection
w of a low-dimensional subspace, with the cross-view
data solved in a similar manner to Linear Discriminant
Analysis (LDA)[39]. Zhang et al.[40] proposed overcoming
the small-sample-size problem by matching people in a
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discriminative null space, where images of the same person
are collapsed to a single point, thus, the intra-class scatter
is minimized to zero and the inter-class separation is
maximized.

Recently some works based on deep learning have
tackled the person re-id problem[41]. The Filter Pairing
Neural Network (FPNN)[42] is proposed to jointly handle
misalignment, photometric and geometric transforms,
and occlusions and background clutter and has the
ability to automatically learn optimal features for the re-
identification task. Ahmed et al.[43] presented a deep
convolutional architecture and proposed a method for
simultaneously learning features and a corresponding
similarity metric for person re-identification. Compared
with hand-crafted features and metric learning methods, Yi
et al.[44] proposed a more general way that directly learns a
similarity metric from image pixels by using a “Siamese”
deep neural network. A scalable distance-driven feature
learning framework based on a deep neural network is
presented in Ref. [45].

3 Approach

3.1 Review of bag-of-words in person re-id

The BoW model represents an image as a collection of
visual words. Previous BoW approaches in person re-
id[7,27] employ CNs as low-level features. Pedestrian
images are segmented as patches of size n × n. For
each patch, CN descriptors of all pixels are calculated
and l1 normalized followed by a

√
(·) operator. Given

the feature descriptors of image patches a codebook is
generated by unsupervised clustering, such as standard
k-means. Then the image is represented by frequency
vectors obtained by quantizing the local descriptors to the
visual words in the codebook. Here, Multiple Assignment
(MA)[46] is employed to find the near neighbors of the local

descriptors. Each visual word histogram is thus weighted
using the TF scheme[47,48]. Burstiness[49] is also applied to
achieve better performance.

Formally, the BoW method maps a feature vector f ∈
Rd to a codeword c in the codebook C = {c(i)} with i

as a finite index set. The mapping, termed a quantizer,
is denoted by f → c(i(f)). The function i(·) is called
an encoder, and function c(·) is called a decoder[50]. The
encoder i(f) maps any f to the index of its nearest
codeword in the codebook C.

An example of the BoW model work-flow is shown in
Fig. 1. A pedestrian image is segmented into K horizontal
strips. For the k-th strip and l-th patch, a feature
vector fk,l is extracted and encoded as i(fk,l). Then, a
histogram is calculated on the k-th strip of all the visual
words {i(fk,l)}, which is denoted as d(k). Encoding and
calculating histograms together are called “voting” in this
paper. The image BoW descriptor is the concatenation of
d= [d(1), · · · ,d(k), · · · ,d(K)]. The similarity between two
images a and b can be calculated as the cosine distance of
d(a) and d(b), that is,

s(a,b)=d(a) ·d(b) =
K∑

k=1

d(a)

(k) ·d
(b)

(k).

Then, the similarity of two images is the summation of
the similarities of counterpart image strips. Here, for
simplification, we omit (k) and write the similarity score
as s(a,b)=d(a) ·d(b).

3.2 Superpixels versus patches

Image segmentation using superpixels is an important line
of approach. The superpixels algorithm groups pixels
into perceptually meaningful atomic regions, which can
be used to replace the rigid structure of the pixel grid.
Superpixels capture image redundancy and provide a

Fig. 1 An example of BoW work-flow. The pedestrian image is partitioned into horizontal strips and square patches. For
each patch, a local feature vector f is first extracted then encoded into codewords i(·) according to the codebook C. Then the
histogram d(·) of codewords for one strip is calculated. Finally, the BoW descriptor is the concatenation of these histograms.
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convenient primitive from which to compute image
features, and effectively reduce the complexity of
subsequent image processing tasks. They have become a
key building block in many computer vision algorithms,
such as the top-scoring methods in the multi-task object
segmentation challenge in PASCAL VOC[51–53], depth
estimation[54], segmentation[55], body model estimation[56],
and object localization[51].

Conventional BoW methods segment images into
patches (n × n pixel grids) and extract features from
individual patches. Thus, these features are unstable
against translation and rotation as image variations
may cause shifting, necessitating re-segmentation of the
patches, and re-calculation of the features. By comparison,
superpixels are clustered according to the similarity of
color and texture among pixels, which means they are
robust against transformations.

In this paper, we employ SLIC[16] to generate
superpixels and use an unsupervised pedestrian parsing
model[17] to obtain a human body mask. Only superpixels
whose intersection with the body mask is larger than 50%
are considered as foreground. Then low-level features
such as HOG[11] and SILTP[57] are extracted, respectively,
from these foreground superpixels. We examine the
performance gain in Section 4 and discuss the parameter
tuning later. We carefully examine two parameters: the
average area of a superpixel and its compactness, as
illustrated in Fig. 2.

3.3 Feature fusion

Fusing different low-level features may provide richer
information. We tested and compared feature fusion

Fig. 2 Pedestrian images segmented using SLIC into
superpixels of superpixel number 300, 500, 700, and 900
(approximately), superpixel compactness 1, 10, 20, and 40.

at different stages in the BoW model. We considered
four different appearance-based features: color histograms
(HSV)[7], CN[12,13], HOG[11], and SILTP[57] to cover both
color and texture characteristics.

3.3.1 Feature extraction
A Color Histogram (CH) is widely used to describe color
characteristics within one region. First, the original image
is transferred to the HSV color space, then the statistical
distribution of the hue (H) and saturation (S) channels is
calculated separately. Each channel is quantized to 10
bins. The luminance (V) channel is excluded because of
illumination changes.

CNs are semantic attributes obtained by assigning
linguistic color labels to image pixels. Here, we use off-
the-shelf descriptors, learned from real-world images such
as Google Images, to map the RGB values of a pixel to
11 color terms[13]. The CN descriptor assigns each pixel
an 11-dimensional vector, each dimension corresponding
to one of the 11 basic colors. Then, the CN descriptor of a
superpixel region is computed as the average value of each
pixel.

HOG is a classical texture descriptor that counts the
occurrences of gradient orientation in localized portions
of an image. We partitioned gradient orientation into
9 bins and computed the descriptor using gray-level
images. Then, the HOG descriptor was extracted from
each superpixel region.

The SILTP[57] descriptor is an improved operator over
the well-known Local Binary Pattern (LBP)[58]. LBP
has a nice invariant property under monotonic gray-scale
transforms, but it is not robust to image noise. SILTP
improves LBP by introducing a scale invariant local
comparison tolerance, achieving invariance to intensity
scale changes and robustness to image noise. Within
each superpixel, we extract 2 scales of SILTP histograms
(SILTP0.3

4,3 and SILTP0.3
4,5) as suggested in Ref. [31].

Root descriptors have proven effective[59]. We apply
root descriptors to these four features. Euclidean
distance is the most general but probably sub-optimal
choice considering histogram similarity. The Hellinger
kernel performs better[59]. The root transformation can be
regarded as an explicit feature map from the original space
to the root space. Then, the Euclidean distance in the root
space is equivalent to the Hellinger distance in the original
space.

3.3.2 Fusion strategies
In the BoW model we can apply feature fusion in three
stages and in the following, we will show how it can be
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formulated as product quantization[24] problems. Here, we
denote the feature vector generated by each feature method
in one superpixel as f 1, · · · ,fn, · · · ,fN for a total of N
feature extraction methods. We denote the overall feature
space as f = [f 1, · · · ,fn, · · · ,fN ].

Product Quantization. Given a feature vector f ∈Rd,
Product Quantization (PQ) aims to decompose the original
high-dimensional vector space into the Cartesian product
of subspaces, then quantize these subspaces separately.

We denote the Cartesian product C = C1×·· ·×CN for
f ∈Rd as the set in which a codeword c ∈ C is formed by
concatenating N sub-codewords: c= [c1, · · · ,cn, · · · ,cN ],
with each cn ∈ Cn. It is easy to show that the nearest
codeword c of f in C is the concatenation of the N nearest
sub-codewords c = [c1, · · · ,cn, · · · ,cN ] where cn is the
nearest sub-codeword of the subvector fn. That is,

c(i(f))= c(i([f 1, · · · ,fn, · · · ,fN ]))=

[c1(i(f1)), · · · ,cn(i(fn)), · · · ,cN(i(fN))].

The benefit of product quantization is that it can easily
generate a codebook C with an exponentially large number
of codewords. If each sub-codebook has k sub-codewords,
then their Cartesian product C has kN codewords.

As discussed above, d is the histogram of i(f) in
the BoW model. A joint histogram of two independent
variables is equivalent to the product of histograms of these
two variables separately, because for two independent
random variables X and Y , we always have p(X,Y ) =

p(X)×p(Y ). On the assumption that fn is independent,
the BoW descriptor can be written as d= d1⊗·· ·⊗dn⊗
·· · ⊗dN . Here we should use the outer product because
dn are on different axes, i.e., dm⊗dn should be an L×L

vector flattened by the outer product L-by-L matrix with
L as the vector length of dm and dn. Thus, the similarity
score of image a and b could be written as

s(a,b)=d(a) ·d(b) =

(d(a)
1 ⊗·· ·⊗d(a)

N ) ·(d(b)
1 ⊗·· ·⊗d(b)

N )=

(d(a)
1 ·d(b)

1 )×·· ·×(d(a)
N ·d(b)

N )=

s1(a,b)×·· ·×sN(a,b),

under the assumption that each feature subspace is
independent. The proof of the commutative law of the
outer product and dot product is shown in Lemma 1. The
feature space independence assumption does not always
hold strictly true, but could help solve the dimension
explosion problem.

Lemma 1 Given four vectors each with length L, X =

[x1, · · · ,xl, · · · ,xL], Y = [y1, · · · ,yl, · · · ,yL], Z =

[z1, · · · ,zl, · · · ,zL], W = [w1, · · · ,wl, · · · ,wL]. There
should be the commutative law as (X⊗Y ) · (Z⊗W ) =

(X ·Z)×(Y ·W ).

(X⊗Y ) ·(Z⊗W )= [· · · ,xiyj , · · · ] · [· · · ,ziwj , · · · ] =
L∑

i,j=1

xiyjziwj =

(
L∑

i=1

xizi

)
×

(
L∑

j=1

yjwj

)
=

(X ·Z)×(Y ·W ).

Score Level Fusion. Score level fusion generates
different codebooks C1, · · · ,Cn, · · · ,CN for each feature
separately. Then in the query stage, the BoW descriptors
are calculated separately as d1, · · · ,dn, · · · ,dN , where dn

is the n-th feature vector fn voting on the n-th codebook
Cn. Then the similarity score s between two images i and
j is calculated as s = N

√
s1×·· ·×sN

[22,23], whereas sn is
the similarity score of the n-th descriptor. As discussed
above, score level fusion is equivalent to jointly voting on
the overall C codebook, under the assumption that each
feature subspace is independent. It can be regarded as
one kind of product quantization where each feature space
is equivalent to each PQ subspace. The overall feature
space is naturally decomposed by these different feature
subspaces, which could be a good choice because these
features are not related and unlikely to be correlated.

In this paper, four codebooks are computed for four
features (HSV, CN, HOG, and SILTP), each with a size
of 350. Thus, the effective number of codewords in
the overall feature space is 3504. In the query phase,
four feature vectors of one superpixel are quantized using
the four generated codebooks, respectively, then four
similarity scores are calculated by the four resulting BoW
descriptor vectors.

Word Level Fusion. During codebook generation,
different feature vectors of one superpixel can be
concatenated as a uniform fusion feature vector f=

[f 1, · · · ,fn, · · · ,fN ]. Then a BoW codebook C is learned
from these concatenated feature vectors. In the query
stage, the BoW descriptor of a superpixel is calculated
by the codebook C and the concatenated feature vector
f = [f 1, · · · ,fn, · · · ,fN ]. Thus, the word-level fusion is
equivalent to no product quantization at all in the overall
feature space. In this paper, we generated a codebook of
size 1400, thus keeping the final BoW vector length equal
to that of other fusion methods with codebook sizes far less
effective than the fusion score level.

Descriptor Level Fusion. Descriptor level fusion
merges different features in the query stage. It also has
N codebooks and N BoW descriptors d1, · · · ,dn, · · · ,dN ,
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which is the same as score level fusion. Compared
with score level fusion that computes the N scores
s1, · · · ,sn, · · · ,sN separately as sn = d(a)

n ·d(b)
n , descriptor

level fusion concatenates different BoW descriptors
together as d = [d1, · · · ,dn, · · · ,dN ], and the similarity
score between two images a and b is calculated by the

concatenated descriptor as s=d(a) ·d(b) =
N∑

n=1

d(a)
n ·d(b)

n =

N∑
n=1

sn.

In summary, score level fusion is equivalent to product
quantization under the assumption that each feature space
is independent and has a codebook of kN codewords. Word
level fusion is equivalent to no product quantization in
the overall feature space, whose codebook has k × N

codewords. Descriptor level fusion differs from score
level fusion where the final score is calculated using the
arithmetic mean rather than the geometric mean of the sub-
scores. We researched these three fusion strategies in detail
and discuss their performance in Section 4.

4 Experiments

To evaluate the effectiveness of our method, we conducted
experiments on three public benchmark datasets: VIPeR,
PRID450S, and Market1501. The conventional evaluation
protocol splits the dataset into training and test parts. For
unsupervised method evaluation, only test samples are
used. Considering re-identification as a ranking problem,
the performance is measured in Cumulative Matching
Characteristics (CMC). Hereby, we denote R1 as the rank
1 recognition rate and R20 as the rank 20 recognition rate.

4.1 Datasets

4.1.1 VIPeR
The 1264 images, which were normalized to 128 × 48
pixels in the VIPeR dataset, were captured from two
different cameras in an outdoor environment, and included
632 individuals and 2 images of each person. It is the large
variations in viewpoint, pose, resolution, and illumination
that makes VIPeR very challenging. In conventional
evaluation, the dataset is randomly divided into two equal
parts, one for training, and the other for testing. In one
trial, images were taken sequentially and matched against
the opposite camera. Ten trials were repeated and the
average result is given.

4.1.2 PRID450S
450 single-shot image pairs depicting walking humans
were captured from two surveillance cameras. Pedestrian
bounding boxes were manually labeled with a vertical

resolution of 100−150 pixels, while the resolution of the
original images was 720×576 pixels. In addition, part-
level segmentation was provided describing the following
regions: head, torso, legs, carried object at torso level
(if any) and carried object below torso (if any). As with
VIPeR, we randomly partitioned the dataset into two equal
parts, one for training and the other for testing. 10 trials
were repeated.

4.1.3 Market1501
Market1501 consists of 32 668 detected person bounding
boxes of 1501 individuals captured by six cameras (five
high-resolution and one low-resolution) with overlaps.
Each identity was captured by at least two cameras but
multiple images may occur in one camera. For each
identity on test, one query image in each camera was
selected, so that multiple queries were used for each
identity. Note that, the selected 3 368 queries were hand-
drawn, instead of DPM-detected as in the gallery. The
provided fixed training and test sets were used under both
single-query and multi-query evaluation settings.

4.2 Superpixel evaluation

We first studied the performance of superpixels against
patches using four different descriptors (HSV, CN, HOG,
and SILTP) separately on the VIPeR dataset. Then, fusion
was performed at descriptor level to merge these four
features. As shown in Fig. 3 and Table 1, the superpixels
approach performs better than the patch approach on every
feature; about 0.5% R1 gain on HSV and CN, 1.8% on
SILTP, and 3.4% on HOG. The overall performance gain

Fig. 3 CMC curves on the VIPeR dataset, by comparing
the proposed superpixel approach to conventional patch
methods. HSV, CN, HOG, SILTP, and descriptor level
fusion are employed respectively.
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Table 1 Superpixel performance on VIPeR.
R1/R20

HSV CN HOG SILTP Fusion

Patches 22.8/63.2 25.1/65.0 3.45/24.9 8.43/36.8 30.6/75.2

Superpixels 23.3/64.5 25.7/67.0 6.87/33.9 10.2/38.7 32.4/76.7

reached 1.8% for R1 when these four features were fused
at the descriptor level.

The improvement in HOG is the most notable and this
is because HOG and SILTP are texture features, which are
more sensitive to image boundaries, while HSV and CN
are color features.

Next, two parameters, the average area of a superpixel
and its compactness, were examined, as illustrated in
Fig. 2. In the conventional patch approach, patch size is
important but usually chosen heuristically. A small patch
size degrades the performance of a single pixel and a micro
disturbance in several pixels can cause big changes in local
features and image descriptors. Whereas, a large patch
size can cause descriptors to be less discriminating as a
large patch carries too many pixels could lead to local
information loss. This also applies to superpixels, but the
influence is insignificant. In our study, the performance of
the superpixel approach is robust against superpixel size,
and poorly chosen superpixel size degrade performance
by at most 0.8% R1 in total. As shown in Fig. 4, the
best performance is achieved by segmenting images to
400−500 superpixels, i.e., an average of about 12−16
pixels in one superpixel.

Compactness also plays an important role. Highly
compact superpixels can be regarded as a retrogradation
to patches. Conversely, compact and regular superpixels

Fig. 4 R1 on the VIPeR dataset, by comparing different
superpixel numbers of an image. HSV, CN, HOG, SILTP,
and descriptor level fusion are employed respectively.

are often desirable because their bounded size and
few neighbors form a more interpretable graph, and
more locally relevant features can be extracted. In our
experiment, we tested re-id accuracy against a superpixel
compactness of 1, 10, 20, and 30. As shown in Fig. 5, high
compactness is harmful to all features and a value of 30
can cause performance degradation up to 1% in R1. Lower
compactness usually results in better performance, which
demonstrates that regular boundaries contribute little to the
performance of the iBoW descriptor.

In summary, our method is robust to the two superpixel
parameter settings of average size and compactness. This
is a result of the essential characteristics of superpixels, as
explained in Section 3.2. The SLIC[16] superpixel algorithm
itself groups similar pixels into atomic regions and
captures image redundancy with really stable performance
under different parameter settings, as shown in Fig. 2.
Contrarily, local features extracted from conventional
patches can be significantly changed under different patch
size settings.

4.3 Exploration of feature fusion methods

Local features usually have multiple descriptors, such as
HOG, HSV, CN, and SILTP, each of which corresponds to
a specific view of the image data. For the empirical study
in the previous section, we chose descriptor level fusion.
In this section, we analyze the influence of different fusion

Fig. 5 R1 on the VIPeR dataset, by comparing different
superpixel compactness settings. HSV, CN, HOG, SILTP,
and descriptor level fusion are employed respectively.
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methods on the final re-identification performance.
We evaluated three types of method, word level fusion,

descriptor level fusion, and score level fusion, as described
in Section 3. For score level fusion, we used the geometric
mean to combine scores. The experimental results on
VIPeR are shown in Table 2.

As shown in Table 2, score level fusion outperforms
word level fusion by a 2.4% R1 recognition rate. As
explained in Section 3, a codebook size of kn in a fn

feature space owns kn codewords. In word level fusion,
the fused codebook, size k = k1 + · · ·+ kn + · · ·+ kN , is
a very sparse representation in this huge overall Cartesian
product feature space. While in score level fusion, the N

feature codebooks together could be regarded equivalent
to a codebook size of k = k1 × ·· · × kn × ·· · × kN in
the overall Cartesian product feature space, which is much
more dense and discriminative. As for descriptor level
fusion, the fusion operator is replaced from “×” in score
level fusion by “ + ” and outperforms it by a 1.8% R1
recognition rate. The accuracy of the different features
varies hugely. Thus the “ × ” operator in score level
fusion can propagate substantial errors, which could cause
performance degradation, while the “+” in descriptor level
fusion is much more robust.

Based on the observations and analysis above, we
conclude that the fusion method is a very important
component for the combination of multiple features.
Descriptor level fusion performed better in our
experiments.

4.4 Comparison with state-of-the-art results

In this section, we compare our proposed method with
state-of-the-art approaches. Specifically, we chose HSV,
CN, HOG, and SILTP features. As for feature fusion, we
adopted the descriptor level fusion method.

We first compared our approach with state-of-the-art
results from VIPeR and PRID450S in Table 3. Within
all unsupervised approaches, we obtained a Rank 1 re-
identification rate of 32.41% with VIPeR and 30.16%
with PRID450S, which are superior to the best result
obtained from VIPeR and PRID450S, by 5.7% and 5.6%,
respectively. We also integrated the proposed unsupervised
method with three supervised metric learning methods,

Table 2 Comparison of different feature fusion methods.
R1 (%) R20 (%)

Word level fusion 28.28 71.95

Score level fusion 30.66 76.11

Descriptor level fusion 32.41 76.66

Table 3 Comparison to the state-of-the-art results on
VIPeR and PRID450S.

R1 (%)

Method VIPeR PRID450S

SDALF[3] 19.9 -

eSDC[29] 26.7 -

CPS[28] 22.0 -

ELF6[60] 8.73 -

Unsupervised HSV+Lab+LBP[33] 12.47 13.0

gBiCov[4] 9.87 -

LOMO[31] 19.91 24.6

BoW[27] 21.74 -

Proposed 32.41 30.16

WARCA[61] 40.2 24.6

Cheng et al.[62] 47.8 -

LSSCDL[63] 42.7 60.5

X-KPLS[64] 33.1 52.8

Kernel HPCA[65] 39.4 52.8

ECM[66] 38.9 41.9

Supervised
SCNCD[67] 37.8 37.8

CBRA[68] 31.2 26.4

LOMO+KISSME[31] 34.05 48.8

LOMO+XQDA[31] 40.00 59.64

LOMO+NullSpace[40] 42.3 -

Proposed+KISSME 37.18 52.47

Proposed+XQDA 43.23 63.07

Proposed+NullSpace 50.00 68.04

KISSME[33], XQDA[31], and Null Space[40]. The best
result was achieved by integrating our descriptor
with Null Space[40] metric learning, which reached a
Rank 1 precision of 50.0% from VIPeR and 68.04%
from PRID450S, and outperformed these state-of-the-art
methods by 2.2% and 7.5%, respectively.

As for large-scale datasets, such as Market1501, our
method yielded a Rank 1 recognition of 48.37% and mAP
of 19.98% under the single query mode. This was the
best of all the unsupervised approaches, as shown in Table
4. We roughly classified supervised learning methods
into two categories, a conventional metric learning based
approach and a deep learning based approaches. Our
method gave a Rank 1 recognition of 64.13% and mAP
of 36.21% with Null Space[40] metric learning, which
outperforms the best metric learning approaches by 8.7%
and 6.3%, respectively. Our result even outperformed
many other deep learning based approaches and is
comparable to the recent state-of-the-art method Gated
Siamese CNN[77]. This result is quite outstanding as
Market1501 is generally considered more suitable for deep
learning based methods due to its large image volume.
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Table 4 Comparison to the state-of-the-art results on
Market1501.

Method R1 (%) mAP (%)

gBiCov[4] 8.28 2.23

HistLBP[69] 9.62 2.72

Unsupervised LOMO[31] 26.07 7.75

BoW[27] 34.38 14.10

Proposed 48.37 19.98

WARCA[61] 45.16 -

TMA[70] 47.92 22.31

SCSP[71] 51.90 26.35

Metric learning
LOMO+KISSME[31] 40.50 19.02

LOMO+XQDA[31] 43.79 22.22

LOMO+Null Space[40] 55.43 29.87

Proposed+KISSME 54.81 27.65

Proposed+Null Space 64.13 36.21

PersonNet[72] 37.21 18.57

CAN[73] 48.24 24.43

Deep-learning
SSDAL[74] 39.4 19.6

Triplet CNN[75] 45.1 -

Histogram Loss[76] 59.47 -

Gated Siamese CNN[77] 65.88 39.55

Figure 6 shows the example retrieval results from
Market1501.

5 Conclusion

In this paper, we proposed an unsupervised descriptor for
person re-identification. The approach uses an improved

Fig. 6 Example results from Market1501 using our
proposed method with Null Space metric learning[40]. The
images in the first column are the query images. The
gallery images are sorted according to their similarity scores
from left to right, with a highlighted green box for correct
matches.

BoW model based on superpixels and descriptor level
fusion, combining both color and texture features. We
carefully examined the parameter settings for superpixel
generation, and different fusion methods were compared
theoretically and practically. Experiments demonstrated
the effectiveness and robustness of our method. The
proposed descriptor outperforms other unsupervised
methods in VIPeR, PRID450S, and Market1501.
Meanwhile, our descriptor can be effectively integrated
with efficient supervised metric learning algorithms and
outperforms current state-of-the-art results.

In our work, there is still much room for improvement
and expansion. Deep neural networks attract a lot
of attention nowadays, but the connection between
our unsupervised descriptor and deep learning has not
been explored. Generally speaking, as our unsupervised
descriptor can be regarded as a global model, it would
be interesting to combine it with deep learning models by
connecting it in the first convolutional layer.
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