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Indoor Pedestrian Tracking with Sparse RSS Fingerprints

Qiuxia Chen�, Dongdong Ding, Yue Zheng

Abstract: Indoor pedestrian localization is of great importance for diverse mobile applications. Many indoor

localization approaches have been proposed; among them, Radio Signal Strength (RSS)-based approaches have

the advantage of existing infrastructures and avoid the cost of infrastructure deployment. However, the RSS-based

localization approaches suffer from poor localization accuracy when the RSS fingerprints are sparse, as illustrated

by actual experiments in this study. Here, we propose a novel indoor pedestrian tracking approach for smartphone

users; this approach provides a high localization accuracy when the RSS fingerprints are sparse. Besides using the

RSS fingerprints, this approach also utilizes the inertial sensor readings on smartphones. This approach has two

components: (i) dead-reckoning subsystem that counts the number of walking steps with off-the-shelf inertial sensor

readings on smartphones and (ii) particle filtering that computes the locations with only sparse RSS readings. The

proposed approach is implemented on Android-based smartphones. Extensive experiments are carried out in both

small and large testbeds. The evaluation results show that the tracking approach can achieve a high accuracy of

5 m (up to 95%) in indoor environments with only sparse RSS fingerprints.
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1 Introduction

With the proliferation of pervasive and mobile
computing, localization has been a hot research
topic and many studies have been conducted[1–6].
Specifically, wireless indoor localization has been
extensively studied owing to its applicability and
economic benefits, and has been widely adopted in
various applications, such as escort service in a
hotel or airport[7], inventory management[8], targeted
advertisement in a shopping mall[9], rescue and

�Qiuxia Chen is with the School of Automotive and
Transportation Engineering, Shenzhen Polytechnic, Shenzhen
518055, China. E-mail: chenqiuxia@szpt.edu.cn.
�Dongdong Ding is with the CSE Department, Shanghai

Jiao Tong University, Shanghai 200240, China. E-mail:
dingdd@sjtu.edu.cn.
�Yue Zheng is with the Department of Electronic Engineering,

Tsinghua University, Beijing 100084, China. E-mail:
zhengyue15@mails.tsinghua.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2017-04-19; accepted: 2017-05-25

recovery[10], photo-taking of the environment[11], and
smartphone-based localization[12, 13].

Although GPS can obtain the location of outdoors
with room-level accuracy, it performs poorly
indoors because the received signal power decreases
dramatically with the lack of line of sight. As a
result, most previous localization approaches utilize
the Received Signal Strength (RSS) to determine
the indoor location as RSS fingerprints are available
in most existing wireless infrastructure and offer
tremendous cost savings. Compared to RSS, Channel
State Information (CSI) is much more fine-grained and
exhibits a higher stability. However, indoor localization
with CSI[14, 15] requires specific Network Interface
Cards (NICs) and driver modification.

With the wide deployment and availability of WiFi
infrastructure, many RSS-based localization techniques
are implemented on WiFi devices, such as RADAR[16]

and Horus[17]. However, the existing literature either
relies on the basic assumption that WiFi Access Points
(APs) are pervasive in the environment or the location
of each AP is known; this is not always true in the real
world[18]. As shown in Fig. 1, typical places such as
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Where am i?

Location

Fig. 1 An example of the scenario.

airports or railway stations are usually partially covered
by WiFi signals due to the limited or biased deployment
of APs, further resulting in indistinct fingerprints.
Therefore, it is difficult to achieve a high accuracy
in such a situation by directly adopting previous
methodologies to determine the current location.

Apart from the sparsity of APs, the performance of
RSS-based localization will also decrease significantly
when people are moving in dynamic speeds[19]. A
previous study[20] proposed an adaptive speed change
detection framework that can work with any device-
free localization method. However, the proposed
mechanism cannot work with sparse RSS fingerprints.
To increase the accuracy of pedestrian tracking with
sparse RSS fingerprints, one possible way is to use the
readings of inertial sensors (e.g., accelerometers and
compass) to deduce the walking trail beforehand[21].

In this study, we design and implement Dead-
Reckoning-assisted Passive Fingerprinting (DR-PF),
a localization system with sparse RSS fingerprints.
Despite limited quality of commercial inertial sensors,
an efficient methodology is developed to detect the
walking steps, finally providing a dead reckoning
subsystem to accurately estimate the displacement. By
combining the occasionally sensed RSS from ambient
APs and applying a particle filter, we are able to
alleviate the effect of accumulated error and improve
the localization accuracy.

In this study, the following major contributions are
made:
� A novel, efficient, and accurate method is introduced

to detect the steps in the dead reckoning subsystem.
Compared to the state-of-the-art solutions in step

detection, this methodology performs better in
complexity, commonality, etc.
� Based on the constructed sparse WiFi fingerprint

signature and estimated displacement, a particle filter
is used to reduce the impact of sparsity and enhance
the localization performance.
� This design is fully implemented on the Android

platform and extensive experiments are conducted
to evaluate the localization performance. The
experimental results show that the localization
system performs remarkably better even with sparse
RSS fingerprints and achieves a better accuracy.
The rest of this paper is organized as follows. Section

2 describes related studies. Section 3 explains the
profile of the DR-PF localization system. Sections
4 and 5 provide the details of implementation of the
two subsystems, dead reckoning and particle filter.
Sections 6 and 7 present the experimental setups
and performance evaluation. Section 8 provides the
conclusions of this study.

2 Related Studies

In this section, different mechanisms that aim to solve
the problem of indoor localization are presented. They
can be divided into two categories.

2.1 Fingerprint-based mechanisms

Most state-of-the-art localization schemes on mobile
devices are based on fingerprinting a radio map in
the areas of interests. Then a matching algorithm
helps to locate where we are[16, 17]. Some improved
schemes leverage the constraints of mobility in addition
to RSS to locate the position[7, 22]. SurroundSense[23]
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extends the idea of WiFi RSS fingerprinting to other
ambience signatures such as optical, acoustic, and
motion attributes. Place Lab[24] also utilizes the signals
from GSM base stations and creates a wireless map by
war-driving. Previous studies[25–28] use active RFIDs
to implement indoor localization, object tracking, and
human behavior identification. Considering the high
costs of site survey, LiFS[12] exploits the sensor readings
in smartphones and user motions to construct the radio
map and achieves a high localization accuracy.

2.2 Model-based mechanisms

Some model-based techniques assume that signal
attenuation can be mathematically modeled by
exploiting the distance to APs. In Refs. [29, 30], the
radio propagation model of log-distance path loss is
used to estimate the distance to a given AP. In addition
to power-distance mapping methods, PinPoint[31] and
Cricket[32] utilize time-of-arrival and time difference
of arrival to estimate the distance, respectively. Some
localization techniques also exploit angle-of-arrival
strategies[14, 33] to determine the position.

3 System Overview

Our system consists of two subsystems, dead reckoning
and particle filter, as shown in Fig. 2.

In the dead reckoning subsystem, there are three
modules that utilize the raw sensor readings of
smartphones. The identifiable walking patterns can be
extracted from the recorded acceleration, thus making
it possible to calculate the number of steps and the
time when the pedestrian takes the steps in the module
step direction. Using the model of linear relationship
between stride length and walking frequency, the step
length can be estimated in the second module. Head
inferring with smartphone orientating arbitrarily is
another challenging topic. In this study, we assume that
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Fig. 2 System architecture.

the phone’s relative position is fixed.
As mentioned above, the displacement may drift a

lot without calibration. Thus, the subsystem particle
filter is implemented to further improve the accuracy of
tracking with sensed WiFi RSS, and the displacement
will be estimated more accurately. Particle filter is
a widely used filtering method, where the particles
with high similarity to the measurement are allowed to
survive with a high probability.

In the following two sections, the designs of the
subsystems are discussed.

4 Dead Reckoning Subsystem

In this section, we mainly investigate how to compute
the displacement of a pedestrian by accurate step
counting and heading estimation. As mentioned above,
the subsystem can be divided into three modules. The
module “Step Detection” should reliably detect whether
the pedestrian is taking steps (walking) or standing
still. Then the well-studied linear relationship between
step length and walking frequency is used to infer the
step length. Considering that the walking direction
might change over time, the step heading is inferred.
It is assumed that the yaw angle of smartphones is
known beforehand and remains constant during the
movements.

4.1 Step detection

When a pedestrian is walking, the acceleration exhibits
recurrence as shown in Fig. 3. Specifically, the vertical
direction exhibits obvious regularity compared to the
horizontal direction in the East-North-Up coordinate
because the body of the pedestrian will move up
and down periodically. To count the walking steps,
most previous studies applied either self-correlation or
dynamic time wrapping on the periodical data sequence.
However, these methods have high complexity and may
misdetect or overdetect the actual steps. Thus, it is
necessary to propose an efficient and accurate method
to count steps.

As shown in Fig. 4, the periodicity will be further
amplified by integrating acceleration to obtain velocity.
The initial velocity is assumed to be 0 m/s. If there are
several local extremes around a certain instant (e.g., the
second step in Fig. 5), a threshold can be simply set
for the difference between adjacent local extremes to
remove the points merely reflecting the slight shaking
of the human body. Only when the difference exceeds
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Fig. 3 3-axes acc readings walking on
hand.

00 5050 100100 150150 200200 250250
−0.5−0.5

00

0.50.5

00 5050 100100 150150 200200 250250
−0.5−0.5

00

0.50.5

Y
-V

e
l 
(m

/s
)

Y
-V

e
l 
(m

/s
)

X
-V

e
l 
(m

/s
)

X
-V

e
l 
(m

/s
)

00 5050 100100 150150 200200 250250
−0.5−0.5

00

0.50.5

Z
-V

e
l (
m
/s

)
Z

-V
e
l (
m
/s

)
Time 40 (ms)Time 40 (ms)

Fig. 4 3-axes estimated walking velocity
on hand.

Fig. 5 Discretized velocity along z-axis on
hand.

the threshold, the corresponding duration is claimed as a
valid step. In the following sections, the empirical value
of the threshold is set as 0.2. Compared to the state-
of-the-art methodologies, our algorithm outperforms as
follows:

Lower Complexity. Finding the local extremes and
valid step has linear complexity. Compared to previous
study, our algorithm is more likely to be efficiently
implemented on smartphones.

Variation Tolerant. The method of counting steps
does not involve time durations and copes with the
velocity directly. Thus it can work well in different
settings, such as walking, jogging, running, or any
combination thereof.

Alignment Independent. Any instant can be chosen
as the beginning of walking to count steps because the
algorithm merely relies on the difference between the
local maximum and local minimum to determine a valid
step. However, the performance of similarity-based
methods suffers if the start time is not well estimated.

4.2 Estimation of step length

Step length is one of the critical points to compute the
displacement, because it varies from person to person,
and even differs from time to time for one person due to
a variation in mood, ground type, and health status.

Each step length can be estimated using the widely
applied linear relationship of the step model proposed
in the literature[34, 35], represented as Ls D a � f C

b, where Ls and f refer to the length of each step
and walking frequency, respectively; a and b are two
coefficients that determine the linear relationship.

To infer the coefficients, GPS modules are assumed to
be embedded in smartphones to obtain GPS readings if
they are available. As both the location information and
time stamps are recorded by the GPS module, the step
length Ls and walking frequency f can be calculated

to train the two coefficients. Specifically, our method
is based on a previous study[36]. The GPS data are
collected while the person is walking outdoors. As
the GPS data can be slightly noisy, filtering methods
are used to eliminate the noise and reduce error. For
example, in the case of unrealistic movements and much
higher estimated walking speed than the normal value
(e.g., the sum of average and two times of standard
deviation), the corresponding trace should be divided
into segments. Then, the segments are smoothened
to remove the random noises and flatten the jagged or
curved GPS traces. However, smoothing might distort
the actual path if the pedestrian makes turns. Thus,
the GPS readings corresponding to a straight line are
chosen to avoid such a situation. The details of the
straight-line identification method are shown in Ref.
[36].

4.3 Heading inference

Heading determination is another key process to
compute the displacement. The sensor readings are
recorded with relative coordinates but the pedestrian’s
orientation can be arbitrary. Thus, the recorded data
should be transferred into the East-North-Up coordinate
to obtain the actual heading.

Extensive studies have been conducted to determine
the moving direction with arbitrary device orientation;
this topic is beyond the scope of our study. Here
we assume that the yaw angle of the smartphone is
fixed when the pedestrian is walking and the magnetic
offsets at different locations are uniformly random in
the Gaussian model with a mean of � . The gravity
removed from the measured acceleration and the
readings from the magnetometer are denoted as G and
M , respectively. Note that the direction of G reported
from Android API is in the opposite direction to the real
gravity direction, and the direction of M is not parallel
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to the horizontal plane.
Therefore, the horizontal magnetic direction

can be represented as
G �M �G

jG � .M �G/j
. The

geographical north can be represented as

N D sin �
M �G

jM �Gj
C cos �

G � .M �G/

jG � .M �G/j
,

and the geographical east can be represented as

E D cos �
M �G

jM �Gj
� sin �

G � .M �G/

jG � .M �G/j
. The

moving direction is determined by the intersection
angle between .0; 1; 0/T and geographical north N

represented in the smartphone’s coordinate system. In
this paper, ˛ denotes the heading angle clockwise from
the geographical north.

5 Particle Filter Subsystem

5.1 Characterization of RSS signature

The variation in sensed RSS from AP api at location
lj is modeled using a Gaussian random variable
with mean �

r
j

i

and standard deviation ı
r

j

i

. The
RSSs from different APs are independent of each
other. If a smartphone collects a measurement R D
hr1; r2; : : : ; rNr

i where Nr denotes the total number of
APs, the probability of the smartphone at location lj can
be computed as follows:

P r.Rjlj / D

NrY
iD1

P r.ri jlj / (1)

Traditionally, the probability of measurement ri
sensed from api and taken at location lj can be
computed as follows:
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Because all the APs are not available at a specific
location, the model should be calibrated. If an AP
cannot be sensed by the smartphone, the Bernoulli
distribution B.1; pji / is used to model the probability.
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5.2 Particle filter

Particle filter, a member of the family of sequential
Monte Carlo, is a probabilistic approximation algorithm
to estimate the distribution of a variable at a specific

time, given all observations up to that time. The main
idea is to represent the required posterior probability
by a set of random samples (also called particles) with
associated weights and to compute estimates based on
these samples and weights. The details are provided
below.

5.2.1 Initialization

In the special case when the initial position is known,
the particles are initialized with Ns identical samples
fS i0 D .x0; y0/

Tg; i D 1; 2; : : : ; Ns .
If the starting location is unknown, the scanned RSSs

can be used for initialization, i.e., the locations of
particles are randomly selected based on the probability
of its measured WiFi signal to the location’s probability
computed using Eq. (3). The above step is repeated
until the size of the particle swarm reaches a predefined
size of Ns.

5.2.2 Propagation

Assume that the dead reckoning subsystem detects Nk
steps between the .k � 1/th and kth RSS measurements.
Because the length and walking direction of the
pedestrian just taken have been estimated, based on the
previous estimated position, the next position of the
pedestrian can be estimated. The j th particle’s position
.x
j

k
; y
j

k
/ after the pedestrian takes Nk steps can be

updated as follows:
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where sj
k;i

is the estimated stride length based on the
walking frequency; ı

s
j

k;i

is the random noise added to

the length to prevent the side effect of overfitting. ı
˛

j

k;i

is perturbed to account the compass measurement error
due to the local magnetic offset.

5.2.3 Resampling
In the resampling process, the trustworthiness of our
predicted location is assessed upon preconstructed RSS
fingerprints, and the particles with high trustworthiness
are allowed to survive with a high rate. The
trustworthiness is determined from the similarity
between sensed and computed RSSs using Eq. (3). A
location is randomly selected based on the computed
probability, and the step is repeated for Ns times to
pertain the sample size.
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5.2.4 Location estimator
After the particles of the kth RSS measurements
are determined, the location of measurement can be
efficiently computed as follows:

.xk; yk/ D

 
1

Ns

NsX
iD1

xik;
1

Ns

NsX
iD1

yik

!
(5)

6 Experiments and Discussion

6.1 Parameter selection for subsystems

6.1.1 Dead reckoning subsystem
The dead reckoning subsystem requires the
determination of two parameters, namely, the standard
deviation error of the estimated stride length ıs and the
standard deviation error of the estimated orientation ı˛ .

To obtain the standard deviation error of the
estimated stride length, 30 ten-step straight-line
walking trials are conducted. The actual walking length
in each trial is measured. If each stride is treated
as independent and identically distributed (iid) random
variables, ıs for each step can be estimated using the
maximum likelihood.

The standard deviation error of the estimated
orientation is determined at the same time. Because
the pedestrian walks in a straight-line, each step can
be estimated using the maximum likelihood, and the
variation of the sensed orientation can be computed as
ı˛ .

6.1.2 Particle filter subsystem
Recall that in the particle filter subsystem, we
need to determine the probability of obtaining RSS
measurement from a given AP at each location and its
distribution parameter; in this case, they are the mean
and standard deviation. RSS is measured for 500 times
at each location and the frequency of RSS is used as
the probability. The mean and standard deviation are
determined using the parameter obtained from curve
fitting into a Gaussian function.

Unfortunately, heavy site survey is required to build
the fingerprint map. Recently several participating
systems have been designed to overcome such laborious
work. In this system, a WiFi signature collection
platform is also designed and implemented on an
Android-based smartphone. Once a user conveys
his/her location by clicking the corresponding point on
the electronic map, the smartphone starts scanning the
ambient WiFi signature and saves the data for later
upload.

6.2 Experimental setup

6.2.1 Testbed

The experiments are conducted both in a SMALL L-
shaped laboratory and a LARGE floor of a building. The
layouts of the floor and laboratory are shown in Figs. 6
and 7, respectively. The radio map is constructed from
133 walkable locations each with an average size of
1:44m2 from a total of 55 APs to reach a fine-grained
level and 78 coarse-grained locations with an average
size of 5:52m2 from a total of 216 APs.

6.2.2 Ground truth collection

For the experiments, several walking paths on the floor
are predefined, as shown in Figs. 6 and 7. Along
the walking path, distinct locations are marked as
the waypoints on the floor. Each time we pass the
waypoint, the corresponding position in our developed
experimental platform on Android smartphone is
clicked to record the timestamp.

7 Evaluation

In this section, we evaluate the performance of the
system and the effects of different factors.

7.1 Accuracy of step detection

Step detection is crucial for accurate localization and
tracking. In the experiments, the smartphone is placed
in several different positions. The accuracy of step

Fig. 6 An entire floor of the building.
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Fig. 7 Floor plan of L-shaped laboratory.

detection is shown in Table 1. Our approach achieves a
high accuracy no matter where the smartphone is placed
and false alarms are rare. The step counter program on
Android platform is available at https://github.
com/dingdd/BL/.

7.2 Size of particle samples

To study the effect of the size of particle samples on the
localization accuracy, the number of particle samples
is varied to determine the order for setting the sample
size to reach a fine accuracy. As expected, Fig. 8
shows that the more the samples predicted, the more
accurate the localization result. When the sample size
increases from 200 to 500, the performance does not
improve much. This indicates that a sample size of 200
is sufficient to simulate the random distribute.

7.3 Performance under different AP densities

Figure 9 shows the effect of AP density on the

localization accuracy of DR-PF, Horus[17], and
FreeLoc[37]. To emulate the scenario of different sparse
levels, several APs are randomly selected in the LARGE
testbed assuming that only these can be sensed. As
shown, the proposed method DR-PF is robust to the
number of available APs and still works well in an
AP-sparse environment. The average error is less than
5 m, whereas the performance of both the previous
methods significantly decreases when a few APs are
provided. This is because Horus and FreeLoc require
multiple APs to formulate a signature and perform
localization.

7.4 Overall performance in SMALL L-shaped
laboratory

To investigate the overall performance of the proposed
method DR-PF, experiments are conducted in the fine-
grained environment. Figure 10 shows the cumulative
distribution of localization errors obtained from three

Table 1 Step detection accuracy with smartphone in different positions.

Pant Front Pocket (%) Pant Back Pocket (%) Shirt in Pocket (%) Holding in Hand (%) Overall (%)
False positive 1 0 0 0 0.25
True positive 100 100 100 100 100

Fig. 8 Performance of varying
sample size.

Fig. 9 Performance under different AP
densities.

Fig. 10 Performance of different
methods.
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localization schemes. DR-PF performs best with about
50th and 80th percentile error under 1:1m and 2m,
respectively. FreeLoc and Horus are almost the same
with over 60th percentile error under 5m. DR-PF
achieves its competitive advantages mainly owing to the
minor accumulated error of dead reckoning sub-system.

8 Conclusion

In this paper, we propose an indoor pedestrian tracking
approach that can work well in indoor environments
where only sparse RSS readings are available. This
approach consists of two components. The dead
reckoning component counts the number of walking
steps with off-the-shelf inertial sensor readings on
smartphones. The other component uses particle filters
to compute the locations with only sparse RSS readings.
The proposed approach is implemented on Android-
based smartphones. The experimental results show that
the localization approach can achieve a high accuracy
even in both small and large indoor environments with
only sparse RSS fingerprints.
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