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A New Method of Portfolio Optimization Under Cumulative Prospect
Theory

Chao Gong�, Chunhui Xu, Masakazu Ando, and Xiangming Xi

Abstract: In this paper, the portfolio selection problem under Cumulative Prospect Theory (CPT) is investigated and

a model of portfolio optimization is presented. This model is solved by coupling scenario generation techniques

with a genetic algorithm. Moreover, an Adaptive Real-Coded Genetic Algorithm (ARCGA) is developed to find

the optimal solution for the proposed model. Computational results show that the proposed method solves the

portfolio selection model and that ARCGA is an effective and stable algorithm. We compare the portfolio choices of

CPT investors based on various bootstrap techniques for scenario generation and empirically examine the effect of

reference points on investment behavior.
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1 Introduction

In finance, portfolio choice is the process of allocating
a person’s investable wealth to various financial assets
according to criteria that determine the best possible
tradeoff between risk and return. Modern portfolio
theory, which was proposed by Markowitz[1], provides
the theoretical background for the relationship between
risk and return of a portfolio and the importance of
diversification. The optimal portfolio choice lies on
the efficient frontier that combines the return and its
standard deviation. Expected Utility Theory (EUT) is a
widely accepted criterion to determine portfolio choices
under a certain degree of uncertainty. Under EUT,
investors (who are generally assumed to be uniformly
risk-averse) evaluate the final outcomes using objective
probabilities.

Although these theories have been useful in
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modeling portfolio choices, substantial empirical and
experimental evidence, such as the paradoxes outlined
in the work of Refs. [2,3], has revealed that they do not
reflect reality. Owing to the assumption that people are
rational, these theories merely demonstrate how people
should behave instead of making their actual portfolio
choices under risk. Prospect Theory (PT), which
was proposed by Kahneman and Tversky[4], is widely
considered as the best available description of people’s
actual behavior when evaluating risk in experimental
settings, particularly when psychological insights are
incorporated[5].

Inspired by Quiggin[6], who distorted the cumulative
probabilities of ranked outcomes instead of individual
probabilities, Tversky and Kahneman[7] developed
Cumulative Prospect Theory (CPT) to overcome
inconsistencies with first-order stochastic dominance.
CPT can account for diminishing sensitivity, loss
aversion, different risk attitudes, and financial
phenomena such as the paradoxes of Allais[2] and
Ellsberg[3]. Although CPT has received a significant
amount of attention (for example, Benartzi and
Thaler[8] explained the famous equity premium puzzle
using CPT), to the best of our knowledge, few papers
have applied it to portfolio choices. The reason may
be that the CPT function is generally non-convex and
non-concave, which means that traditional optimization
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methods such as Lagrange multipliers and convex
duality are not effective and the CPT function may have
numerous local maxima[9].

In this paper, we present a method that couples
scenario techniques for simulating the scenario of
the real stock market with a genetic algorithm to
determine the optimal solution. The major challenge is
to provide data on mathematical models in determining
optimal solutions to address uncertainties in the field
of financial investment. The effectiveness of the
mathematical models hinges on the quality of the
scenarios. Bradley and Crane[10] first introduced these
techniques to the financial world. Several scenario
generation methods have been used to support financial
decision-making. We focus on three variants of
the bootstrap method for scenario generation. The
bootstrap method, which was introduced by Efron[11],
is a form of resampling in statistics. The key idea
is to provide a resampling simulation technique to
estimate the complex characteristics of the underlying
population. The bootstrap method does not generate
random variates but instead repeatedly samples the
original data[12]. This method is a highly effective tool
in the absence of a parametric distribution for a set of
data. The bootstrap method is used when the number of
available samples is relatively small and a larger number
of observations is required. The use of bootstrapping for
scenario generation has been suggested by Kouwenberg
and Zenios[13]. In the analysis of financial time series,
the probability distribution of a data set is unknown;
the bootstrap method is suitable for assessing the
distribution properties of some statistic of such data.

Genetic Algorithms (GAs) are robust search and
optimization techniques. Unlike gradient-based
methods, GAs do not need further information on the
objective function besides the result, which is easy
to compute. GAs have been used successfully in
various fields. In recent years, numerous studies have
shown that GAs can efficiently solve optimal portfolio
problems in finance. For example, Chang et al.[14] and
Yang[15] used GAs to solve the mean-variance portfolio
optimization problem and Tsao[16], Baixauli-Soler
et al.[17], and Ranković et al.[18] solved mean-VAR
problems using GAs. However, to the best of our
knowledge, no study has applied GAs to CPT to solve
the portfolio choice problem.

The contributions of our study are as follows.
First, we develop a CPT model for optimal portfolio
selection; second, we couple the bootstrap method for

the evaluation of investment portfolio scenarios with
a genetic algorithm to determine the optimal solution;
third, we introduce an Adaptive Real-Coded Genetic
Algorithm (ARCGA) to find the optimal solution for
CPT investors who want to allocate investments among
various financial assets; and finally, we present an
empirical comparison of different choices under various
reference points in the CPT model.

The rest of this paper is organized as follows. In
Section 2, we briefly discuss CPT investors and present
an objective model for portfolio selection under CPT.
In Section 3, we introduce a method to solve the
objective function by coupling scenario generation with
a GA. Section 4 presents the empirical results. Finally,
conclusions are provided in Section 5.

2 Objective Function for CPT Investors

First, we review the framework of CPT. The key
elements of CPT are as follows:
� CPT investors appraise their investment according

to its relative value with respect to a reference
point, which separates the investment into gains
and losses.
� CPT investors display different behaviors with

respect to gains and losses. Thus, the value
function is concave with respect to gains and
convex with respect to losses.
� CPT investors are more sensitive to losses than to

gains.
� CPT investors apply excessive weights to small

probabilities and underestimate the weights of
large probabilities using a weighing function,
which is a nonlinear transformation of objective
probability.

Assumption 1 CPT investors are more concerned
with return than with the final wealth.

Assumption 2 No transaction costs exist in the
financial market, and CPT investors do not borrow cash
for investment.

Consider a set of investment assets i D 1; 2; : : : ; n:

At the end of a certain holding period these assets
generate random returns R D .R1; R2; : : : ; Rn/

T.
The CPT investors want to apportion their budget to
these assets by deciding on a specific allocation x D
.x1; x2; : : : ; xn/

T, xi > 0 (no short sales permitted)
and

Pn
iD1 xi D 1 (basic budget constraint). Using

the vector 1 D .1; 1; : : : ; 1/T, we may write the basic
budget constraints in vector form as

X D fx W xT1 D 1; x > 0g:
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In the next horizon period the uncertain return of the

portfolio is denoted by Rp D xTR D
nP
iD1

xiRi . This

equation indicates that the current selection may affect
future investment returns.

Let rf be the value of a (scalar) reference point that
separates gains and losses. We define the deviation Y
from the reference level by

Y D Rp � rf (1)

Obviously, Y is treated as a random variable.
We suppose that Y1; : : : ; Ym form a random sample
with some distribution. Let Y1 denote the smallest
value in the random sample, Y2 denote the next
smallest value, and so on. In this way, Ym denotes
the largest value in the sample, and Ym�1 denotes
the next largest value. Thus, the random variables
Y1; : : : ; Ym are the order statistics of the sample. Let
y1; : : : ; yi ; y0; yiC1; : : : ; ym denote the values of the
order statistics for an arbitrarily sample with probability
p1; : : : ; pi ; p0; piC1; : : : ; pm, respectively. If all values
of y1; : : : ; ym are nonzero, then y0 D 0with probability
p0 D 0 is inserted; otherwise, y0 D 0 exists with
probability p0 ¤ 0. (In fact, the presence or absence
of this zero value in the results has no effect on the
CPT value, as shown later in this paper.) According to
Tversky and Kahneman[7], the CPT investors evaluate
the investment

.y1; p1I : : : Iyi ; pi Iy0; p0IyiC1; piC1I : : : Iym; pm/

(2)
As mentioned EUT assumes that the investors are

risk-averse in the gains. However, CPT assumes that
investors express the outcomes as deviations from some
reference point and response, and are more sensitive to
losses than to gains. The value function v is defined by
Tversky and Kahneman[7] as

v.y/ D

(
vC.y/; y > 0I

��v�.�y/; y < 0
(3)

where vC.y/ D y˛ with 0 < ˛ < 1, v�.y/ D yˇ with
˛ 6 ˇ < 1 and v.0/ D vC.0/ D v�.0/ D 0. Obviously,
the functions vC.�/ and v�.�/ are increasing, twice
differentiable, invertible, and concave[19]. Tversky and
Kahneman[7] suggested the value of ˛ D ˇ D 0:88 and
� D 2:25. In fact, for ˛; ˇ < 1, the S-shaped value
function exhibits risk aversion over gains and risk
seeking over losses. The parameter � captures loss
aversion if we assume that investors consider losses to
be more than twice as important as gains.

The parameters of value function define the degree
of risk aversion with respect to gains, the degree of
risk preference with respect to losses, and the degree of
loss aversion. The parameter ˛ represents risk aversion
with respect to gains and the parameter ˇ represents
risk preference with respect to losses. Regarding
gains, higher values of ˛ signify that CPT investors
are becoming increasingly risk-averse. A large value
ˇ implies that the degree of risk-seeking is higher with
respect to loss. The parameter � represents the loss
aversion: the higher the value of �, the more loss-averse
the CPT investors. As shown in Fig. 1, the dash-dot
curve corresponds to ˛ D 0:2, ˇ D 0:4, � D 1; the
dotted curve corresponds to ˛ D 0:6, ˇ D 0:9, � D 2;
the solid curve corresponds to ˛ D 0:88, ˇ D 0:88,
� D 2:25; and the dashed line corresponds to ˛ D 1,
ˇ D 1, � D 2:25.

CPT investors do not weigh the outcomes according
to objective probabilities. Moreover, the weighting
functions have different parameters over the domains
of gains and losses, denoted by wC.�/ and w�.�/,
respectively. Tversky and Kahneman[7] proposed the
following functions:

wC.P / D
P 


ŒP 
 C .1 � P /
 �1=

(4)

w�.P / D
P ı

ŒP ı C .1 � P /ı �1=ı
(5)

where wC W Œ0; 1� ! Œ0; 1� and w� W Œ0; 1� ! Œ0; 1�

are non-decreasing and differentiable with wC.0/ D
w�.0/ D 0 and wC.1/ D w�.1/ D 1. The parameters
of weighting functions define the degree of distortion to
the objective probabilities. The smaller the values of 

and ı, the greater the degree of distortion. As shown in

Fig. 1 Value functions.
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Fig. 2, the dash-dot curve corresponds to 
 D 0:4; the
dotted curve corresponds to 
 D 0:61; the solid curve
corresponds to 
 D 0:69; and the solid line corresponds
to 
 D 1.

Ingersoll[20] showed that 0:28 < 
; ı < 1 ensures that
wC.�/ and w�.�/ are all increasing functions. Tversky
and Kahneman[7] estimated that 
 D 0:61, ı D 0:69.
For the case of 
 D ı D 1, the weighting functions
have the following linear form:

wC.P / D w�.P / D P (6)

The original version of the PT suffers from potential
violations of first-order stochastic dominance. To
avoid this violation, we apply CPT[7]. Although
the probabilities are weighted in PT, the cumulative
probabilities are weighted in CPT:

�i D

8̂̂̂<̂
ˆ̂:
�Ci Dw

C.pi C � � � C pm/�

wC.piC1 C � � � C pm/;

��i Dw
�.p1 C � � � C pi /�

w�.p1 C � � � C pi�1/

(7)

where pi denotes outcome yi (i D 1; : : : ; m).
The CPT value of the investment for stocks is

expressed as

V.x/ D

mX
iD1

�i � v.yi .x// (8)

CPT investors make portfolio choices by maximizing
their CPT value; that is, CPT investors determine their
investments by maximizing the value of Eq. (8). Thus,
we propose the following objective function:

maxV.x/;

s.t.
nP
iD1

xi D 1;

xi > 0; i D 1; : : : ; n

(9)

Fig. 2 Probability weighting functions.

3 Proposed Approach: Bootstrap Method +
Genetic Algorithm

3.1 Bootstrap method

A critical problem in portfolio selection is the
description of a random investment portfolio return.
In general, the problem is addressed by a set of
random returns or their expected return. A set of
scenarios can be generated by various methods, such as
a historical approach, bootstrap method, or Monte Carlo
simulation. In this paper, we use previous observations
of asset returns to generate the expected returns through
the bootstrap method. That is, we combine historical
data with the bootstrap technique to simulate the
required number of sample data. However, determining
the parameters of the returns is difficult. Thus, we use
the Non-Parametric Bootstrap (NPB) method.

Consider a strictly stationary time series of the i -
th investment asset held for T time periods. This
time series is expressed by Ri D .Ri;1; : : : ; Ri;T /,
which means that the joint probability distribution of
.Ri;1; : : : ; Ri;T / does not change when shifted in time.
As mentioned, finding the probability distribution of
Ri , which is denoted by Fi , is difficult. Let �.Fi / be
a parameter of interest such as the mean, median, or
standard deviation of Fi . Let O�.Ri / be an estimator of
�.Fi / computed using observations Ri . Here, we focus
on the mean of the returns.

The bootstrap method does not require any
parametric assumption on Fi and can use smaller
sample sizes as a formalization of the resampling
procedure for statistical inference. Let the observed
data take the values ri D .ri;1; : : : ; ri;T /. The mean
return of one asset is Nri D 1

T

PT
jD1 ri;j and the

expected portfolio return at time index T C 1 is
expressed as rp D

Pn
iD1 xi Nri . Next, draw T sample

data r�i D .r�i;1; : : : ; r
�
i;T / from .ri;1; : : : ; ri;T / by using

bootstrap method. The mean Nr�i D
1
T

PT
iD1 r

�
i;T can be

computed from r�i . Note that the number of sampled
data in the bootstrap method is equal to the number of
observed data, and no permutation occurs because we
have performed random sampling without replacement.

By repeating this process S times, we obtain the
following scenario matrix:

Rs D

266664
Nr�11 Nr

�2
1 � � � Nr

�S
1

Nr�12 Nr
�2
2 � � � Nr

�S
2

:::
:::
: : :

:::

Nr�1n Nr
�2
n � � � Nr

�S
n

377775 (10)
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A vector RSp D xTRs D .r1p ; : : : ; r
s
p/ is obtained

from the scenario matrix through multiplication by a
set of decision-making vectors. If the elements in RSp
are sorted in ascending order of value, we obtain a
result similar to Formula (2). Finding the set of optimal
decision-making vectors that maximize the objective
function is discussed later in this paper.

Selecting the best bootstrap technique for estimating
the mean depends on whether the observed data Ri are
assumed to be independent or dependent, which can
be difficult to identify. Scenario generation should be
considered to encompass all future possibilities. We
will refer to the bootstrap method for independent data
as the Standard Bootstrap (SB) technique and that for
dependent data as the Moving Block Bootstrap (MBB)
technique and Non-overlapping Block Bootstrap (NBB)
technique.

3.1.1 Standard bootstrap
The SB method is implemented by sampling the data
randomly with replacement, i.e., observed data can be
resampled with a constant probability 1=T . We can
derive R�i D .R�i;1; : : : ; R

�
i;T / from .Ri;1; : : : ; Ri;T /.

For a more comprehensive review of the SB technique,
see Kouwenberg and Zenios[13].

3.1.2 Moving block bootstrap methods
Note that Ri D .Ri;1; : : : ; Ri;T / is treated as a series
of outcomes with probability 1=T . However, this
assumption is not always valid, especially for financial
time series. Singh[21] showed that the SB technique[11]

failed to produce valid approximations in the presence
of dependent data. To overcome the limitations of the
SB technique for dependent financial time series data,
Hall[22] suggested resampling the data using blocks of
observed data instead of individual data, and Kunsch[23]

proposed resampling blocks of observations at a time
(see also Ref. [24]). The dependence structure of the
random variables at short lag distances is preserved by
keeping the neighboring observations together within
the blocks. As a result, resampling blocks allows
one to carry this information over to the bootstrap
variables. A similar method was called the “moving
block bootstrap”[25].

We suppose that Ri D .Ri;1; : : : ; Ri;T / is the
observed financial time series of the i -th assets. Let
` be an integer satisfying 1 6 ` < T . We define the
overlapping blocks Bi;1; : : : ;Bi;M of length ` as

Bi;1 D .Ri;1; : : : ; Ri;`/;

Bi;2 D .Ri;2; : : : ; Ri;`C1/;

: : :

Bi;M D .Ri;T�`C1; : : : ; Ri;T /

(11)

where M D T � `C 1. To generate the MBB samples,
we select b D T=` blocks at random with replacement
from (Bi;1;Bi;2; : : : ;Bi;M ). As each resampled block
has ` elements, concatenating the elements of the b
resampled blocks serially yields T D b � ` bootstrap
observations. Some typical choices of ` are ` D

CT 1=k , for k D 3; 4, where C 2 R is a constant[26].

3.1.3 Non-overlapping block bootstrap
Another bootstrap technique involves resampling from
non-overlapping blocks to generate the bootstrap
observations[27]. Suppose that ` is an integer in Œ1; T �
(note that NBB is equivalent to SB when `=1). Let
N D T=` and generate NBB samples by selecting N
blocks at random with replacement from the collection
( NBi;1; NBi;2; : : : ; NBi;N ), where

NBi;1 D .Ri;1; : : : ; Ri;`/;

NBi;2 D .Ri;`C1; : : : ; Ri;2`/;

: : :

NBi;N D .Ri;.N�1/`C1; : : : ; Ri;T /

(12)

Examining the characteristics of the NBB estimators
is easier than those of the MBB estimators of
a population parameter because NBB uses non-
overlapping blocks. However, the NBB estimators
typically have higher MSEs for a given block size `
compared with their MBB counterparts[28].

3.2 Adaptive real-coded genetic algorithm
technique

In CPT, the S-shaped value function is non-concave
and non-smooth; moreover, the weighting functions
are nonlinear functions. He and Zhou[9] proved
that the optimal portfolio allocation in the CPT
context is a non-convex and non-concave problem.
Therefore, traditional optimization methods face
significant difficulty in dealing with our proposed
model. GAs offer a number of advantages over
traditional optimization methods. The ability of GAs
enables finding a solution for difficult problems with
non-convex and non-concave solution spaces.

The concept of GAs, which can be described as an
“intelligent” probabilistic search algorithm, was
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developed by Holland[29] in the 1960s and 1970s.
The idea was inspired by the evolutionist theory
explaining the origin of species. Being a population-
based approach, GA is well suited to solve the
optimization problem of CPT. The ability of GA to
simultaneously search various regions of a solution
space enables finding a diverse set of solutions for
difficult problems with non-convex, discontinuous,
and multimodal solution spaces. GA initially has a
population consisting of a set of vector chromosome,
which are generated randomly to explore the solution
space of a problem.

Traditionally, the genes in a chromosome are
represented by binary coded strings. However, RCGA
has used real-valued genes to solve continuous
optimization problems[30, 31]. The use of real-valued
genes allows for improved adaption to numerical
optimization of continuous problems. RCGA is able to
exploit the gradation of the functions with continuous
variables, and to avoid the Hamming cliff effect suffered
by a Binary Coded Genetic Algorithm (BCGA). The
convergence speed of RCGA is good, and unlike
BCGA, RCGA involves no coding and decoding
processes. In RCGA, each chromosome represents one
decision vector and every gene corresponds to the
weight of one asset.

We developed an ARCGA, with adaptive mechanism
that improves the efficiency of the operators through
the evolutionary process. This adaptive method solves
the problem of portfolio choice under CPT within
the feasible operating region. Two important issues
are involved in RCGA. One is selection pressure,
without which the search process would be a random
algorithm. The effective selection pressure ensures that
chromosomes with higher fitness value have a higher
chance of surviving under crossover and mutation.
The second is population diversity, which produces
genotype of the offspring that differ from those of their
parents. A highly diverse population can increase the
probability of exploring the global optimum and prevent
the premature convergence to a local optimum[32, 33].
RCGA involves a tradeoff between selection pressure
and population diversity because the two factors act
against one another. Therefore, they should be
controlled to ensure optimal balance. Thus, in
this paper, we propose a technique for increasing
the selection pressure and an adaptive method that
retains the balance between the selection pressure
and population diversity processes. The pseudocode

of ARCGA is shown in Algorithm 1, where P.g/

represents the parents, M.g/ represents the mating
pool, Q0.g/ represents the offspring from M.g/ after
the crossover operation, Q.g/ represents the offspring
from Q0.g/ after the mutation operation, and g denotes
the generation.

3.2.1 Generation of initial population
The genes of a chromosome are real numbers between
0 and 1 representing the weights invested in the assets
under CPT. The most popularly used initialization
method is the random generation in which every datum
is generated uniformly in the range [0,1] in a random,
independent manner. wi , i D 1; : : : ; n, is represented as
a number generated randomly in the initialization phase.

If the sum of these data is greater than 1, the
constraint in Formula (9) will be violated. To overcome
this problem, the portfolio weights are obtained by
normalizing wi as follows:

xi D wi=

nX
iD1

wi (13)

where xi represents the weight invested in asset i after
normalization.

The described procedure is repeated � times, so that
we can obtain � solutions to form the first population
xgD1 D fx1; : : : ; x�g. We hope that xg will evolve and
gradually converge to x� as the evolutionary process

Algorithm 1 Pseudocode of ARCGA
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continues.

3.2.2 Evaluation
The fitness value of each chromosome is measured by
an objective function. We evaluate the fitness values
of chromosomes in P.g/ with Formula (9) and order
f
g
j , j D 1; : : : ; �, which are the fitness values in every

generation.

3.2.3 Selection
Various methods are used to apply the selection operator
in RCGA. Truncation selection is known as the most
efficient form of directional selection[34]. This approach
ranks all chromosomes according to their fitness values
and selects the best h% as parents. Truncation selection
has been used extensively in evolution strategies[35, 36].
Other popular methods include .� C �/ selection or
.�; �/ selection, where � is the number of parents and
� is the number of offspring. The top � individuals
form the next generation, with the selection being from
parents and children in the .� C �/ case and from
children only for .�; �/. Typically, � is one or two
times �[37]. Top-N selection is employed to select
the N best chromosomes from the population by some
scholars[38]. In addition, the “replace worst” strategy
replaces the population if the new chromosome is better
than the existing worst chromosome. Goldberg and
Deb[39] showed that higher selection pressure exists in
a population that deletes the worst chromosome even if
others are selected at random.

Inspired by these ideas, we introduce a selection
operator called Duplicated Top-N Selection (DTNS),
in which the best � chromosomes are copied twice
to the mating pool. This approach ensures that
the best � chromosomes are retained and the �

worst chromosomes are replaced. The remaining
chromosomes are placed in the mating pool unchanged.
In this manner, the best chromosomes in the population
have more opportunities to be chosen and the worst
chromosomes are eliminated from the population. This
condition leads to improved convergence in terms of
the quality of chromosomes and computation time. In
our work, the number of � is obtained by rounding
operation of the population size multiplied by h%.

3.2.4 Crossover
We use the typical arithmetical crossover of each
parent to produce two offspring in the crossover
step. Michalewicz[31] suggested that the arithmetical
crossover operator is the best option for RCGA.

We assume that chromosomes x D .x1; : : : ; xn/ and
x0 D .x01; : : : ; x

0
n/ have been selected for crossover.

The offspring are given as follows:
Oxi D �xi C .1 � �/x

0
i ;

Ox0i D �x
0
i C .1 � �/xi (14)

where � is a uniform random number in Œ�0:5; 1:5�.

3.2.5 Mutation
Mutation is generally applied at the gene level and
reintroduces genetic diversity to the population, which
helps the search to escape from local optima. We
apply a non-uniform mutation operator. We suppose
that x D .x1; : : : ; xi ; : : : ; xn/ is a chromosome, and
that xi 2 Œai ; bi �, where ai and bi are respectively
the lower and upper bounds of xi , is the element to be
mutated in generation g. The resulting chromosome is
x
0

D .x1; : : : ; x
0
i ; : : : ; xn/, where x0i is obtained by

x0i D

(
xi C�.g; bi � xi /; if 
 D 0I
xi ��.g; xi � ai /; if 
 D 1

(15)

with 
 being a random number that takes either value
zero or one, and

�.g; l/ D l.1 � r .1�
g
G /
�

/ (16)

where r is a random number from the interval [0,1],
G is the maximal generation number, and � is a user-
selected parameter that determines the degree of non-
uniformity[31]. This function provides a value in the
range Œ0; l� such that the probability of returning a
number close to zero increases as g increases. As a
result, this operator performs a uniform search in the
initial stages (when g is small) and a more local search
in the final stages[40, 41].

3.2.6 Elitist method
The main disadvantage of selection is that the best
chromosome in each generation may not be preserved.
The elitist method[42] can isolate the best chromosome
and transfer it to the next generation. In this manner, the
best chromosome obtained during the entire process of
RCGA is guaranteed to survive. Rudolph[43] showed
that convergence to the global optimum is not an
inherent property of the Canonical Genetic Algorithm
(CGA), but rather is a consequence of the algorithmic
trick of keeping track of the best solution found
over time. The major drawback of this approach is
its tendency to get stuck in a local extremum[18].
Obviously, the combination of elitist and adaptive
method can prevent the aforementioned limitations.

3.2.7 Stopping criterion
The algorithm terminates when the following stopping
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criteria is satisfied.
g D G (17)

where g is the current number of generations and G
denotes the maximum number of generations, which is
a pre-fixed threshold.

3.2.8 Parameter selection
Although RCGA has many advantages over BCGA,
it can often suffer from premature convergence due
to lack of population diversity. Conversely, it can
also suffer from slow convergence[40]. To solve
these problems, RCGA has been hybridized with
other optimization methods[44, 45]. For example, some
researchers have worked to improve the crossover
operators of the RCGA[46, 47]. Population diversity in
RCGA is important throughout the search process, not
only in the initial stages, because it determines how
the set evolves with each generation to explore the
search region. Although a number of rules have been
suggested in the literature to improve the population
diversity, they are generally tailored toward solving
certain problems[46]. Subbaraj et al.[48, 49] developed a
self-adaptive real-coded genetic algorithm to solve the
combined heat and power economic dispatch problem.
However, pc and pm were assigned constant values in
their paper.

In essence, RCGA uses the values of pc and pm

to balance the capacity to converge to an optimum
(local or global) after locating the region containing the
optimum and the capacity to explore new regions of
the solution space in search of the global optimum[50].
The probabilities of crossover and mutation are varied
depending on the fitness values of the solutions. This
condition encourages the exploration of the search
space because of the accelerating gene disruption,
and helps to prevent premature convergence. Thus,
in our study, the adaptive probabilities of crossover
and mutation are used to maintain diversity in the
population and sustain the convergence capacity of
RCGA. In general, GA use values pc in the range of
[0.5, 1] and pm in the range of [0.001, 0.05].

Srinivas and Patnaik[50] used the f gmax�f to detect the
convergence of GA, and varied pc and pm depending on
the value of this metric. Scholars are increasingly using
adapting crossover and mutation probabilities instead of
fixed values[51–54]. Based on the work of Refs. [50, 51],
the following expressions

pgc D k1.f
g

max � f
g

/=.f gmax � f
g
/;

pgc D k2.f
g

max � f
g

/=.f gmax � f
g
/ (18)

are used.
We set k1 D 1:0 and k2 D 0:5. f gmax and f

g

represent the maximum fitness value and the average
fitness value of the population at each generation,

respectively. f
g

is the average of the fitness values that
are greater than f

g
. We restricted pc and pm to the

ranges recommended ranges. The adverse effect caused
by poor chromosomes can be avoided by calculating the
difference in fitness values. This condition is clarified
in the degree of convergence between the chromosomes
with larger fitness values in the population.

4 Numerical Computation Experiments

4.1 Parameters of the CPT investors and data

Five parameters .˛; ˇ; 
; ı; and �/ describe the
investors’ objective function. We adopt the values
provided by Ref. [7], as listed in Table 1.

Choosing the historical period is important for
generating scenarios, but no rule exists for determining
the length of the time period. Given the monthly return,
we select a longer interval as soon as possible. In
this paper, we consider portfolios composed of Walt
Disney (DIS), General Electric (GE), and International
Business Machines (IBM) stocks, and use the adjusted
monthly closing price for the period January 2, 1962
to April 1, 2016 (dividends are not included). A total
of 651 observations are reported (data obtained from
Yahoo! Finance).

The difference between the log and arithmetic returns
is negligible for a one-day horizon. However, some
error typically occurs in the portfolio log-returns if
we neglect the conversion between the log-return and
arithmetic return over much longer horizons. As a
result, the difference between the log and arithmetic
returns is generally considered, and we use the
arithmetic returns and obtain 650 monthly returns for
each of the three stocks considered in this study, as
shown in Fig. 3.

Table 1 Parameters of objective function.

Parameter Value
˛ 0.88
ˇ 0.88

 0.61
ı 0.69
� 2.55
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Fig. 3 Monthly returns for three stocks

The foundation of time series analysis is stationarity.
First, we test for the unit root of stock returns, which
tells us whether a time series variable is non-stationary
and possesses a unit root. The results of ADF tests
show that the returns on each of the three stocks reject
the null hypothesis at the 1% significance level, i.e.,
no unit roots exist in the three sequences, and they
can be considered as stationary sequences (see Table
2). We now analyze the descriptive statistics for the
rate of return. Table 2 presents the basic statistics of
the sample data. Each stock exhibits positive expected
returns. Interestingly, the standard deviation of the GE
returns is less than that of the IBM stocks, but GE’s

Table 2 Descriptive statistics and test results for sample
data.

Company Mean Std.Dev Skewness Kurtosis JB test ADF test
DIS 0.0155 0.0895 0.0042 4.9735 1 0.001
GE 0.0106 0.0686 0.0540 4.2515 1 0.001

IBM 0.0089 0.0696 0.2270 4.8843 1 0.001

stock has a higher expected return than IBM’s and is
preferred by rational people, as discussed later in this
paper. Furthermore, in the IBM stock, the skewness
is small, indicating that the distributions are largely
symmetric. Each stock exhibits larger kurtosis values
and has a heavy-tailed distribution. The JB test shows
that none of the stocks is normal at the 1% significance
level. The normality can also be tested using a Q-Q plot.
If the data are normally distributed, then the quantiles
are on a straight line. As shown in Fig. 4, a significant
deviation from the straight line occurs in the tails for
each stock, especially in the lower tail, indicating that
the distribution of standardized returns is more heavy-
tailed than the normal distribution.

4.2 Computational experiments

All algorithms are programmed in MATLAB 2014b and
run on a 2.6 GHz and 8 GB RAM Apple MacBook Pro
computer.

First, we set the block length to 10 for MBB and
NBB. Second, we generated 650 data at random with

(a) DIS (b) GE (c) IBM

Fig. 4 Q-Q plots for three stocks.
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replacement using the SB technique and 65 blocks at
random with replacement using the MBB and NBB
techniques. Third, we repeated these procedures 10 000
times to produce three scenario matrices, i.e., SB, MBB,
and NBB matrix, in which each row corresponds to
one stock and each column represents every result of
a single simulation. The relevant statistics for the
simulation samples are presented in Table 3. No
significant change occurs in the mean compared with
the original data. However, the standard deviation,
skewness, and kurtosis of the sample data for the
three stocks have changed dramatically. All of the
sample data passed the JB test for normality at the 1%
significance level.

Reference points are an important concept in CPT,
but limited research has been conducted on their
impact on investment behavior. Several reference point
scenarios have been discussed by Pirvu and Schulze[55],
but they did not provide further details.

As mentioned, each column of the scenario matrices
represents every result of a single simulation. We can
obtain a CPT value by coupling a solution generated
by ARCGA with one scenario matrix. By continuously
generating solutions, we identify the optimal solution
that maximizes the objective function. The ARCGA
was used to produce different initial populations of sizes
50, 100, and 150, and the algorithm was executed 100
times. All 100 results were the same for each population
size. The results are presented in Table 4.

The experimental results show that the proposed
ARCGA is an effective and stable algorithm for the
given objective function. For comparison, an exhaustive
method was used to find the global optima. The results
show that these solutions are exactly equal to those
generated by the proposed ARCGA.

Generally, the various scenarios have a significant
influence on investment behavior under CPT, and
the MBB scenario has the most significant effect.

Table 3 Descriptive statistics and test results for simulation
data.

Method Company Mean Std.Dev. Skewness Kurtosis JB test
SB DIS 0.0154 0.0035 -0.0030 2.9830 0

GE 0.0106 0.0027 0.0143 2.9401 0
IBM 0.0089 0.0027 0.0317 2.9334 0

NBB DIS 0.0155 0.0032 -0.0157 3.0165 0
GE 0.0107 0.0026 -0.0120 2.9701 0

IBM 0.0089 0.0025 -0.0011 2.9803 0
MBB DIS 0.0160 0.0011 0.0207 2.9612 0

GE 0.0107 0.0009 -0.0148 3.0711 0
IBM 0.0093 0.0009 0.0517 2.9895 0

Table 4 CPT value, portfolio return and optimal solution
with different reference point.

Method rf CPT Value Return DIS� GE� IBM�

SB 0.003 0.0194 0.0154 1 0 0
0.004 0.0165 0.0143 0.8047 0.0913 0.1040
0.005 0.0135 0.0131 0.6050 0.1814 0.2136
0.006 0.0080 0.0123 0.4442 0.3102 0.2455

NBB 0.003 0.0191 0.0151 0.9075 0.0925 0
0.004 0.0169 0.0145 0.7914 0.2086 0
0.005 0.0146 0.0139 0.6755 0.3245 0
0.006 0.0114 0.0128 0.4708 0.4418 0.0874

MBB 0.003 0.0215 0.0160 1 0 0
0.004 0.0200 0.0160 1 0 0
0.005 0.0185 0.0160 1 0 0
0.006 0.0169 0.0160 1 0 0

Note: rf denotes the reference point value, Return denotes
the portfolio return, and superscript � denotes the optimal
investment ratio for that stock

Regardless of how the reference point changes, CPT
investors always put all of their money into DIS under
the MBB scenario.

Our second observation is that CPT investors change
their investment ratio significantly under SB and NBB
as the value of rf changes. Furthermore, as rf increases,
the CPT values decrease significantly and the returns
diminish, thereby demonstrating numerically that high
expectations lead to great disappointment.

5 Conclusion

In this study, we formulated an optimal portfolio
selection model for a single period under CPT.
Considering that the objective function is non-
convex, non-concave, and non-smooth, we proposed
an ARCGA to determine the optimal solution. We
compared the portfolio choices of CPT investors based
on various bootstrap techniques for scenario generation.
Computational experiments show that the ARCGA can
efficiently and stably solve the portfolio problem for
CPT investors. In addition, this study is the first
to consider the effect of different reference points on
investment behavior under CPT.

Future research aims to extend the optimization
models to incorporate risk constraints. Risk
management is currently a major topic, so we will
consider VaR and CVaR, which are popular tools for
risk management in finance.
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