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Hierarchical Community Detection Based on Partial
Matrix Convergence Using Random Walks

Wei Zhang, Feng Kong, Liming Yang, Yunfang Chen�, and Mengyuan Zhang

Abstract: Random walks are a standard tool for modeling the spreading process in social and biological systems.

But in the face of large-scale networks, to achieve convergence, iterative calculation of the transition matrix in

random walk methods consumes a lot of time. In this paper, we propose a three-stage hierarchical community

detection algorithm based on Partial Matrix Approximation Convergence (PMAC) using random walks. First, this

algorithm identifies the initial core nodes in a network by classical measurement and then utilizes the error function

of the partial transition matrix convergence of the core nodes to determine the number of random walks steps. As

such, the PMAC of the core nodes replaces the final convergence of all the nodes in the whole matrix. Finally,

based on the approximation convergence transition matrix, we cluster the communities around core nodes and

use a closeness index to merge two communities. By recursively repeating the process, a dendrogram of the

communities is eventually constructed. We validated the performance of the PMAC by comparing its results with

those of two representative methods for three real-world networks with different scales.
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1 Introduction

Community is a common phenomenon in social
networks, in which various members tend to form
closely linked groups. In different contexts, these
groups may be referred to as communities, clusters,
cohesive subgroups, or modules. Community detection
is the identification of a set of nodes in a network based
on cluster structural characteristics by the analysis of
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the network topology and network node properties, in
which nodes are tightly connected between internal,
but not external nodes. Obviously, internal clusters
communicate between individuals more frequently than
do nodes in different external clusters.

How to locate community structures in complex
networks has become a hot topic in many fields,
including sociology, bio-informatics, and physics.
Belonging to the same closely linked community, these
nodes have a greater probability of having the same or
similar properties. For example, the groups in a social
networkŒ1� are likely based on a common interest or
background. For example, in the World Wide WebŒ2�,
community structures may have some common themes
and relevant pages; in metabolic, cell, and genetic-
related biochemical or neural networksŒ3�, association
implies the existence of similar features. These network
collections can simplify the functional analysis of the
overall network.

Because community detection research has important
significance, many community detection algorithmsŒ4�

have been proposed. These algorithmsŒ5� can be
divided into several categories, including modularŒ6�,
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spectral clusteringŒ7�, and dynamic community
detectionŒ8� algorithms. The most common is the
modular algorithm, in which modules are used as a
posterior measurement. Algorithms based on modules
use different clustering methods, including greedy
algorithms, simulated annealing, external optimization,
and spectrum optimization to maximize the modularity.
In addition, the spectral method is based on the
eigenvalues and eigenvectors of the adjacency matrix
in networks. Dynamic community detection involves
the incorporation of the community timestamps model
or snapshots of a network for the prediction of the next
state.

Although many different community detection
algorithms have been proposed, there remain some
unresolved issues. When analyzing large-scale
networks, most algorithms have low efficiency
and high time complexity.

The random walk is irregular and is the
mathematically ideal state of Brownian movement. In
many areas, it has important applications, of which one
well-known example in the computer field is Google’s
PageRank algorithm. In recent years, probabilistic
methods based on random walks have been introduced
to community detection. Using the random walk model
to compute the similarity between two nodes and the
concept of nodes jumping is similar to flow information
from one node to another. Given a graph and an
initial node, the random walk algorithm finds the next
node based on transition probabilities. As such, the
sequence of a random walk is a Markov chain. From
the perspective of a smooth Markov chain process,
using random walks in iterative calculations, we can
count similar information nodes that they have a greater
probability of belonging to the same community, and
thus we can gradually define a community structure.

However, in the face of large-scale networks,
computing transfer matrix iterations using the random
walk method to achieve convergence requires excessive
calculation. Yet, there is a property of power-law
distribution in networks in which core nodes play an
important role. Accordingly, we propose a hierarchical
community detection algorithm based on the partial
matrix convergence in random walks. This method is
innovative in the following three respects:

(1) Utilizing the natural power-law distribution and
the community structure in a network, we substitute
core nodes for all the nodes in networks to measure the
degree of stability of the transfer matrix.

(2) We use the error function of the transfer matrix
convergence to dynamically determine the number
of random walk steps. The use of an appropriate
number of steps significantly reduces the computational
complexity.

(3) We use the partial convergence transition matrix
to cluster communities around core nodes and repeat to
merge communities, based on the community quality
evaluation index, to obtain a reasonable dendrogram of
the communities.

This paper proceeds as follows: In Section 2,
we introduce related work in community detection
via the random walk. In Section 3, we present
relevant theoretical foundations and our conceptual
basis. In Section 4, we describe hierarchical community
detection based on Partial Matrix Approximation
Convergence (PMAC) of random walks. In Section
5, we present our experimental analysis results and in
Section 6, we draw our conclusions and suggest future
research directions.

2 Related Work

Community detection algorithms that have been
developed recently relative to graph partitioning have
opened a new realm in network analysis. Moreover,
the probabilistic random walk method has been used to
infer the structural properties of networks in community
detection studies. The reason why random walk tools
are well-suited to community clustering detection is
obvious: they locally explore the neighborhood of a
vertex and, with a reasonably high probability, trap in
a cluster rather than jump to a different cluster.

Van DongenŒ9� proposed the Markov CLuster process
(MCL) to address the graph partition problem. MCL
simulates the flow diffusion process of networks
and partitions networks into clusters using predefined
algebraic operations on Markov transition matrices. Let
n be the number of nodes and the required matrix
multiplication operation will take O.n3/ time. The
main limitation of MCL is that predefined parameters
are difficult to choose and different community division
parameters can produce some unexplained differences.
Moreover, due to the uncertainty of the number of
iterations, the stability and convergence performance of
the algorithm will be significantly reduced in a large-
scale network.

Zhou and LipowskyŒ10� introduced a dissimilarity
index based on the Euclidean commute time distance
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and the average first-passage time of walkers, and then
used the index to design a hierarchical algorithm, called
Netwalk. Unfortunately, their approach also requires
O.n3/ time and cannot manage networks with more
than a few thousand vertices.

Pons and LatapyŒ11� put forward an algorithm called
Walktrap, which is computationally efficient. For
most real-world complex networks, the complexity
is O.n2 logn/. The intuition of this algorithm
is that random walks on a graph tend to become
trapped into densely connected areas of corresponding
communities. Therefore, the authors used some
properties of random walks on graphs to measure
the structural similarity between vertices and between
communities, and defined a distance to iteratively
merge the vertices into communities.

Rosvall and BergstromŒ12� proposed an information-
theoretic algorithm, called Infomap, to detect network
communities, in which a random walk model is
adopted to simulate the process of information
diffusion in networks, with the objective being to
minimize the description length of the information
from a geographical coding schema. In this way, they
transformed the task of community detection into a
coding problem of identifying partitions of networks
that can minimize the description length of an infinite
random walk process. Infomap optimizes this length
through a greedy search method combined with a
simulated annealing strategy, which usually converges
slowly.

Alamgir and Von LuxburgŒ13� proposed the Multi-
Agent Random Walk (MARW) in place of the random
walk. MARW consists of several agents connected by
a fixed length of rope. All agents move independently
as in a standard random walk on the graph, but they are
constrained to distances from each other of this fixed
length at most. The core insight of this method is that it
is harder for several agents to travel simultaneously over
the bottleneck of a graph than it is for just one agent.
Hence, the MARW has less probability of mistakenly
merging two different clusters than does the original
random walk.

To deal with the lack of consensus on how to quantify
and rank the quality of partitions, Delvenne et al.Œ14�

introduced the concept of partition stability, a measure
of its quality as a community structure based on the
clustered auto-covariance of a dynamic Markov process
within the network. Because the stability is inherently
dependent on the time scale of the graph, we can

compare and rank partitions at each moment in time
and establish time spans over which the partitions
are optimal. Hence, Markov time acts effectively
as an intrinsic resolution parameter that establishes a
hierarchy of increasingly coarse communities. This
method provides a unifying framework for several
standard partitioning measures.

Backstrom and LeskovecŒ15� developed an algorithm
based on supervised random walks that naturally
combines information from the network structure with
node-level and edge-level attributes. Because a random
walker is more likely to visit nodes for which future
links will be created, the goal of the supervised learning
task is to learn a function that can assign appropriate
strengths to edges.

Yang et al.Œ16� explored the nature of community
structure from a probabilistic perspective and
introduced a community detection algorithm, called
Probabilistic Mining Communities (PMC). In PMC,
community detection is modeled as a constrained
quadratic optimization problem that can be efficiently
solved by a random-walk-based heuristic. The PMC
has heuristic and optimization phases. In its heuristic
phase, PMC uses a random-walk-based heuristic to
reduce the space occupied by candidate community
structures of a given network. In its optimization phase,
PMC searches for an optimal community structure
in this reduced space by optimizing a constrained
quadratic objective.

Fu et al.Œ17� proposed a scalable community detection
method based on threshold random walkers, called
CD-TRandwalk, which selects highly active nodes as
seed nodes, and detects core communities by random
walkers according to predefined thresholds. The
threshold random walkers start from active seed nodes
and randomly walk only to those nodes with association
degrees higher than a given threshold. CD-TRandwalk
is a two-stage community detection method. In the first
stage, the core nodes of the communities are detected by
the threshold random walk, and then the remaining non-
core nodes are allocated according to a voting policy.
The drawback of this method is that it is difficult to
accurately determine an appropriate threshold value for
different networks.

Park and LeeŒ18� proposed a clustering method for
maximizing a new measure called group dependence.
Group dependence quantifies how precise is a certain
division of a graph in terms of its distance dependence.
Built upon statistical dependence measures between
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points driven by Markovian transitions, group
dependence incorporates the geometric structures
of input data. The method provides an optimal aspect
as theoretical justification based on the posterior
transition probabilities of the input data.

In this paper, we propose a hierarchical community
detection algorithm based on random walks, and as in
the PMCŒ16� and CD-TRandwalkŒ17� algorithms, our
proposed algorithm also uses a limited of number
of iterations. The difference is that the number of
iterations in our algorithm is determined by the degree
of convergence of the transition probability matrix
rather than a predefined fixed value. Because this
decision is based on the degree of convergence of the
core nodes rather than that of all the nodes in the
transfer matrix, it is possible to more rapidly complete
the iteration calculation process. In addition, although
our proposed algorithm considers only the core nodes
when judging whether the transition probability matrix
is approximately stationary, all the nodes are involved in
iteratively calculating the multi-step transition matrix.
We simply relax the judgment conditions to accelerate
the convergence process.

3 Preliminaries on Random Walks

Let G D .V;E/ denote a network graph, where
V D fv1; :::; vng and E D fe1; :::; emg are the node and
link sets, respectively. We only consider undirected
graphs in this paper. The graph G is associated with its
adjacency matrix A, and in the matrix, aij D 1 if nodes i
and j are connected, and aij D 0 otherwise. The degree
d.i/ D

P
j aij of node i is the number of its neighbors.

A discrete Markov chain is a sequence of random
variables, X1, X2, X3, ..., with the Markov property.
In a Markov chain, if given the present state, the future
and past states are independent. Formally, PfXtC1 D

xjX1 D x1; X2 D x2; :::; Xt D xtg D PfXtC1 D
xjXt D xtg and the possible values of Xi form a
countable set called the state space of the chain.

A random walk is a mathematical formalization of
a path that consists of a succession of random steps.
Suppose node j is the neighbor of node i , and let pij
denote the probability of going to node j from node
i after one step. Then we have PijDP

.1/
ij Daij =d.i/,

where P is the one-step transition matrix of X . For t
steps on random walks, let P .t/ij be the probability of
going to node j from node i after t steps, where P.t/ is
the t -step transition matrix of X .

In the matrices, P D D�1A, where A D .aij /n�n
and D D diag.d1; :::; dn/ are the adjacency and degree
matrices of G, respectively.

To traverse a number of nodes through t steps
of random walks is to achieve a t -step transition
probability matrix, formally, P.t/ D Pt , whereby the t-
step transition probability matrix is equal to a t-time
multiplication of the one-step transition probability
matrix.

In the transition probability matrix, we have a well-
known property of the random walk processŒ11�:

Property 1 When the length t of a random walker
starting at node i to node j tends toward infinity, the
probability of arriving at node j from any another node,
P
.t/
ij , only depends on the degree of the destination

node:
8i ; lim

t>1
P
.t/
ij D d.j /=

X
k

d.k/ (1)

To prove this property, we need the following
technical lemma:

Lemma 1 The eigenvalues of the matrix P are real
and satisfy:

1 D �1 > �2 > � � � > �n > �1:

Moreover, there exists an orthonormal family of
vectors .s˛/16˛6n such that the vectors v˛ D D�

1
2 s˛

and u˛ D D
1
2 s˛ are, respectively, right and left

eigenvectors associated with the eigenvalue �˛:

8˛;Pv˛ D�˛v˛; PTu˛ D�˛u˛; 8˛;8ˇ; uT
˛vˇ D ı˛ˇ :

Proof The matrix P has the same eigenvalues as
its similar matrix S D D

1
2 PD�

1
2 D D�

1
2 AD�

1
2 . The

matrix S is real and symmetric, so its eigenvalues �˛ are

real. P is a stochastic matrix .
nP

jD1

Pij D 1/, so its largest

eigenvalue is �1 D 1. The graph G is connected and
primitive, therefore we can apply the Perron-Frobenius
theorem, which implies that P has a unique dominant
eigenvalue. Therefore we have j�˛j < 1 for 2 6 ˛ 6 n.

The symmetry of S implies that there also exists an
orthonormal family s of eigenvectors of S that satisfy
8˛;8ˇ; sT

˛sˇ D ı˛ˇ (where ı˛ˇ D 1 if ˛ D ˇ and 0
otherwise). We then directly obtain that the vectors
v˛ D D�

1
2 s˛ and u˛ D D

1
2 s˛ are, respectively, right

and left eigenvectors of P satisfying

uT
˛vˇ D ı˛ˇ :

We can now prove Property 1.
Proof Lemma 1 makes it possible to write a spectral
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decomposition of the matrix P: P D
nP̨
D1

�˛v˛uT
˛ and

Pt D
nP̨
D1

�t˛v˛uT
˛ , so Ptij D

nP̨
D1

�t˛v˛.i/uT
˛.j /.

When t tends towards infinity, all the terms
˛ > 2 vanish. It is easy to show that the first right
eigenvector v1 is constant. By normalizing we have
8i; v1.i/ D 1pP

k d.k/
and 8j;u1.j / D d.j /pP

k d.k/
. We

obtain Property 1:

lim
t!C1

P tij D lim
t!C1

nX
˛D1

�t v̨˛.i/u .̨j /Dv1.i/u1.j /D
d.j /P
k d.k/

:

Based on the above proof, when the length of steps
tends to infinity, the probability value depends only
on the destination node value, rather than that of the
initial node. Meanwhile, for the whole social network,
it is reasonable to assume that with limited steps t ,
the probability of random walks within the community
between nodes is greater than that of random walks
among the communities, that is, P .t/ij > P

.t/

kj
, where

nodes i and j belong to same community, and node k
belongs to another community.

4 PMAC Algorithm

4.1 Overview

In a real social networks interactive process, the
initial behavior of people is often characterized by
a lot of randomness. However, as time evolves,
random relationships will tend toward a steady state
and gradually form relatively stable social circles that
we call communities. Inspired by this observable
phenomenon, here, we adopt a Markov random walk
model for the social network node, and we convert
the links between nodes to random walk processes.
Since social networks have a large number of nodes,
generally, the time complexity of the random walk
process grows exponentially with network size. To
reduce the complexity of the process, we work from
two aspects. First, we view the social network as
a collection of coarse-grained units, or communities,
rather than fine-grained units, or nodes. This means
that we require community detection. Second, we
propose the partial matrix convergence concept based
on the core nodes, which is a trade-off between the
computation time of multiple-step random walks, and
the degree to which the transition probability matrix is
stationary. The proposed method does not require an
initial setup of the number of communities, and is not
sensitive to the initial selection of core nodes.

In Fig. 1, we show the four main steps of our
algorithm.

Step 1 Select the initial core nodes according to a
node centrality metric.

Step 2 Compute the number of iterations, called the
optimal steps, using an error index, and obtain the true
core nodes.

Step 3 For each non-core node, select the closest
core node in the true-core node set to follow. As such,
initial communities form around the core nodes.

Step 4 Repeat this process to evaluate the quality of
the communities and merge close communities.

4.2 Selection of core nodes

Typically, a network consists of some communities, and
each community has a core node. On this basis, we
propose a reasonable assumption that as long as the
core node of a community can reach the core nodes of
the other communities, we can consider that all nodes
of a community can reach all the nodes of the other
communities, which means that the entire network is
connected. This is similar to a capital city or big cities
in each province being interconnected, so all the cities
throughout the country are interconnected. In most
social networks, the degree of distribution of the nodes
follows a power law, whereby only a few are highly
interconnected out of the total number of nodes in the
network, which we call core nodes. The method used
to select the initial core nodes is critical, and we must
avoid selecting a false core node and missing a true core
node.

Traditionally, we recognize the importance of
a node in social networks as being based on

(a) Select initial core nodes in the network (b) Find true core nodes

(c) Construct initial communities (d) Merge close communities

Fig. 1 Steps of the PMAC algorithm.
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the following metrics: degree centrality, closeness
centrality, betweenness centrality, and eigenvector
centrality. In this paper, we adopt the degree centrality,
the most basic metric, to identify the core node of a
network community. We do so for two reasons: (1)
calculating the degree centrality is relatively simple,
and (2) degree centrality and the metric used in the
random walks transition matrix are consistent.

Note that degree centrality not only reflects the
relevance of each node and other nodes, but is
also associated with the network size, i.e., the
number of nodes. As the size of the network
increases, the maximum possible value of the degree
centrality also increases. To eliminate the effects of
the size of the network on the degree centrality,
we use standardized measurement formulas for node
importance, as proposed by Wasserman and FaustŒ19�

in the t -step transition matrix, Pt , and define the
importance of node i as follows:

Definition 1

Important.vi /pk D d 0i D
nP
j

aij =n � 1 .i ¤ j / (2)

If a node i is Important.vi /p1 > � , then we called it
an initial core node, and after one step, the initial core
node set is as follows:

CenterSetp1 D fvi jImportant.vi /p1 > �g:

The core node set after t-step random walks is as
follows:

CenterSetpt D fvi jImportant.vi /pt > �g:

� is a preset threshold value.
According to the characteristics of random walks,

as the steps tend to infinity, the element values of
the transfer matrix constantly tend to their final stable
value. In the iterative process, the probability of the
transition of one node to another node increases or
gradually stabilizes at a large value, which shows that
the destination node is more central, and is thus a true
core node. Conversely, if the importance of a node
in the initial core node set gradually decreases during
the iterative process, it is a false core node and will be
discarded from the core node set in the next iteration
step. Therefore, we use classical centrality measures,
combined with random walks, to solve the challenge of
selecting the initial core node set. If we set the threshold
� to be higher, the initial core node set is relatively
small; if we set it to be lower, the initial core node set
is relatively large. However, this change has little effect
on the determination of the final core nodes. The more

important issue is how to calculate the appropriate step
number, t.

4.3 Computing the step number of random walks
based on PMAC

In a random walks process, the method used to
determine the number of steps is a key issue. In the
community detection of a given network, a specific
number of steps will correspond to a specific but
not necessarily the most reasonable solution. Random
walks with too few steps cause the network to become
decentralized, with fewer edges between the nodes,
which results in many smaller local clusters scattered
throughout a network, and which is very different from
the real structure. On the other hand, too many steps
cause the community borders to become blurred and
rough, and make it difficult to partition the community
structure.

In addition, if the random walk has too many steps,
it will increase the number of iterations in the transition
probability matrix, which increases the calculation time
complexity. Pon and LatapyŒ11� proposed that time
complexity is close to n3. If we imagine a network
comprising hundreds of thousands of nodes, this will
lead to a great loss of time, which limits the usefulness
of the algorithm in a real network. We propose
the followed definition for determining the appropriate
number of steps, which avoids this problem.

Definition 2
errort D

P
jP

.t/
ij � �j j; vi ; vj 2Centersetpt ; i ¤ j

(3)
In Definition 2, i and j represent the two core nodes’

indices, respectively; �j is equal to the value of Eq. (1),
and t is the number of walk steps. When t tends to
infinity, errort is approximately zero. But the decrease
of the error will be very small and slow with the time.
The optimal number of steps refers to the value that will
result in an the error of smaller value. We note that in
Definition 2, the error values for transition probabilities
are calculated only for core nodes, but the transition
probabilities computed in each iteration requires the
participation of all nodes. For this reason, we called
it the PMAC.

Definition 3
The optimal number of steps, k Dminft jerrort < "g,

" is a preset threshold value.
Support P is the one-step transition matrix.

Let C.P/ D 1
2

supi;k
Pˇ̌

Pij � Pkj
ˇ̌

represent the
Dobrushin’s contraction coefficient, in which vi and vj
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belong to the same community and vk and vj belong
to different communities. To verify the existing steps,
we use the coefficient. According to the Dobrushin
theoremŒ20�, if C.P/ < 1, then there exist two constants
˛ and t0 such that errort < ˛.C.P//k;8t > t0. Based
on above equation, we have the following:

˛.C.P//t < ") errort < ") t >
log " � log˛
log.C.P//

(4)
However, C(P) is usually greater than 1. Let m be

the minimum number satisfying C.Pm/ < 1, then we

have t > m �
log " � log˛
log.C.Pm//

. Eventually, we have the

following:

xDminft jerrort <"gDmax
�
t0;

�
m�

log " � log˛
log.C.Pm//

��
(5)

According to the final equation, we have log."/ D
a � t C b, where a D log.C.Pm//=m and b D log˛.
Therefore, for a given network, the steps certainly
existŒ13�.

4.4 Choosing the communities to be merged

Once we have determined the optimal steps, t , we can
guarantee the approximation stability of the transition
matrix and obtain the final core node set of the network.
With the t -step transition matrix, we determine which
core node is nearest to each non-core node, and then
the non-core nodes are put into the community of their
nearest core node. The process is as follows: for each
non-core node i , we compute the optimal community k
with kD arg max

j

.P
.t/
ij /, where node j is the core node

after t -step iterations.
The initial community formed around the core nodes

in Algorithm 1 requires further agglomeration to form
a hierarchical structure, which involves two steps:
(1) Select two communities to be merged based on
their similarity; (2) Decide whether the agglomeration
process should stop. Traditional quality metrics, such
as moduleQ, involves more computational complexity.
From this perspective, we propose the community
closeness metric to determine the similarity between
two communities, which is defined as follows:

Definition 4
Closeness.Ci ; Cj / D

Edgesinternal.Ci[Cj /

Edgesexternal.Ci [Cj /

1
2
�

�
Edgesinternal.Ci /

Edgesexternal.Ci /
C

Edgesinternal.Cj /

Edgesexternal.Cj /

� (6)

Edgesinternal.Ci [ Cj / and Edgesexternal.Ci [ Cj /

Algorithm 1 Repeat to merge two communities to construct
hierarchical communities
Input: Communities C, parameter '
Output: Hierarchical communities

1: for any two communities Ci ; Cj in C do
2: Compute Closeness (Ci ; Cj ) if it never be computed;
3: end for
4: if .Closeness.Ci ; Cj // > ' then
5: Add community Ci [ Cj into C;
6: Delete communities Ci and Cj from C;
7: else
8: Go to 11;
9: end if

10: Repeating Step 1 to Step 9;
11: return a dendrogram of communities

are the internal and external edges in the new
merged community, respectively; Edgesinternal.Ci /

and Edgesexternal.Ci / are the internal and external edges
of community Ci , respectively, and Edgesinternal.Cj /
and Edgesexternal.Cj / are the internal and external edges
of community Cj , respectively. When the closeness
value is greater than the threshold ', we merge the two
communities. Typically, the threshold ' is set between
1 and 2, and can be modified for different networks.

The details of PMAC process are presented in
Algorithm 1. The time complexity associated with
calculating the initial core-node set is O.n/; the time
complexity associated with calculating the probability
transition matrix with the optimal step is O.n2/.
The time complexity associated with constructing
a dendrogram of communities is multiplied by the
number of agglomerations and the time complexity
of one agglomeration. Let k D h.V / be the number
of communities, which is the number of core nodes
after the t-step random walk, then the height of
the community dendrogram is log k, and the number
of agglomeration is k log k. As we know, the time
complexity of one agglomeration is O.n/. So, the
time complexity required to build a community tree is
O.nk log k/, and thus the total time complexity of the
algorithm is O.n2 C nk log k/.

4.5 Validation metrics

To evaluate the effectiveness of different algorithms,
we adopted two metrics: accuracy and Newman-Girvan
modularity.

(1) Accuracy
To determine the accuracy, each node in a community

must be labeled. For each node i , we suppose lt.i/
to be its true community label and let lp.i/ be its
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label predicted label by the algorithm. The accuracy
is defined as the fraction of all nodes whose predicted
label is equal to true labelŒ21�:

Accuracy D
jfvi jlt.i/ D lp.i/gj

n
(7)

(2) Newman-Girvan modularity
We proposed the Newman-Girvan modularity to

evaluate the structural strength of the network
community. For the network, let cp be a community
partition predicted by an algorithm. The Newman-
Girvan modularity of cp is defined asŒ22�

QcpD
X
vw

�
avw�

dv � dw

.2m/.2m/

�
ı.Cv; Cw/D

cX
iD1

.eii�a
2
i /

(8)
where avw is 1 between node v and node w in
our paper, yet, it represents the weights in directed
networks. ı.Cv; Cw/ D 1, when v and w belong to
the same community, else its value is 0. Cv and Cw
represent the communities to which node v and node
w belong, respectively. eij is the fraction of edges
with one end node in community i and the other in

community j W eij D
X
vw

Avw

2m
; v 2 Ci ; w 2 Cj . ai is

the fraction of edges attached to nodes in community

i: ai D
di

2m
D

X
j

eij .

5 Experimental Evaluation

To verify the performance of PMAC in different types
of networks, we used three datasets for analysis:
Zachary’s Karate ClubŒ16� network, the American
College FootballŒ12� network, and partial data from
the FacebookŒ23� network. As shown in Table 1, in
Zachary’s Karate club network, there are a total of 34
nodes and 78 edges, which indicates a highly organized
structure; the American College Football network is a
moderately organized network with 115 nodes and 613
edges; and the Facebook network represents a large
social network dataset that consists of 2888 nodes and
2981 edges. We compared the experimental results
of our proposed PMAC with those of the GNŒ24� and
Newman fastŒ25� algorithms.

Table 1 Test datasets.

Network Number of nodes Number of edges
Zachary’s Karate Club 34 78

American College Football 115 613
Facebook 2888 2981

We conducted the experiments using an Intel Pentium
dual-core P6000 processor, with 2 GB DDR3 of
memory, a Windows 7 operating system, and Matlab
R2012a data analysis tools.

5.1 Existence of limited steps

In the first experiment, we determined the steps of
the random walks. In Figs. 2 and 3, the curves
describe the step-error changes in the Zachary’s Karate
Club and Facebook networks, which represent small-
scale and large-scale networks, respectively. From
Figs. 2a and 3a, we can see that, with increasing steps,
the probability of walks between nodes tends to be
steady, that is, the value of Eq. (3) gradually decreases.
However, the sharpness of the convergence and the time
are related to the specific network. As shown in Fig. 2a,
in Zachary’s Karate Club, with increasing steps, the
transition probability quickly converges. In Fig. 3a, for
the Facebook network, however, this process is not clear
and due to fluctuation, we cannot determine the optimal
number of steps.

To solve this problem, we use the change in the error
value caused by the adjacent steps, �error D jerrort �
errort�1j, to determine the approximate optimal step,
so that when �error obtains the relative minimum, the
approximate optimal step is reached. In Figs. 2b and
3b, as the number of steps increases, the change in the
error value shows a decreasing trend and then tends to
a stabilized state. Thus, for Zachary’s Karate Club, the

(a) Curve of the error (b) Curve of �error

Fig. 2 Curves in the Zachary’s Karate Club network.

(a) Curve of the error (b) Curve of �error

Fig. 3 Curves in the Facebook network.
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approximate optimal number of steps is four, and for the
Facebook network, the optimal number is eight.

5.2 Initial core nodes selection

As mentioned earlier, to select the initial core nodes,
we use the degree centrality threshold (i.e., equal to or
greater than the average degree of the network). Using
the proposed algorithm, we determined the initial core
node set to be f1, 2, 3, 4, 9, 14, 24, 32, 33, 34g in
the small-scale Zachary’s Karate Club network. We
also used the second method to select the initial core
nodes, to satisfy both the degree centrality and tightness
centrality (i.e., equal to or greater than the shortest-
path of the network), which then yielded another core
node set, f1, 2, 4, 24g. However, after multi-step
iterations, the true core nodes remained nodes 1 and
9. Although node 9 was not selected as an initial core
node in the second method, after iterative calculations,
it eventually became a real core node. We also used
different degree centrality thresholds to select different
initial core nodes, and the real core nodes were still
nodes 1 and 9. In Table 2, we show the result for the
above two standard methods for determining initial core
nodes.

For the large-scale network Facebook, we repeated
the test. In Table 3, we list the effects of different
thresholds on the initial core node set. Although the
initial core nodes are not same, the final real core
nodes remained f1, 289, 716, 1524, 2688g. From the
experimental results of different datasets, we found the
PMAC results to not be affected by whether we had
selected some false initial core nodes or had missed
some true code nodes. As such, we can conclude
that the PAMC is robust in selecting the criteria and
threshold values of the initial nodes.

Table 2 Effect of the threshold value on the core nodes
(Zachary’s Karate Club network).

Threshold value
selection

No. of initial
core nodes

No. of final
core nodes

Degree centrality = 4.021
1, 2, 3, 4, 6, 7, 8,
9, 14, 28 ,30, 31,

32, 33, 34
1, 9

Degree centrality = 5.010 1, 2, 3, 4, 9, 14,
24, 32, 33, 34 1, 9

Degree centrality = 4.588
and tightness centrality

= 2.408
1, 2, 4, 24 1, 9

Degree centrality = 5.010
and tightness centrality

= 2.010

1, 2, 4, 9, 14,
24, 32, 33, 34 1, 9

Table 3 Effect of threshold value on core nodes (Facebook
network).

Threshold value
selection

Number of initial
core nodes

No. of final
core nodes

Degree centrality = 2.064 16 1, 289, 716,
1524, 2688

Degree centrality = 3.010 16 1, 289, 716,
1524, 2688

Degree centrality = 4.010 10 1, 289, 716,
1524, 2688

Degree centrality = 5.010 10 1, 289, 716,
1524, 2688

Degree centrality = 6.010 10 1, 289, 716,
1524, 2688

5.3 Accuracy

We designed the third experiment to assess the
algorithm’s community detection capability, using 1, 2,
3, ... as the labeled nodes in Zachary’s Karate Club and
the American College Football networks, respectively.

As we know, in the small-scale Zachary’s Karate
Club network, the real results include two communities,
one is f1, 2, 3, 4, 5 , 6, 7, 8, 11, 12, 13, 14, 17, 18, 20,
22g and the other is f9, 10, 15, 16, 19, 21, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34g. Comparing the results,
the number of errors in the real divided community
results and those of the PMAC algorithm is 0, whereas
in the GN algorithm, node 3 is the wrong division, and
in the Newman fast algorithm, node 10 was mistakenly
classified, and all the mistakenly classified nodes are on
the community margins.

Figure 4 plots the Receiver Operating Characteristic
(ROC) curves of the PMAC, GN, and Newman fast
algorithms for the Zachary’s Karate Club network.
Because Zachary’s Karate Club network is a small-scale
dataset, the PMAC result is similar to the community
division of the real network. Since the results may be
too idealistic in a small dataset, we wanted to know how

Fig. 4 ROC curves of Zachary’s Karate Club network.
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the algorithm would perform in a larger dataset.
Figure 5 depicts the community divisions of the

real network in American College Football network.
The different colors represent different communities,
and nodes with the same color belong to the same
community. We can see that there are 12 communities
in the network, respectively, f4, 6, 11, 12, 41, 53, 73,
75, 82, 85, 99, 103, 108g, f1, 5, 10, 17, 24, 42, 91, 94,
105g, f2, 26, 34, 38, 46, 90, 104, 106, 110g, f13, 15, 19,
27, 32, 35, 37, 39, 43, 44, 55, 62, 72, 86, 100g, f47, 50,
54, 68, 74, 84, 89, 111, 115g , f7, 14, 16, 48g, f45, 49,
58, 67, 76, 87, 92, 93, 98, 113g, f18, 21, 28, 57, 59, 60,
63, 64, 66, 71, 77, 88, 9697114g, f25, 29, 70g, f8, 9, 22,
23, 51, 52, 69, 78, 79, 109, 112g, f20, 30, 31, 36, 56,
80, 81, 83, 95, 102g, and f3, 33, 40, 61, 65, 101, 107g.

For the medium-scale American College Football
network, Fig. 6 shows the community division results
of the GN algorithm and the Newman fast algorithm,
and the number of PMAC algorithm errors with respect
to the community divisions is still 0. Moreover, the
node classification is 100 percent correct. With the
GN algorithm, the number of communities is 12, which
is correct, but nodes f83, 29, 91, 83, 43, 81, 68,
74, 84, 89, 111, 59g are divided wrong, and with the

Fig. 5 PMAC community division (American College
Football network).

Fig. 6 Community division in American College Football
network.

Newman fast algorithm, the number of communities is
also correct at 12, and nodes f81, 83, 29, 91, 64, 59,
60, 98, 99, 75, 73, 53, 11, 103, 57, 108, 97, 111g are
mistakenly classified. Since different networks have
different community formation processes, the PMAC
algorithm tends to be more reasonable for verge of
nodes.

For the large-scale Facebook network, Table 4 shows
the community division results for the three algorithms,
as well as the modularity. The GN algorithm fails to
successfully obtain the final number of communities
successfully, whereas the number of communities was
determined by the Newman fast algorithm to be five and
by the PMAC algorithm to be eight. Since we cannot
know how many communities is most reasonable, based
on just one real network for which the index does is
not suitable, determining the modularity of the divided
community is a good option. The modularity result for
the PMAC algorithm is 0.5671 and for the Newman fast
algorithm is 0.2586. As such, the former has the better
result based on its higher modularity value.

We also compared the modularity of the three
algorithms in all three databases, as shown in Table
4. PMAC outperformed the two other algorithms. The
PMAC and Newman fast algorithms yielded the similar
approximation results in the small-scale databases, but
differed in the large-scale database as mentioned above.
Of the three algorithm, the GN algorithm is particularly
unsuitable for processing large-scale networks.

We also compared the modularity of the three
algorithms in all three databases, as shown in Table
5. PMAC outperformed the two other algorithms. The
PMAC and Newman fast algorithms yielded the similar

Table 4 Community division results and modularity of the
divided communities (Facebook network).

Algorithm Number
of communities

Modularity of
the algorithm

PMAC 5 0.5671
GN — —

Newman fast 8 0.2586

Table 5 Comparison of modularity.

Algorithm
Modularity
of Karate
network

Modularity
of Football

network

Modularity
of Facebook

network
PMAC 0.3947 0.7729 0.5671

GN 0.2738 0.3181 —
Newman fast 0.3855 0.6416 0.2586
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approximation results in the small-scale databases,
but differed in the large-scale database, as mentioned
above. Of the three algorithms, the GN is a basic
algorithm whose performance is not very good, and
is particularly unsuitable for processing large-scale
networks.

Because the PMAC algorithm uses a limited number
of steps, it has high efficiency. For the above three
datasets, we compare the time complexity of PMAC,
GN, and Newman fast algorithms in Table 6. We can
see that the PMAC algorithm exhibits better execution
time than the Newman fast algorithm for the large-scale
network, and the GN algorithm fails to cluster the final
community structures.

As we can see from Table 6, even though in the small-
scale networks the PMAC algorithm has a little higher
complexity than the Newman fast algorithms, it has
obvious advantages in large-scale networks. Generally
speaking, our algorithm trades off high accuracy for
better efficiency.

6 Conclusion

In this paper, we proposed a hierarchical community
detection method based on a limited number of random
walk steps, using the local approximate convergence
of core nodes rather than global smooth convergence
in the probability transfer matrix. To the best of
our knowledge, this approach is not mentioned in
the existing literature. PMAC calculates all the initial
communities based on the t -step probability transfer
matrix. The initial community partitions reflect the true
core nodes to represent the global structure information.
As initial communities, we only consoli-dated ordinary
nodes surrounding the core nodes, directly using local
information to quickly form small communities. We
then constructed a dendrogram of communities in
the later phase, without recalculating the nodes to
which a community belongs, which greatly improves
the efficiency of the algorithm. The optimal step
of our algorithm is nearly the best result. In the
future work, we will focus on combining the specific

Table 6 Comparisons of complexity. (s)

Algorithm

Time
consuming
of Karate
network

Time
consuming
of Football

network

Time
consuming

of Facebook
network

PMAC 0.19 3.42 335.74
GN 4.34 505.73 >10 000

Newman fast 0.09 0.12 516.29

characteristics of the target network to design a better
stopping condition for random walks and determine
how to take advantage of the information to merge tree
communities.
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