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A Heterogeneous Ensemble of Extreme Learning Machines with
Correntropy and Negative Correlation

Adnan O. M. Abuassba, Yao Zhang, Xiong Luo*, Dezheng Zhang, and Wulamu Aziguli*

Abstract: The Extreme Learning Machine (ELM) is an effective learning algorithm for a Single-Layer Feedforward
Network (SLFN). It performs well in managing some problems due to its fast learning speed. However, in practical
applications, its performance might be affected by the noise in the training data. To tackle the noise issue, we
propose a novel heterogeneous ensemble of ELMs in this article. Specifically, the correntropy is used to achieve
insensitive performance to outliers, while implementing Negative Correlation Learning (NCL) to enhance diversity
among the ensemble. The proposed Heterogeneous Ensemble of ELMs (HEZLM) for classification has different
ELM algorithms including the Regularized ELM (RELM), the Kernel ELM (KELM), and the L»-norm-optimized
ELM (ELML2). The ensemble is constructed by training a randomly selected ELM classifier on a subset of the
training data selected through random resampling. Then, the class label of unseen data is predicted using a
maximum weighted sum approach. After splitting the training data into subsets, the proposed HE%LM is tested
through classification and regression tasks on real-world benchmark datasets and synthetic datasets. Hence, the

simulation results show that compared with other algorithms, our proposed method can achieve higher prediction

accuracy, better generalization, and less sensitivity to outliers.
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1 Introduction

Ensemble learning is a machine learning paradigm
used to enhance performance results!!!. Ensembles are
known as a mixture of experts to reduce overfitting
and errors from all combined base learners and
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have proved their performance in many real-world
applications!?!. To improve the accuracy and stability
of the ensemble, different techniques have been
developed. These techniques vary by the training data
used, the type of algorithms used, and the combination
methods that are followed. Bagging!®!, boosting!*,
and their variants, such as Adaboost?!, are some of
the popular ensemble techniques. Generally, traditional
Neural Networks (NNs) suffer from overfitting and
local optimum issues, and have remained an active
research subject for performance improvement by
different methods!®”!. Then, the Extreme Learning
Machine (ELM) for NN is effective for solving many
problems, such as classification and regression!®°!. Tt
has good theoretical support and it performs well in
practical applications!!% '],

Even though ELM has reliable performance, there
is still a lot of room for improvement''?!, To improve
the accuracy and generalization, some modifications
have been recently introduced on the basis of the ELM,
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such as the Optimally Pruned ELM (OP-ELM)®®!, L,-
norm-optimized ELM (ELML2)!, regularized ELM
(RELM)3 Kernel ELM (KELM)!'*| and many
others!!> 161,

Furthermore, ensemble learning is a cheap alternative
due to its optimization performance. Accordingly,
several approaches were proposed to generate ensemble
based ELM, such as DELM!!7! and EnELM!!8!, Some
of the proposed ELM ensembles were successful
in achieving reliable performance for classification
of hyperspectral image!'”l. The Bagging-ELM (B-
ELM)?% is another ELM ensemble classifier, which
leverages the bag of little bootstraps technique and is
found efficient for large-scale data classification. An
Online Sequential-ELM (OS-ELM) based framework
supports ensemble methods including Bagging
and subspace partitioning?!!. Due to ELM’s high
performance, ELM ensembles were employed in
many real-world applications. Here we mention just
a few examples of those applications since there are
numerous examples. A landmark recognition method
was proposed using the ELM ensemble and feature
selection technique!*?!. The face-matching based ELM
ensemble was proposed®*!. An ELM ensemble based
on the Min-Max-Modular network was proposed in big
data applications>¥. An heterogeneous ELM ensemble
was designed in addressing classification problems!?>!.

Meanwhile, to improve the performance of the
ensemble, the Negative Correlation Learning (NCL)
technique is developed, which constructs base
classifiers based on negative correlation between
the learner and the other classifiers in the ensemble,
resulting in a diverse and accurate model. Diversity
among the performance of each learner in the ensemble
is essential for combining the predictions from several
member classifiers. Different techniques are followed
to introduce diversity among member classifiers. For
example, a cross-validation was proposed!!”- 18261 - Ap
ensemble learning for NNs via negative correlation
was first proposed?”). In addition, the correntropy is
used as a measure to achieve insensitive performance
to outliers. Then, a regularized correntropy was used
to train the ELM and a novel algorithm, namely
ELM-RCC, was proposed?®!,

Generally, the proposed ELM ensembles only
have one base classifier algorithm for the training
members and can be considered as homogenous
ensemble models!?® 3%, Moreover, the correntropy
is only used for learning the base classifiers. A

homogeneous ensemble model to train the classifiers
was proposed!!”- 18261 This article proposes a
heterogeneous ensemble of ELMs using correntropy
and NCL, which combines both data levels and
algorithmic levels in the ensemble learning model.

Since correntropy can improve the anti-noise ability
of the ELM, and NCL can enhance ensemble
performance, we propose a novel scheme that
combines them into one ensemble learning framework.
Furthermore, in the heterogeneous ensemble model,
different ELM algorithms are integrated for member
training. Specifically, three types of ELM algorithms,
namely, ELML2°), RELM!"3 and KELM!U4, are
used. These learners are chosen based on their better
generalization, regularization, and resilience to the
outliers. Moreover, a random resampling strategy is
developed to split the training data into subsets. Each
member classifier is learned on a randomly chosen
data subset through a randomly selected base ELM
algorithm.

The rest of this article is organized as follows.
Descriptions of correntropy, NCL, and the base learners
of our scheme are briefly reviewed in Section 2.
The HE?LM scheme and implementation details are
presented in Section 3. The weighting method is
employed for combining the predictions of all members
in the HE?LM. Simulation results of the proposed
HE?LM are provided in Section 4 while comparing
its performance with the RELM and the ELM-RCC
algorithms.

2 Background
2.1 ELM theory

According to the ELM theorem, it is implemented with
random hidden nodes. Let (x;,; )jI-V=1 be the input for
training, where x; represents the training data vector,
t; represents the training data target, and N represents
the number of input data. The ELM aims to minimize
the output weights 8 and the Mean Square Error (MSE)
simultaneously, as follows 311

Serm = 11813 + AIHB — T3 (1
where 01,0, > 0,A >0, p,qg = % 1,2,---,00,and H
is the hidden layer output matrix defined by
hi(x1) h(x1) hi(x1)
H=| : |[=| : -~ )
h(xn) h(xn) hp(xn)

where L denotes the number of hidden nodes, and for
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input vector x;, h(x;) = [h;(x ]-)]Z.L=1 represents the
output vector in the hidden layer. Furthermore, T is the
desired result of the input data, defined as
f
r=|: 3)
i

The ELM training algorithm is summarized by three
steps!”l:

e Set the biases b; and the input weights a; in a

random manner;

e Compute the matrix H;

e Compute S.
Here, B is obtained by

B=H'T )

where HY represents the Moore-Penrose (MP) inverse.
The MP inverse is computed by applying the orthogonal
projection: H' = (HTH)™'H", given that H'H is
nonsingular; or H' = HT(HH")™!, given that HH"
is nonsingular. In accordance with the ridge regression
theory, a positive matrix I/A is added to the H'H or
HH". Then, we have a solution which is equivalent to
the optimized ELM with oy = o, = 2!°. Hence, we
can have

—1
B=H" (% + HHT) T (5)

-1
g(x) = h(x)B = h(x)H" G + HHT) T (6

Considering the advantages of the ELM, we propose
to use it in our ensemble to achieve better classification
results. In ensemble learning, we use three types of
ELM versions to improve diversity among the base
classifiers. Overall, the proposed ensemble is designed
to enhance performance and it is less sensitive to noise.

2.2 Base classifiers

Three types of ELM classifiers, i.e., RELM, KELM,
and ELML2, are used as base classifiers to construct
the HE?LM ensemble. Here, we briefly introduce the
features of the selected base ELM classifiers.

First, RELM is a constrained and optimized
version of the ELM for regression and multiclass
classification!'3]. The RELM provides a good tradeoff
between the structural risk (the output weight norm) and
the empirical risk (the error) by regulating a proportion
of each during optimization. To achieve this tradeoff,
the empirical risk in the objective function is weighted
by a regulating factor.

Second, ELML?2 is a regularized version of the ELM,
which has all the advantages of the basic ELMU!.
Moreover, it introduces a Lagrange multiplier based
constraint optimization method. Therefore, it achieves
reliable performance with a different type of feature
mapping.

Third, KELM is an optimized ELM, which links
the ELM minimal weight norm property to the
Support Vector Machine (SVM) maximal margin for
classification!'¥!. It is shown that through standard
optimization of the ELM, a so-called support vector
network with a better generalization property can be
obtained by the KELM. However, compared with
the standard SVM, KELM has fewer optimization
constraints.

Explanations of all the used base learners can be
found in Refs. [9, 13, 14].

2.3 Correntropy

The generalized correlation measures the similarity
between the feature vectors by studying the interaction
between them"*> 331, Let C' = [cj’-]jT=1 andD = [d j]jT=1
be two arbitrary random vectors. Then, correntropy
between them is

VG(C/aD) = E[KJ(C/aD) (7
where K, (-) represents the kernel function used
in accordance with Mercer’s theorem!®, and E[]
represents the expectation operator. The Mercer kernel
function is the Gaussian kernel for all finite sequences
of points {(c’,d j)}le, and the correntropy is defined
by

T

~ 1

Vro(C.D) = =) Ko(cj —dj) ®)
L

If K5 () is given by

202

where o is the kernel size, then, Eq. (8) becomes

. (¢} —d;)?
Ko (cj—d;j) = G(cj—d;) = exp { —4} ©)

T

A 1

Vro(C.D) = Y " G(cj —d)) (10)
j=1

According to Ref. [33], the Maximum Correntropy
Criterion (MCC) is represented as Eq. (7). As
correntropy is insensitive to outliers, it performs better
than MSE in the case of disruptions within the input
datal33.33],

2.4 Negative correlation learning

NCL is a machine learning paradigm designed
to enhance diversity among learners so that each
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learner achieves its best performance among the
ensemble!?’]. Since the errors of the base learners are
uncorrelated (negatively correlated) and unbiased, then,
the ensemble error is

1 1 &1 2
Eem:E}EEhZEZZ{E[gh(XJ)_Y]] -

h=1,=1
2
[51(X)) = gens(X))]’} an
where g;(X;) is the output of the base learner,
Zens(X;) represents ensemble result, and O represents
the number of base learners. Here, 1 [g/(X;) — Yj]2
can be regarded as the measure of MSE.

3 Proposed Ensemble (HE?>LM)

Ensemble learning aims to construct multiple diverse
classifiers through combining their outputs. The
ensemble enhances performance more than that of the
base learners.

As the ELM uses random weights, it often has a
low misclassification rate. Various ELM ensemble
models have been proposed in Refs. [36, 37]. In this
article, we employ data splitting of the training data,
while a heterogeneous framework is designed, and three
types of ELM algorithms are used as the base learners.
Then, the ensemble is constructed by training the base
classifiers on split data. A maximum weighted sum
is computed to combine the output from all member
classifiers into the ensemble pool. Using NCL with
correntropy and different training parameters of the
base ELM learning algorithms allows each member
classifier to generate different decision boundaries;
hence, different errors are obtained which reduce the
combined error from the whole ensemble.

Since the distribution of the data is important and
affects the performance of the learning classifiers, we
divide the training dataset into distinct parts with the
same imbalanced ratio to almost preserve the original

data distribution while subsequently conducting
random resampling on the dataset. Moreover, the
obtained classifiers are more diverse and have different
errors. For example, if we divide the training data S
into 3 parts, namely S = {S1, Sz, S3}, we have three
training subsets: {S5, S3}, {S1, S3}, and {S7, S>} .

A sufficient and necessary condition for the ensemble
to outperform its base members is that component
learners should be simultaneously accurate and diverse.
Considering correntropy and NCL are both used in the
HE2LM to improve the performance of ensemble, the
proposed model can be described as follows (Fig. 1):

e Divide the original data into parts according to the

sample sizes.

e Use the random resampling technique to select the

training data.

e Randomly select the base classifier from {RELM,

KELM, ELML2} to train the selected data.

e Replace the MSE by correntropy in the objective

function of ELM.

e Use the NCL technique in the ensemble to improve

diversity among the classifiers.

e Employ the weighted sum method to test the

unseen samples in the testing phase.

In summary, data division, correntropy, NCL, random
resampling, and heterogeneous classifiers are used to
construct the HE2LM to improve performance. The
description for our proposed algorithm (HE2LM) is
listed in Algorithm 1.

3.1 Architecture

The original training dataset is divided randomly into
K subsets with equal size averagely.
N samples, the size of each subset will be N/K.
To maximize the diversity among the reconstructed
training datasets, each new training set is obtained
through resampling on (K — 1) of K subsets. Then,
each subset is trained by one base classifier selected

If we have

Split (K-1)
out of K
subsets

Original

Fig.1 The general scheme of the HEZLM algorithm.

ot o
t maximum
using a weighted
randomly sum of all
selected base
classifier classifiers
RELM ensemble and output
: the classifier
KELM | | with the
largest
ELML2 weight
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randomly out of three. The process of adding the trained
classifier to the ensemble is repeated for all remaining
subsets. The whole framework is shown in Fig. 1.

The MSE in the ELM function (Eq. (1)) is replaced
by correntropy in Eq. (10) as it is more robust when
noise exists. During the iteration, if the diversity
and accuracy of the current ensemble increase, it
will be retained in the updated ensemble. We replace
MSE (1 [gn(X;) — Y,]z) in Eq. (11) by correntropy
({G(gn(X;j)—Y;)}) to enhance the negative correlation
learning between the base classifier output and the
ensemble output. Then, the error of the ensemble in
Eq. (11) is computed by

1 o 1 O N
Eens = 5 ZEh = 5 ZZ {G(gh(Xj) - Yj)_
h=1

h=1j=1
[81(X)) = gens(X))]*} (12)

Then, the final ensemble model is a mixture of all
classifiers trained on all subsets. After the training
process is finished, the labels for the tested data are
obtained by using the weighted sum method applied
to the output of all member classifiers in the evolved
ensemble.

Algorithm 1: HE2LM

Train phase ()
Input: Original training dataset S'; the number of hidden nodes
L, threshold g, the number of iterations 7', and the number
of subsets K.
Output: Ensemble classifier model E.

1: Split the original training dataset: S = {S1,S2,---, Sk };

2: for each i (from 1to 7') do

3: for each j (from 1 to K) do

4 Set S =S — S5

5: Reconstruct training Sy by resampling on Sgup;

6 Randomly select a kind of ELM(e; ) type from the
three types {RELM, KELM, ELML2};

7: Train ELM(e; ) on S;
8: Add classifier e; to the ensemble Ek;
9: if (Ex _error < ¢) then

10: Add it to the Ensemble E

Predict phase ()

Input: Unknown sample X, ensembles classifier model £ =
{E1,E2,-- ET/};

Output: Class label of sample X .

11: Loop for E = {Ey,E>,---,E7/}

12: Compute the weighted sum of all the outputs ¥ =
[Y1,Y2,---,Y7/], then output the class label of X with the
highest weight.

Input a data set S with size N,
let K, L, and T be the number
of subsets, hidden nodes, and

iterations, respectively.

v

Divide S into K subsets

Randomly select base classifier
E, where
E.€ {RELM, KELM, ELML2}

Randomly generate N hidden
nodes using E, and training set

Calculate weighted error

Error<threshold?

Yes
Add E;into E

N
0 > i:i+l
Yes
No

$ Yes
Output E

End

Fig.2 Flowchart for ensemble construction in HEZLM.

3.2 Implementation

The implementation for the ensemble construction and
training is described in Fig. 2. Given a testing instance
(¥, ¥¢), an ensemble of T’ predictors is created. For
pattern y in the ensemble, we use the weighted sum
to make the final decision. Suppose that there is a
C-class problem, we calculate the weighted sum for
all classifiers for all classes. The class that receives
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the maximum weighted sum from all predictors is
considered the predicted label:

T/
L(y) =argmax Y om- (fu(y)=L)  (13)
m=1
where o, is the weight of the base learner and f,(y) is
the prediction result.

4 Simulation and Discussion

4.1 Simulation settings

To test the performance of the HE2LM, we conduct
the simulations on datasets from a machine learning
repository (UCI)1®8. The simulations are for both
classification and regression datasets. Tables 1 and
2 show the descriptions for the classification and
regression datasets, respectively. More details of the
datasets can be found on the web pages of those
repositories. Simulations are conducted in MATLAB
8.1.0, using an Intel Core i5 processor with 2.4 GHz
CPU and 4 GB RAM. To remove any biases from
the results, we repeat the simulation and compute
the average accuracy for all iterations. Using random
resampling, the training data is split into 2-8 subsets
with equal size, according to the number of instances in
the datasets. The error function is the error rate of all

Table 1 Descriptions for the classification datasets.

Number of Number of Number of Number of

Dataset features train test classes
Balance 5 312 313 3
Dermatology 35 286 72 6
USPS 256 7792 1506 10
Isolet 618 6238 1559 26
Hayas 5 132 28 3
Climate 18 390 150 2
Hepatitis 19 120 30 2
Pima 8 615 153 2
Liver 6 245 100 2
Vowel 13 781 209 10
Credit 24 796 204 2

Table 2 Descriptions for the regression datasets.

Dataset leer;?l%s(’f NU{?;%Y of Nur?ebsft:r of
Servo 5 83 83
Yacht 6 154 154
Stock 8 267 267
Self-Noise 6 752 751
Slump 10 52 51

misclassified samples.

To evaluate our method, we use average accuracy
to measure the generalization performance as an
indication of the classification output correctness. The
cost of training new test data should not have a
significant effect on the ensemble accuracy when we
train the ensemble with any training set, whose size
is a bit more, or less than the original data. Standard
deviation of the accuracy rates is used as an indication
of the ensemble’s stability, where lower standard
deviation indicates a more stable method.

4.2 Synthetic data

We test the proposed method on two synthetic datasets
for classification and regression as follows.

The Two-Moon synthetic dataset for classification
contains 200 data samples. The 100 positive samples
are generated by

fn) =

X1 = cos(z),

2 = sin(z),

and the negative samples are generated by

fn) = X1 =1+ cos(z),

2 = % — sin(z),

where z € (0, 7).

To test the sensitivity to noise, we randomly chose
different percentages of the training data in each dataset
and disrupted their target labels randomly by converting
the class label sign, i.e., 1 to —1, or —1 to 1. Figure 3
shows the distribution of the classes.

For the Sinc synthetic dataset for regression which

D (]
D @
® o O @
0.6} ge & 3%
. o ©
% 2]
o 3°
®
02f o008 -
~ 8 olo}
= %@ %
02 4 @ @%
%Q
0.6

1' L L L L
3.5 20 15 1.0 05
Data samples

Fig.3 The distribution of the positive and negative classes in
the Two-Moon dataset, where @ represents the positive data,
O represents the negative data, and red nodes represent the
noise.
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contains 200 data samples, the data samples were
generated using the function f(x) = S”’xﬂ—i— v, where
v represents the Gaussian noise. The samples are drawn
uniformly from [—5, 5] for each noise level.

4.3 User-specified parameters

The classification and regression simulations on
the datasets are performed using the ELM-RCC?®,
RELM!¥, and HE?LM algorithms. To attain better
generalization, the parameters of the base ELM
classifiers and regressors (RELM, KELM, and
ELML2), C, kernel parameter A, and o for Gaussian
should be carefully selected. During the simulations,
we test different values of C, A, and o upon all datasets.
The range of A is {0.1,0.2,---,10}, the range of C
is {0.2,0.4,0.5,2,4,---,50}, and the range of o is
{1.1,1.2,---,14}. The number of hidden nodes is
selected from the range {10,20,---,1000}. Tables 3
and 4 show the optimum case of the selected parameters
for classification and regression, respectively.

Table 3 Parameters used by ELM-RCC, RELM, and
HEZLM in the classification datasets. Here, “nh” means the
number of hidden nodes.

Dataset ELM-RCC RELM HE2LM

(C, 0,nh) (C, nh) (C,0,nh, 1)
Balance (10, 9, 450) 0.2, 15) (6, 7,600, 0.1)
Dermatology (6, 7, 350) (0.2,30) (6,7, 600, 1.8)
USPS (30,9, 600) (50, 1000) (30,7, 1000, 0.3)
Isolet (10,9,450)  (30,700) (30,7, 1000, 0.3)
Hayes (20,8,500)  (0.5,50) (20, 5, 330, 0.9)
Climate (30, 14, 600)  (20,300) (36, 8,300, 9)
Hepatitis (8,5,100)  (4,100)  (6,9,300, 1.1)
Pima (4, 3,30) (16, 20) (8, 8,20,0.9)
Liver (22,4,30)  (14,70) (26, 6, 40, 0.9)
Vowel (6, 3, 60) (8, 40) (12, 3, 30, 0.6)
Credit (28,0.4,150) (12,120) (16,4, 170, 1.3)

Table 4 Parameters used by ELM-RCC, RELM, and
HE?LM in the regression datasets. Here, “nh” means the
number of hidden nodes.

Dataset ELM-RCC RELM HE2LM
(C, 0,nh) (C, nh) (C,0,nh, 1)
Servo 0.2, 0.9, 50) 4, 30) (10, 3, 20, 0.6)
Yacht (2,2, 40) (6, 30) (12, 6,70, 1.2)
Stock (4, 6, 90) (18,110) (22,6, 100, 0.8)
Self-noise (14, 2, 90) (16,40) (14,7, 80, 0.6)
Slump 4,0.2,20) (22, 140) (20, 9, 220, 0.3)

4.4 Simulation results

The average error rates of the simulations for
classification and regression are shown in Tables 5
and 6. These tables show that our method achieves
the lowest error rates in almost all cases compared
with the ELM-RCC, and in most cases compared with
the RELM. Compared with the ELM-RCC and the
RELM, the relative error reduction is 18% and 17%,
respectively, upon the classification datasets, and it is
7% and 23%, respectively, upon the regression datasets.
Meanwhile, we also provide a comparison for the
standard deviation of the accuracy rates in Tables 7
and 8 for the classification and regression datasets,
respectively. We observe that the standard deviation of
the accuracy rates of the HE?LM is better than those of
the RELM in almost all datasets and approximately the
same as those in the ELM-RCC.

For the Two-Moon synthetic dataset, the testing
results of the ELM-RCC, RELM, and HE’LM
algorithms are shown in Fig. 4-6, respectively. These
figures indicate that the HE?LM algorithm produces a
smoother boundary compared with both the ELM-RCC
and RELM algorithms.

Table 5 Error rates of ELM-RCC, RELM, and HE2LM
upon the classification datasets.

Dataset ELM-RCC RELM HE’LM
Balance 0.0900 0.0895 0.0777
Dermatology 0.0500 0.0500 0.0417
USPS 0.0691 0.0400 0.0598
Isolet 0.0733 0.0990 0.0475
Hayes 0.2600 0.1500 0.2143
Climate 0.1044 0.1089 0.0956
Hepatitis 0.1420 0.1400 0.1200
Pima 0.3540 0.3652 0.3185
Liver 0.3000 0.3533 0.2500
Vowel 0.3400 0.3500 0.3200
Credit 0.2352 0.2418 0.2156

Table 6 Error rates of the ELM-RCC, RELM, and HE2LM
algorithms upon the regression datasets.

Dataset ELM-RCC RELM HE?LM
Servo 0.7700 0.7850 0.6375
Yacht 9.5457 12.8740 9.1094
Stock 0.0045 0.0046 0.0045
Self-Noise 6.4511 8.7476 6.1677
Slump 3.2800 3.4100 3.1762
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Table 7 Standard deviation of accuracy rates of the ELM-
RCC, RELM, and HE2LM algorithms in the classification
datasets.

Dataset ELM-RCC RELM HEZLM
Balance 0.0067 0.0166 0.0121
Dermatology 0.0158 0.0212 0.0139
USPS 0.0848 0.0171 0.0063
Isolet 0.0055 0.0287 0.0006
Hayes 0.0160 0.1288 0.1351
Climate 0.0038 0.0102 0.0038
Hepatitis 0.0552 0.0588 0.0451
Pima 0.0350 0.3310 0.0299
Liver 0.0510 0.0503 0.0469
Vowel 0.0386 0.0522 0.0208
Credit 0.0186 0.0143 0.0264

Table 8 Standard deviation of accuracy rates of ELM-RCC,
RELM, and HE?LM algorithms in the regression datasets.

Dataset ELM-RCC RELM HE2LM
Servo 0.1185 0.1820 0.1298
Yacht 0.1073 0.1089 0.1114
Stock 0.000 04 0.00006 0.000 01
Self-Noise 0.1300 0.1305 0.1091
Slump 0.9225 0.8801 0.7224
1.0r
06r
021
~
&
~
-0.2
-0.6
0]
@ -

-10—
-25 -20 -15 -10 -05 0 05 1.0 15 20

Data samples

Fig. 4 The classification results of RELM algorithm upon
the Two-Moon dataset.

For the Sinc synthetic dataset, the testing results
of the ELM-RCC, RELM, and HE?LM algorithms
with noise, v ~ N(0,0.1) are shown in Fig. 7. From
Fig. 7, the HE2LM algorithm is more robust against
noise compared with both the ELM-RCC and RELM
algorithms as the regression errors of HE?LM, ELM-

1.0

0.6

02t ®

S @o®

~ o
02 ° 9%
06

20 -15 -10 -05 0 05 10 15 20
Data samples

Fig. 5 The classification results of ELM-RCC algorithm
upon the Two-Moon dataset.
1.0
0.8F
0.6F

041

02} ég& @

Q)
)

-1.0——
-25 -20 -15 -10 -05 0 05 10 15 20

Data samples

Fig. 6 The classification results of HE?LM algorithm upon
the Two-Moon dataset.

RCC, and RELM algorithms are 0.0985, 0.1082, and
0.1020, respectively.

Figures 8 and 9 demonstrate that the HE?LM
algorithm outperforms both the ELM-RCC and RELM
algorithms.

5 Conclusion

In this article, we propose an advanced approach
for classification using a heterogeneous ensemble,
namely the HE’LM ensemble to deal with noisy
data. To achieve diversity within the proposed HE?LM
ensemble, different ELM algorithms, i.e., RELM,
KELM, and ELML2, are integrated and each one is
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Fig. 7 Display of the regression results of HE’LM, ELM-
RCC, and RELM algorithms upon the Sinc dataset with
Gaussian noise v ~N(0, 0.1) (S(n) = S'“nﬂ + v).
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Fig. 8 Display of accuracy rates results of HEZLM, ELM-
RCC, and RELM algorithms upon the classification data-
set. Here, “Derm”, “Clim”, and “Hep” mean Dermatology,
Climate, and Hepatitis datasets.
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Fig.9 Display of error rates results of HE>LM, ELM-RCC,
and RELM algorithms upon the regression dataset.

independent of the other. To enhance the accuracy
rate in the proposed ensemble, we learned various
parts of the original training dataset with different
types of ELM classifiers. In the proposed HE?LM
algorithm, we replaced MSE by correntropy in the
ELM objective function, and employed a negative

correlation in the learning process to produce a more
robust ensemble against noise. Moreover, we employed
a random resampling technique in the training data to
allow the base classifiers to generate different decision
boundaries and different errors, while reducing the total
error. Hence, the final ensemble is less sensitive to
noise and achieves better generalization performance.
Simulation results on benchmark and synthetic datasets
result in higher accuracy rates and lower standard
deviations compared with the ELM-RCC and RELM
algorithms and verify the effectiveness of the proposed
HE?LM ensemble.
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