
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll10/15llpp675-681
Volume 22, Number 6, December 2017

SCStore: Managing Scientific Computing Packages for Hybrid System
with Containers

Wusheng Zhang, Jiao Lin, Weiping Xu, Haohuan Fu, and Guangwen Yang�

Abstract: Managing software packages in a scientific computing environment is a challenging task, especially in the

case of heterogeneous systems. It is error prone when installing and updating software packages in a sophisticated

computing environment. Testing and performance evaluation in an on-the-fly manner is also a troublesome task

for a production system. In this paper, we discuss a package management scheme based on containers. The

newly developed method can ease the maintenance complexity and reduce human mistakes. We can benefit

from the self-containing and isolation features of container technologies for maintaining the software packages

among intricately connected clusters. By deploying the SuperComputing application Strore (SCStore) over the

WAN connected world-largest clusters, it proved that it can greatly reduce the effort for maintaining the consistency

of software environment and bring benefit to achieve automation.

Key words: high performance computing; package management; container; hybrid system

1 Introduction

Due to the various package and dependency
requirements of different scientific computing
applications[1–3], providing a reliable scientific
computing environment on a cluster can be a
challenging task that involves the following issues:
(1) Co-existing of multiple versions of same software
packages[4]. There are often scenarios in which a single
application may link to multiple versions of libraries
in the same runtime environment; moreover, users
from multiple application areas utilize various versions
of numerous software packages to carry out their

�Wusheng Zhang, Weiping Xu, and Guangwen Yang are
with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China, and National
Supercomputing Center in Wuxi, Wuxi 210008, China. E-mail:
fzws, xwp, ygwg@tsinghua.edu.cn.
� Jiao Lin is with the Department of Computer Science and

Technology, Tsinghua University, Beijing 100084, China. E-
mail: linjiao@tsinghua.edu.cn.
�Haohuan Fu is with the Department of Earth System Science,

Tsinghua University, Beijing 100084, China, and National
Supercomputing Center in Wuxi, Wuxi 210008, China. E-mail:
haohuan@tsinghua.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2017-10-18; accepted: 2017-11-16

simulations[5]. (2) The requirement to keep consistency
among all working servers[6]. We should keep a strictly
consistent view of software configurations among all
the servers involved in the computing farm. It is a
nontrivial job to maintain multiple copies of same
software packages and to synchronize among different
nodes. (3) On-demand update of dynamically linked
libraries. There are also cases that involve adding or
changing the dynamically linked libraries according
to the computation tasks. Those operations should be
carried out without interfering the existing working
copies or running instances[7, 8]. (4) Easy-to-use backup
and recovery[9–11]. For safety and maintenance reasons,
we are required to design a mechanism that can help the
backup and recovery of the entire application store. We
also prefer a backup and recovery scheme without re-
configuration operations. (5) Performance. Scientific
computing tasks usually are floating point arithmetic
intensive applications. The installed packages should
assure both high performance and consistent precision.
To handle these issues, we developed a globally-shared,
and container-managed SCStore in an out-of-the-box
manner.

2 Mechanisms of the SCStore

Containers like docker, provide good isolation and self-



676 Tsinghua Science and Technology, December 2017, 22(6): 675–681

containing service, which are useful for the
management of the scientific computing software
packages[4]. Our container-based SuperComputing
application Strore (SCStore) is a set of daemon
and tools, which provide services for handling user
environment configuration, package management,
execution context isolation, etc. It consists of several
basic operations. The basic components of the SCStore
are described as follows.

2.1 Application image

The application image is a docker image that provides
a set of programs with similar functions. We use
these images to pack real world applications or
routine libraries and middle ware called by the real
applications[12–16].

2.2 Reference graph

We define a reference graph for building the application
images as

ref graph= f< V; E >g ;
where

V W docker imageI

E W link between two docker images.
A set of application docker images are the vertices of

the graph. For example, if an executable inside docker
image X depends on a library inside docker image Y,
then we have an edge from X to Y. The reference graph
can be “calculated” at runtime to form a tree. Different
application environments will calculate different trees
based on the same reference graph.

2.3 Tracking the dependency

Operation
ldd map(app) W

fdependencies j app name! library namesg :
As shown in Table 1, this operation will find all

dependencies of an application executable, create a
dependent library set, and then add the elements of
the set into a description file called DockerFile. The
dependencies of an executable are obtained by running

Table 1 Operation sub graph (executable).

(1) Execute the ldd tool, to get dependency outputs.
(2) Parse the outputs to construct a dependency tree.
(3) Follow the dependency tree to walk through the

complete reference link of the docker image.
(4) Extract the libraries packed in the linked docker images

and build the execution image using related binary files
and executable(s).

Fig. 1 Reference graph example.

Linux command ldd. The docker images link to each
other according to the relation of reference.

Figure 1 shows part of contents from a reference
graph. Each container is configured to export the
general information (including the packages and
libraries they provide, the configuration parameters a
package or library requires, etc.) to their linked pair
container.

We also have to define a mapping operation, which is
the sub graph operatoin:

sub graph (executable): f< V; E >g ;

where

V W the docker images that contain

dependencies of the executable;

E W the link relation between these images.
This sub graph operation will extract a sub tree from

the reference graph, and the tree will form a final
execution docker image. SCStore will export the image
to the compute nodes for mounting. Table 1 gives the
basic procedure of the sub grap operation.

2.4 Stage-in and stage-out

The stage-in and -out operation is for synchronization
between the docker image and the external file system.
We may need to install some packages inside the
SCStore image or in the actual OS running on their
hosting systems. After finishing the validation and
verification, we would use this operation to keep
the consistency between the SCStore image and its
hosting environment. The core function of stage-in and
stage-out operation is to map between the directory
structures in SCStore image and in the actual hosting
OS. The mapping is guided by the configuration, which
translates the directory structure upon stage-in and



Wusheng Zhang et al.: SCStore: Managing Scientific Computing Packages for Hybrid ... 677

stage-out.

2.5 Tailoring of the user environment

This operation is intended to prepare execution
environment for the users who logged into the
computing system. It finds and mounts the docker
image instances for the login user, and prepares the
environment variables, compiling tools, job submission
scripts, and some other user or application specific
configurations. When the users login to the frontend
server, the login shell preprocess mechanism will
trigger the tailor tools to run before the login
shell prompts. The tailor program is designed to be
extensible. Both the users and the administrator can
customize the tool chain and add their task-oriented
implementations.

3 Managing Multiple Versions of Software
or Libraries as a Unified Runtime
Environment

In many scientific computing application areas, the
same executables are needed to run on diverse
environments (with distinct OS, CPU, network, etc.),
and the researchers usually need to run different
versions and have them linked to various libraries in
order to carry out comparison and verification. Based
on the container-aided package managing, we can easily
maintain the relationship between executables and their
linked libraries. With the reference graph, one can walk
through the link relation among containers that define
the related binaries, build a dependency tree, and finally
create the new application image.

For example, we have a Vasp program running on a
CentOS-6.5 and a CentOS-7.3 platform, which adopt
Intel Xeon X5670 and E5-2690-V4 CPUs, respectively.
The Vasp program links to different libraries and was
generated by two different versions of Intel compilers
on each platform. We need to provide a unified job
submission scheme to each of the users from the above
environments respectively, and to enable the program
to run in different OS contexts. Figure 2 illustrates
the usage of SCStore to hide the version differences of
two type of environments from the users. According
to the definition of the state-in operation, SCStore can
map each version of the Vasp program into the two
independent images with the same directory structure.

Fig. 2 Directory mapping and version management.

4 Maintaining Consistency Among
Sophisticate Environments

In a complex application environment, users could
be using different versions of the same software
simultaneously in certain cases. The application
executables may introduce numerous library
dependencies, which can often lead to conflicts
between different versions of the same libraries. To
detect and solve the conflicts is not an easy task.
Base on our container-based SCStore, we can derive
the dependency for specific runtime environments,
which will further stabilize the performance and
certainty of the behavior of the applications. With
SCStore, the images of the applications are created to
be dependency aware, by tracking the actual package
dependencies. Once the software binaries are packaged
into the image, it will solidify the dynamic linking
relationships; changes on the compute node will not
affect the library loading.

5 Package Updating

To update the installed executables and libraries in
place without interfering or interrupting the running
tasks is another challenge in the management of
scientific computing environments. The straightforward
approach is to update the same library files located at
the leaf of the linked dependency tree. However, if
we have tasks that rely on these library files running
during the updating process, there will be conflicts
introduced. Waiting for the applications to finish is not
a cost effective solution, as there could be different jobs
that lock the same files for a long period of time.

The SCStore will provide us the ability to update
software packages in-place with an “offline” way, and
let the online application switch their linking gradually
upon restarting.

For example, the climate simulation program CESM



678 Tsinghua Science and Technology, December 2017, 22(6): 675–681

(Fig. 3) will dynamically load a NETCDF library at
runtime. Assume that we need to switch the library
from old version 4.4.6 to a new version 4.6.7, but there
are still some instances running with the old version. A
common solution is to wait for the programs to finish,
to put the services offline, to get the change done, and
then to put the services online again. This may cause a
long waiting time, and could be error prone. Instead of
this “serial” updating scheme, the SCStore can perform
the work in a parallel and pipelined way. While the
CESM instances are running on NETCDF 4.6.6, we
can finish the installation, testing, and verification with
version 4.6.7 on a logically separated environment; then
build up the image, with newly created libraries. After
exporting the new image, compute nodes will auto-
mounted to the appropriate docker instance. SCStore
will inject an environment initialization hook into the
user’s profiling script chain, which will automatically
inform and guide the user into the new application
context.

6 Keep the Application Farm Trustable and
Easy to Backup and Recovery

Scientific computing systems may sometimes have
untrusted user logged in. The application binaries may
be tampered with or replaced by malicious code. Scan
virus in a large-scale application farm means we need
to stop the service for a long time. Therefore a backup
and recovery mechanism is also critical for a large-scale
scientific computing system that supports wide range
of applications and huge amount of concurrent users.
By applying the container technology, the SCStore can
provide a restricted and semi-offline sandbox to host
the application binaries; furthermore, it is even able to
configure them to be read-only at runtime. In SCStore,

Fig. 3 Package updating and image switching.

the backup and recovery operations are carried out in
an out-of-the-box manner, i.e., transfer files in and
out only on the servers the docker image is running,
and usually located at a sub-network independent of
compute nodes. After copying in and out the affected
files at the background, the fresh healthy image can
be rebuilt and re-exported to the compute nodes again,
without interrupting the running system.

7 Implement User Oriented Deployment

Scientific computing environments are usually domain-
specific. For example, there are not any common library
dependencies between the climate simulation model
and the first principle calculation, except that they
may be commonly linked to some low level libraries
such as glibc. It provides a cleaner environment if we
isolate one application domain from another. SCStore
can encapsulate related applications into partitioned
container linking trees, and share the same low layer
libraries among different application images. Such an
approach can greatly simplify the users environment,
and keep the runtime sane and clean. Figure 4
shows the application area oriented encapsulation and
partitioning. Only a few packages are listed in
the figure. For example, with the FFTW package,
some applications may dynamically link to FFTW-3.3.3
generated by gcc-5.4.0, but some others may depend on
the versions compiled with Intel compiler 2015.

In this example, User A comes from the Department
of Physics and mainly carries out the material
simulation work; and User B comes from the
research group of biology, who mainly performs
the bioinformatics computation work. Executables
from both application areas may depend on the same
underlying libraries with variant version number

Fig. 4 Package updating and image switching.



Wusheng Zhang et al.: SCStore: Managing Scientific Computing Packages for Hybrid ... 679

or different compiling schemes. It is confusing
to configure the global environment variables to
accommodate the differences between the users,
especially with the possibility of PATH conflicts.
SCStore hides these conflicts by packing the
executables and their dependencies into a unified-
structured image; and furthermore, tools provided by
the SCStore can track the dependencies and maintain an
identical directory organization. This function is also
helpful for license management, providing exclusive
access to only authorized users.

8 Address Performance Evaluation and
Verification Issues

When we update some underlying libraries, before
switching to the newly installed package, we usually
have to confirm if the computation can be performed as
before. Users of such applications pay close attention
to the correctness and performance. When we update
and alter the package in-place, this could interfere with
the running applications. SCStore is able to support
the performance evaluation and correctness verification
after in-place updating.

As shown in Fig. 5, assume we need to run new
linpack testing with Mvapich version 2.3a, but there is
already a test running on compute node set x, which
links Intelmpi version 4.1. We shall not affect the task
on compute node set x, but need to start a new test
with compute node set y. To achieve this, we create
a new docker image B based on the original version of
image A, update the HPL binary with Mvapich version
2.3a, and then switch the mount point on compute node
set y to the newly created docker instance B. The new
testing will run simultaneously without affecting the
running task on compute node set x. After the two
test are finished, we can verify the results to ensure
the performance and correctness. Depending on the
utilization situation, the two versionss of HPL can be
kept at the same time or the old version will be replaced
with new one.

Fig. 5 On-the-fly verification and performance evaluation.

9 Deployment

SCStore was deployed on the supercomputing platform
of Tsinghua University and National Supercomputing
Center in Wuxi (WXSC); both are running large scale
of computing clusters, which perform thousands of jobs
per day submitted from multiple application areas. We
built SCStore on the clusters with a linked graph of
docker images.

SCStore consists of several SCStoreServers,
management daemons, and a set of utilities. The
SCStoreServers that host libraries, application
executables, and tools are named Appserver[0-
n] or psn[001-n]. Docker image instances which
pack applications, and their dependencies are run
among the Appservers according to load balance
and management strategy. The background daemons
running on Appservers are in duty of image managing.

Sunway TaihuLight supercomputer is a hybrid
scientific computing system[10]. Table 2 shows the main
hardware types in National Supercomputing Center in
Wuxi (WXSC). It consists of 40 960 Sunway nodes, 980
2-way Intel xeon E5-2680 v3 nodes, 32 8-way Intel E7-
8860 v3 nodes, and 64 Nvidia K40 nodes.

For the purpose of resource sharing, we also connect
the campus cluster in Tsinghua University with WXSC
via multiple CERNET tunnels (Fig. 6), with the two
systems interoperable to each other. This means we
should prepare several formats and/or versions of the
same software, and train the user how to tell the
differences between multiple versions.

Figure 7 shows a simplified view of our SCStore,
which is deployed both on the supercomputing platform
of Tsinghua University and WXSC, except that
SCStore on WXSC contains special image instances
for the Sunway system. The application software
can be open source, commercial license, or self-
developed, which requires different usage strategy

Table 2 Hardware summary from Tsinghua and WXSC.

Node type Amount Feature

WXSC

Sunway 40 960 SUNWAY 26010
Sugon 2-way 980 Intel E5-2680 v3
Sugon 8-way 32 Intel E7-8860 v3
Inspur GPU 64 NVidia K40

Tsinghua

Inspur 2-way 800 Intel X5670
Dell 2-way 64 Intel E5-2670 v2
Dell 2-way 12 Intel E7-4830 v2

Nvidia GPU 32 Intel E7-8860 v3



680 Tsinghua Science and Technology, December 2017, 22(6): 675–681

Fig. 6 Illustration of system deployment.

Fig. 7 SCStore demonstration.

and/or pattern. For example, users who develop
program by themselves may need privacy protection
from other users; commercial licensed software may
not be allowed to be called by non-authorized users;
administrators may not want the fluid mechanics
programs to appear in their working area of users
from bioinformatics. At the same time, we may hope
users from the Material Science Department and the
Thermo-physics Department can both have access
to the first principle program Vasp. Some software
codes have versions for both the Sunway platform
and the x86 64 clusters, such as Vasp, Wrf, Cesm,
LAMMPS, OpenFoam, etc. Running of these programs
needs to distinguish Sunway jobs and x86 64 jobs.
We use SCStore to deploy and dispatch the self-
contained docker image as software farm for user login
environment and execution environment. In above
systems, application images are packed dynamically
according to the user group and management strategy.

10 Conclusion

We developed a software package management system
for supercomputer system. The SCStore utilizes
the container technology to ease the installation
and updating of software on a complex computing
environment. With the SCStore, one can easily achieve
strict consistency of the status of software packages
among huge amount of computing nodes. It can help the
administrator to obtain automation, and it also can bring
benefit on DevOps of the supercomputer system. The
deployment on the Taihu-light Supercomputer and the
campus computing facility of Tsinghua University has
proved that it can work smoothly in a WAN connected
heterogeneous computing environment.

Acknowledgment

Thanks to Prof. Shimin Hu, who gives a lot of valuable
comments and advises upon preparing this paper. This
work was supported by the National Key R&D Program
of China (No. 2016YFA0602100), the National Natural
Science Foundation of China (No. 91530323), and
Open Fund of Key Laboratory of Data Analysis and
Applications, SOA (No. LDAA-2014-03).

References

[1] G. Vallee, T. Naughton, S. Bohm, and C. Engelmann, A
runtime environment for supporting research in resilient
HPC system software & tools, in International Symposium
on Computing and Networking (CANDAR), 2013, pp. 213–
219.

[2] A. Morari and M. Valero, HPC system software for
regular and irregular parallel applications, in IEEE
International Symposium on Parallel & Distributed
Processing Workshops and PhF Forum, 2013.

[3] K. Wang, A. Kulkarni, M. Lang, D. Arnold, and
I. Raicu, Exploring the design tradeoffs for extreme-
scale high-performance computing system software, IEEE
Transactions on Parallel and Distributed Systems, vol. 27,
no. 4, pp. 1070–1084, 2016.

[4] T. Adufu, J. Choi, and Y. Kim, Is container-based
technology a winner for high performance scientific
applications? in Network Operations and Management
Symposium (APNOMS), 2015, pp. 507–510.

[5] K. Lv, Z. Zhao, R. Rao, P. Hong, and X. Zhang, PCCTE: A
portable component conformance test environment based
on container cloud for avionics software development, in
International Conference on Progress in Informatics and
Computing (PIC), 2017, pp. 664–668.

[6] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee,
A. Moody, B. R. de Supinski, and S. Futral, The spack
package manager: Bringing order to HPC software chaos,
in SC’15: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysisy, 2015, pp. 1–12.



Wusheng Zhang et al.: SCStore: Managing Scientific Computing Packages for Hybrid ... 681

[7] G. Becker, P. Scheibel, M. L. Gendre, and T. Gamblin,
Managing combinatorial software installations with spack,
international workshop on Hpc user support tools, in
SC’15: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysisy, 2016, pp. 14–23.

[8] E. Dolstra, M. de Jonge, and E. Visser, Nix: A safe and
policy-free system for software deployment, in Proceedings
of the 18th Large Installation System Administration
Conference (LISA XVIII) LISA’04, 2004, pp. 79–92.

[9] K. Hoste, J. Timmerman, A. Georges, and S. De
Weirdt, Nix: A safe and policy-free system for software
deployment, in High Performance Computing Networking
Storage and Analysis Proceedings, 2012, pp. 572–582.

[10] G. Yang, W. Zhao, N. Ding, and F. Dun, “Sunway
Taihulight” and its applications, KEXUE, vol. 69, no. 3,
pp.12–16, 2017.

[11] A. DiGirolamo, The smithy software installation tool,
http://github.com/AnthonyDiGirolamo/smithy, 2012.

[12] HashDist: Reproducible, Relocatable, Customizable,
Cross-Platform Software Stacks for Open Hydrological
Science, 2013, http://github.com/hashdist.

[13] M. Howell, Homebrew the Missing Package Manager for
OS X, http://brew.sh.com, 2017.

[14] ROCKS: Open Source Toolkit for Real and Virtual
Clusters, http://www.rocksclusters.org, 2017.

[15] The MacPorts Project Official Homepage, http://
www.macports.org, 2017.

[16] About FreeBSD Ports, http://www.freebsd.org/ports, 2017.

Wusheng Zhang received the MEng and
PhD degrees from Tianjin University and
Tsinghua University, in 2007 and 2010,
respectively. He focuses on research of
parallel and distributed computing.

Jiao Lin obtained the MEng degree from
Tsinghua University in 2005. Her current
research interest is parallel computing.

Weiping Xu received the BEng degree
from Tsinghua University in 1992. He
is in duty of the system administration
of National Supercomputing Center in
Wuxi and the campus computing platform
in Tsinghua University. He is interested
in cluster computer system, parallel file
system, and engineering computing.

Haohuan Fu recieved the BEng degree
from Tsinghua University (2003), MPhil
degree from City University of Hong Kong
(2005), and PhD degree from Imperial
College London (2009). He is the deputy
director of the National Supercomputing
Center in Wuxi, and also an associate
professor in the Ministry of Education Key

Laboratory for Earth System Modeling, and Department of Earth
System Science in Tsinghua University. His research focuses
on providing both the most efficient simulation platforms and
the most intelligent data management and analysis platforms for
geoscience applications.

Guangwen Yang is a professor in the
Department of Computer Science and
Technology at Tsinghua University and the
director of the National Supercomputing
Center in Wuxi. His research interests
include parallel algorithms, cloud
computing, and the earth system model.
He received the PhD degree in computer

science from Harbin Institute of Technology in 1996. He has
received the ACM Gordon Bell Prize. He is a senior member of
CCF.


		2017-12-12T15:35:36-0500
	Preflight Ticket Signature




