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Trusted Attestation Architecture on an Infrastructure-as-a-Service

Xin Jin, Xingshu Chen�, Cheng Zhao, and Dandan Zhao

Abstract: Trusted attestation is the main obstruction preventing large-scale promotion of cloud computing. How

to extend a trusted relationship from a single physical node to an Infrastructure-as-a-Service (IaaS) platform is a

problem that must be solved. The IaaS platform provides the Virtual Machine (VM), and the Trusted VM, equipped

with a virtual Trusted Platform Module (vTPM), is the foundation of the trusted IaaS platform. We propose a

multi-dimensional trusted attestation architecture that can collect and verify trusted attestation information from

the computing nodes, and manage the information centrally on a cloud management platform. The architecture

verifies the IaaS’s trusted attestation by apprising the VM, Hypervisor, and host Operating System’s (OS) trusted

status. The theory and the technology roadmap were introduced, and the key technologies were analyzed. The

key technologies include dynamic measurement of the Hypervisor at the process level, the protection of vTPM

instances, the reinforcement of Hypervisor security, and the verification of the IaaS trusted attestation. A prototype

was deployed to verify the feasibility of the system. The advantages of the prototype system were compared with

the Open CIT (Intel Cloud attestation solution). A performance analysis experiment was performed on computing

nodes and the results show that the performance loss is within an acceptable range.
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1 Introduction

The promotion and effective use of cloud services
depend on the credibility of cloud computing[1, 2]. The
root of the trust problem in cloud computing is that
users lose the ability to directly control the data and
the operating environment. The users data may be
threatened in two ways, on the one hand it may suffer
theft and destruction by the cloud providers[3], on
the other hand it may be threatened by other cloud
users because of cloud computing shared resources[4].
User identity and other mandatory access control
measures can mitigate the risk of data leakage to a
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certain extent[5], but cannot fundamentally fix the cloud
platform credibility problem.

Virtualization technology is one of the key
technologies in cloud computing, where the traditional
host is replaced by a Virtual Machine (VM)[6]. It
effectively improves the use of resources, reducing the
cost of management, however it also presents a growing
number of security risks such as improper isolation
among VMs, VM escape, VM hijacking, and dynamic
changes in VM network topology. These security
factors make the VM security issue more complex
than in a traditional host. The VENOM vulnerability
appeared in 2015 enabling VM escape from theory to
reality[7].

As a type of system security technology, Trusted
Computing[8] has played a large role in solving the
security problems of traditional computer systems.
Using Trusted Computing technology to solve the
credibility problems of the cloud has become a
trend in Trusted Cloud development. We allocated a
virtual trusted root (a virtual Trusted Platform Module,
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vTPM[9]) to a VM, using virtual trusted computing
technology to solve the credibility problem of VM.
However, how to protect a running Hypervisor has now
become an urgent problem.

This paper presents a trusted attestation architecture
for cloud platform. In this architecture, the platform
administrator can monitor the realtime trusted status of
the host Operating System (OS), the Hypervisor, and
specific VMs in trusted computing nodes. To ensure
the security of the cloud platform, the administrator can
take appropriate action to deal with any alerts.

The rest of the paper is organized as follows.
Section 2 introduces related background knowledge.
In Section 3, we demonstrate the theory of trusted
attestation architecture. In Section 4, we analyze the
key technologies involved in the architecture. Section
5 shows analysis of our design and Intel Open CIT
technology[10]. In Section 6, we analyze the application
prospects for the architecture.

2 Background and Related Work

A Trusted Platform Module (TPM) is a small
tamper proof hardware chip embedded in most recent
motherboards and offers a trusted hardware root bound
to a single, standalone device. The TPM is equipped
with encryption keys that never leave it, which reduces
the possibility of those keys being compromised. The
module has the virtue of remote authentication and
interacts with a symmetric key, which can be used for
various cryptographic purposes, from the protection of
network communications to data encryption. In the
Infrastructure-as-a-Service (IaaS)[11] context, it ensures
that only a remote resource, in which the user is
communicating using the TCG protocol, can interact
with the ciphered data.

Shen and Tong[12] addressed cloud computing
security challenges by proposing a solution called
the Trusted Computing Platform (TCP). A trusted
cloud computing system is built using the TCP as the
hardware for cloud computing, and it ensures privacy
and trust. By design, the TPM offers a trusted hardware
root bound to a single, standalone device. vTPM is
the virtualization of the hardware TPM, and here we
allocate a vTPM to a VM and used it as the trusted root.

Kernel Virtual Machine (KVM)[13] is a Linux kernel
module that allows a user space program to utilize
the hardware virtualization features of the processors.
Based on the QEMU-KVM project[14], we used KVM

technology to virtualize the CPU and memory, and used
QEMU technology to virtualize the I/O device. The
best performance and addition of certain features were
achieved using KVM with QEMU on x86 platform. We
use KVM+QEMU+TPM to build a Trusted Cloud base
environment.

The concept of Trusted Cloud is defined in Ref. [15].
The trusted attestation for a cloud platform should
include three aspects: VM, Hypervisor, and host.
However, to date most cloud platform, security research
has focused on VM data safety or communication
policy safety. The latest research results may be found
in Refs. [16, 17].

Dynamic measurement, as opposed to static
measurement, can guarantee the credibility of a
particular application process. It is difficult to detect
the operating behavior of a particular process. There
are a variety of dynamic measurement methods to solve
this problem. The two research directions of dynamic
measurement are software behavior attestation[18]

and property-based attestation[19]. These methods did
not exhaust all the operation modes and there were
undetected behaviors. Periodic attestation has been
used in many research works[20], but it is not aware of
attack behavior if the attack finishes between testing
cycles.

To solve these problems, this study applies a dynamic
measurement mechanism based on the switching
process of the Hypervisor. When switching to the
QEMU process, it measures the integrity of the KVM.
When the integrity of the KVM has been destroyed, it
immediately writes a system alert log for the system
administrator to deal with.

3 Trusted Attestation Architecture on IaaS

3.1 Goals of the architecture

The goals of the trusted attestation architecture
presented here are: (1) to provide a flexible distributed
cloud architecture that can attest to the trusted
credibility of the VM, Hypervisor, and host in the
cloud, (2) to provide a trusted attestation mechanism for
different roles (Platform Manager, Tenant Manager, and
Terminal User) at different levels, and (3) to provide
a process-level dynamic measurement mechanism that
can seamlessly monitor the Hypervisor.

3.2 Architecture overview

Figure 1 shows an overview of the trusted attestation
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Fig. 1 Trusted attestation architecture on IaaS.

architecture. It comprises six entities: (1) Platform
Manager, (2) Tenant Manager, (3) Terminal User, (4)
Cloud Manager Center, (5) Attestation Server, and (6)
Cloud Computing Servers.

3.2.1 Platform Manager
This is the administrator of the cloud platform. He
can monitor the running status of the Hypervisors and
Hosts. He can invoke an attestation request at any time,
and can view the trusted information on the Hypervisors
and Hosts collected by the attestation client.

3.2.2 Tenant Managers
These are the administrators of the tenants. There is one
platform Manager and many Tenant Managers. They
can monitor the running status of the VM for the tenant.
The VM trusted attestation includes the VM trusted
status and the trusted status of the infrastructure that the
VM is running on. He can invoke an attestation request
at any time to the VM the tenant holds, and he can also
view the tenant VMs trusted information collected by
the attestation client.

3.2.3 Terminal User
This is a real person who uses the VM. He can use
a VM just like a physical machine. He can run a
specific business system on a VM. He can invoke a local
attestation to the VM when the attestation client was
deployed in it.

3.2.4 Cloud Manager Center
This is the interface for the Platform and Tenant
Managers to use and manage the cloud service. We
deployed a Trusted Information Attestation Component
into the Cloud Manager Center. It collects and verifies

the attestation information for the cloud.
3.2.5 Attestation Server
This acts as the attestation requester and appraiser.
It consists of two essential modules: (1) The Trusted
Information Collection Module is responsible for
validating measurement requests, interpreting orders,
and making attestation decisions. (2) The Trusted
Information Verification Module is responsible for
verifying the collection of Trusted Information by
comparing it with historical trusted attestation data in
the library.

3.2.6 Cloud Computing Server

This is the computer that runs the VMs. The attestation
client is deployed in the host operating system
and VM to collect the Trusted Information. The
Trusted Information is the hash value in the Platform
Configuration Register (PCR). The PCR values respect
the integrity status of the OS and dynamic applications
(such as Hypervisor).

3.3 Hypervisor dynamic measurement mechanism

Figure 2 shows the Hypervisor dynamic measurement
mechanism. There is a PCR bank in TPM, which was
used to save the integrity information of the Cloud
Computing server. There are 24 registers in the PCR
Bank, each with a different use. PCR1–PCR8 were
used to store OS critical bootloader information, for
example, BIOS, MBR, and Bootloader. PCR10 was
used to store the trusted chain for the OS. We used
PCR17 and PCR18 to save the Hypervisor measurement
information. These PCRs values were collected by
an attestation client to verify the integrity of the
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Fig. 2 Hypervisor dynamic measurement mechanism.

Hypervisor and the host OS.
The QEMU-KVM module was used as the

Hypervisor in the architecture. The KVM module
was deployed in kernel space, while QEMU processes
ran in the user space. Therefore, we measured KVM
and QEMU using different methods (Fig. 2). The
measured value of KVM was extended to PCR17, and
the measured value of QEMU was extended to PCR18.

4 Key Technologies

4.1 Dynamic KVM measurement

In a cloud computing server, the Hypervisor (KVM)
is located between the VM and the physical hardware.
It is responsible for managing the VM and its virtual
hardware resources. If malware has destroyed the
integrity of the Hypervisor (KVM) by tampering with
the code, then it would attack other VMs and steal user
data. Therefore, it is necessary to measure Hypervisor
(KVM) code integrity.

Figure 3 shows the KVM dynamic measurement
mechanism. The roadmap is as follow:

(1) Research the process switch function schedule()
in the Linux kernel source, insert measuring code after
completing the memory context and hardware context
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Fig. 3 KVM dynamic measurement mechanism.

switch process (`).
(2) At a measuring point, the process queue is

analyzed (a), when the current process is QEMU, get
the address information of the KVM kernel module core
code segment.

(3) According to the address information, the SHA1
algorithm is adopted to compute the value of the
Hypervisor (KVM) code measurement (b).

(4) Compare the measurement value with history
measurement values extended in PCR17 (baseline
values), if they match, then the KVM code has not
been damaged during the measuring period (c). If
the KVM code segments are destroyed, then extend
the new measurement value to the PCR register. After
collection and verification of the integrity information,
the platform manager receives this information and
takes appropriate action.

(5) Return to CPU process queue and continue to run
QEMU process (d ande).

When the KVM code segment was measured at
the process level, the CPU performance degraded
large extent. This was because the process switching
frequently and KVM code segment SHA1 process take
a longer time. To solve this problem, we used an
optimized scheme (Fig. 4). It did not perform the SHA1
process when process switching to QEMU, we just used
binary date segment to compare a certain number of
times, e. g., 100, between SHA1 operations.

If the current process is QEMU, when the content
switching is finished but it’s not yet time to carry out
the SHA1 operation, we do the following:

(1) Based on the salt value (a random number) that
initialized at system setup, skip the salt size bytes in
the KVM code address. Then copy a certain number of
times, e. g., 20, the binary isometric code segment, e. g.,
a byte, to form a new data (`).

(2) Compare the new data with the history baseline
value (a). If they match, the KVM segment is not
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Fig. 4 Code segment data extraction and comparing.

compromised, so continue running the QEMU process
(b).

(3) If the data values do not match, the KVM segment
has been compromised. Write a log to the kernel log and
continue running the QEMU process (c).

4.2 Dynamic QEMU measurement

QEMU runs as an application process in user space and
a QEMU process represents a VM instance. When the
VM needs to interact with the virtual IO device, the
QEMU code segment is measured dynamically. Figure
5 shows QEMU dynamic measurement mechanism:

(1) When VM needs to use the virtual IO device, it
will send a request to KVM (`). KVM sends a message
to QEMU, request it do the IO job (a).

(2) QEMU invokes a sys ioctl system call to finish
the IO device emulation job (b). The system call is
intercepted to measure the QEMU code segment (c
andd).

(3) The measurement value is compared with
the history measurement value extended in PCR18

Fig. 5 QEMU dynamic measurement mechanism.

(baseline value). If they match, the QEMU code has
not been damaged during the measuring period (e). If
the QEMU code segment has been destroyed, extend
the new measurement value to the PCR register. After
collection and verification of the integrity information,
the platform manager receives this information and
takes appropriate action.

(4) Return the virtual IO device and continue to
implement the remaining tasks (f,g,h, andi).

4.3 vTPM protection

4.3.1 vTPM measurement list
When creating a VM instance, the vTPM instance is
established accordingly and the one-to-one association
of the VM-vTPM instances is maintained by the
management center. When starting the VM, the
management center checks if the loading vTPM
instance is the correct one for that VM association. If
the answer is correct, then loading proceeds. If not,
then the loading process is stopped and an alert with
a warning message is raised. Similarly, when deleting
a VM, the vTPM instance associated with the VM will
also be deleted.

To guarantee the credibility of the vTPM, a vTPM
measurement list was established to maintain the
association of hardware TPM and vTPM instance.
Then, a vTPM instance can gain trusted credibility
based on hardware TPM.

Figure 6 shows the vTPM measurement list
mechanism and Fig. 7 describes the vTPM
measurement list initialization process. The
measurement information on the vTPM instance
is stored in the vTPM measurement list. The vTPM
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Fig. 6 vTPM measurement list.
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Fig. 7 vTPM measurement list initialization process.

measurement list is usually encrypted and here it was
sealed by PCR0–PCR8. Only when the PCR values
are as same as the values when sealed the measurement
list, can the vTPM measurement list be unsealed and
the measurement list data be updated. The unseal
operation reflects that the credibility of the host OS is
not damaged.

4.3.2 vTPM lifecycle protection
Figure 8 shows the vTPM lifecycle protection
mechanism. The following tasks are performed:

(1) Store the vTPM instance in an encrypted status
(`).

(2) When loading the trusted VM (a), check the
association of the VM-vTPM and measure the integrity

of the vTPM instance (b).
(3) If the vTPM instance measurement value matches

the value in the vTPM measurement list, continue to
load the VM with vTPM (c).

(4) When the VM instance is running, Hypervisor
dynamically measures the guest OS (d).

(5) When VM exits, update the vTPM integrity
information to the vTPM measurement list (e). Then
reencrypt the vTPM instance to keep its status be
encrypted (f).

(6) When the VM performed Trusted Migration, the
associated vTPM instance was also migrated (g).

(7) If the VM is destroyed, the associated vTPM is
also destroyed and the vTPM measurement information
is also erased (h).

4.4 Hypervisor security reinforcement

This section describes the technologies used to enhance
the security and trusted credibility of the Hypervisor
(KVM). Considering some of the security threats in
Hypervisor, it is important to establish a protective
mechanism that can make the KVM safe and available.
The main research contents include how to hide
Hypervisor types, how to monitor the VMX’s privileged
instructions executed in the guest’s OS, and how to
prevent guest information being detected.

4.4.1 Hiding hypervisor types
This technology was used to hide a real type of
hypervisor. When attackers obtain a wrong hypervisor
type, they go the wrong way to attack. It makes attack
action more difficulty.

The virtualization type query interface of KVM

Fig. 8 vTPM lifecycle.
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(CPUID instruction) was hooked-up to change the
returned results on hypervisor type. It will return XEN
when a VM attempts to call this interface to query the
hypervisor type, which leads to a wrong type.

4.4.2 Monitoring VMX’s privileged instructions
This technology was used to monitor and limit a guest
to call on the VMX’s privileged instructions provided
by KVM. It prevents the Hypervisor’s details being
detected by guest OS and monitors illegal calls to the
VMX’s privileged instructions.

By investigating all VMX’s privileged instructions
and analyzing their call scenarios, invocation paths,
and processing routines, we found that this technology
could monitor these instructions and trace the source of
the invocations. By deploying the monitoring module
in KVM, we can detect any illegal VMs which call the
VMX’s privileged instructions. When unsafe operation
occurs, the alert information is written to the KVM log.
The platform manager then deals with this.

4.4.3 Protecting the host kernel
Where there is a VM escape, some security threats
arise. These include as tampering with the structure
of important data in the host’s kernel (e.g., tampering
with the syscall table), tampering with the KVM source
code, and uninstalling the KVM kernel module without
permission. By protecting the integrity of the syscall
table in the host kernel, measuring the integrity of
KVM, and preventing KVM from uninstalling, we can
protect the integrity of Hypervisor and detect malicious
attacks.

By dynamically checking the syscall table in the
Host’s kernel, we can protect the integrity of the
important data and detect any illegal behavior.

By dynamically measuring the Hypervisor’s code
segment (see Section 4.1), we can protect its integrity
and detect any illegal behavior.

By hiding the kernel module of KVM, the KVM
module is protected from being uninstalled without
permission.

4.4.4 Protecting the ioctl system call of the host
Here, we check the integrity of the ioctl system
call’s execution path in the Host while KVM interacts
with QEMU. This prevents the execution path from
being tampered or hooked by malware. It also aims
at preventing the detection of other guests’ data from
detection by an illegal guest. With the code deployed in
the KVM, we dynamically checked the integrity of the
important execution paths.

4.5 Verifying the trusted attestation of the IaaS

After the above work, the next step was to collect the
TPM and vTPM trusted information, and prepare the
data to verify the trusted attestation of the Iaas platform
(Fig. 9).

The TPM’s PCR information was collected
periodically. The Trusted Information Verification
Module compares the collected values with the baseline
values stored in attestation library. If the values match,
the Iaas Platform infrastructure is in a healthy status,
else it has been compromised.

The Platform Manager can monitor the trusted
status of Hypervisors and Hosts. He can invoke an
attestation request at any time, and can view the Trusted
Information on the Hypervisors and Hosts collected by
the attestation client.

The Tenant Manager can monitor the running status
of the VM for the tenant. He can inspect the VM’s
trusted status and the trusted status of the infrastructure
that the VM is running on. When the color column
(with respect to the VM trusted status: green is nomal,
red is abnomal) turns red, the VM trusted status or
the infrastructure trusted status has been destroyed.
When the VM is compromised, the Tenant Manager can
isolate it and deal with the attacking action. When the
infrastructure is compromised, the only work that the
Tenant Manager can undertake is to tell the Platform
Manager about the accident.

The Terminal User can invoke a local attestation to
the VM when the attestation client was deployed.

5 Prototype System Practice and Analysis

We realized prototype system with open source
software. Figure 10 shows the deployment of the

Fig. 9 Verifying the trusted attestation of the IaaS.
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Fig. 10 Prototype system organization.

prototype system. TrustedGRUB and IMA software
were used to detect the integrity of the system when it
started. OpenPTS software was used as the attestation
client in the Host and Guest OSs. These collected
the trusted information (system setup, trusted chain,
and dynamic measurements) and sent it to the Trusted
Ability Management and Verification component in the
cloud manager center. The cloud manager center was
constructed using openstack software.

Table 1 shows a comparison of the prototype
system and Open CIT software. Open CIT is the Intel
attestation solution, it provides “Trust” visibility of the
cloud infrastructure; If you want to use Open CIT,
the hardware and software solutions must comply with
Intel’s requirements.

A performance analysis experiment was carried out
on the computer nodes. Figure 11 shows the memory
load latency when deploying the prototype system
in computing node. The experimental results show
that the performance loss was within an acceptable
range.

Table 1 Comparison of prototype system and Open CIT
software.

Prototype system Open CIT
Open source Yes Yes

KVM integrity Yes Yes
VM integrity Yes No

QEMU integrity Yes No

Hardware
Do not bind to Intel

corporation
Bind to Intel
corporation

Software cluster
TrustedGRUB, IMA,
OpenPTS, Openstack

Tboot, Intel txt,
Open CIT,
Openstack
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Fig. 11 Memory load latency when deploying the prototype
system in computing node.

6 Conclusion and Prospects

The comparative analysis and experimental data show
that our architecture has advantages compared with
existing cloud platform attestation software. Our
architecture is not bound to hardware, which makes it
appropriate for more application scenario.

With the development of cloud computing, the
Trusted Cloud will be a future development direction
and will play an important role in cloud security.
Trusted attestation is likely to become a hot topic in
trusted cloud research.
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