
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll02/10llpp458-468
Volume 22, Number 5, October 2017

Semi-valid Fuzz Testing Case Generation for Stateful Network
Protocol

Rui Ma�, Shuaimin Ren, Ke Ma, Changzhen Hu, and Jingfeng Xue

Abstract: Network protocols are divided into stateless and stateful. Stateful network protocols have complex

communication interactions and state transitions. However, the existing network protocol fuzzing does not support

state transitions very well. This paper focuses on this issue and proposes the Semi-valid Fuzzing for the Stateful

Network Protocol (SFSNP). The SFSNP analyzes protocol interactions and builds an extended finite state machine

with a path marker for the network protocol; then it obtains test sequences of the extended finite state machine,

and further performs the mutation operation using the semi-valid algorithm for each state transition in the test

sequences; finally, it obtains fuzzing sequences. Moreover, because different test sequences may have the

same state transitions, the SFSNP uses the state transition marking algorithm to reduce redundant test cases.

By using the stateful rule tree of the protocol, the SFSNP extracts the constraints in the protocol specifications

to construct semi-valid fuzz testing cases within the sub-protocol domain, and finally forms fuzzing sequences.

Experimental results indicate that the SFSNP is reasonably effective at reducing the quantity of generated test

cases and improving the quality of fuzz testing cases. The SFSNP can reduce redundancy and shorten testing

time.

Key words: network protocol fuzzing; extended finite state machine; test sequence; state transition marking

algorithm; semi-valid algorithm

1 Introduction

To ensure the quality and security of software,
information security now has higher requirements for
software security testing. Fuzzing is a very effective
and widely used method. It works “by providing
the unexpected inputs and monitoring malformed
results to find software failures”[1]. Network protocol

�Rui Ma, Shuaimin Ren, Changzhen Hu, and Jingfeng
Xue are with the Beijing Key Laboratory of Software
Security Engineering Technology, School of Software, Beijing
Institute of Technology, Beijing 100081, China. E-mail:
mary@bit.edu.cn.
�Ke Ma is with the Internet Center, Institute of Communication

Standard Research, China Academy of Information and
Communication Technology, Beijing 100191, China.
�To whom correspondence should be addressed.

Manuscript received: 2016-09-30; accepted: 2016-10-21

fuzzing has a high probability of discovering high-risk
vulnerabilities. Therefore, it attracts increasingly more
security researchers. Furthermore, since the network
protocol is widely used in communication on the
Internet, once a vulnerability is discovered, the effect
will be very serious. Thus, network protocol fuzzing is
quite significant.

Network protocols are divided into stateless and
stateful. Stateful network protocols have complex
communication interactions and state transitions.
However, the existing network protocol fuzzing cannot
support state transitions very well. For these issues,
according to the characteristics of the stateful network
protocol, this paper proposes the semi-valid stateful
network protocol fuzzing based on the extended finite
state machine, namely the Semi-valid Fuzzing for the
Stateful Network Protocol (SFSNP).

First, the SFSNP builds an extended finite state
machine with a path marker for the network protocol

Rui Ma et al.: Semi-valid Fuzz Testing Case Generation for Stateful Network Protocol 459

by analyzing the protocol interaction. Then, it gets
test sequences of the extended finite state machine.
It further performs mutation operations by using the
semi-valid algorithm for each state transition in the
test sequence. Finally, it obtains fuzzing sequences.
The same state transitions may belong to different test
sequences. Thus, the SFSNP uses a state transition
marking algorithm to reduce the redundant test cases
caused by this problem. Using the protocol stateful
rule tree and extracting constraints from the protocol
specifications, the SFSNP constructs semi-valid fuzz
testing cases within the sub-protocol domain to form
final fuzzing sequences.

The remainder of this paper is organized as follows.
Section 2 introduces the analysis of some issues
in stateful network protocol fuzzing. Section 3
proposes the details of SFSNP. Section 4 presents our
experimental processes and results. Finally, Section 5
concludes.

2 Related Work

The stateful network protocol fuzzing concerns on
two aspects, namely formal description and test case
generation.

Currently, the most common representation of the
protocol is the network protocol specification consisting
of natural language. Because natural language is pure
text, it is not conducive to perform fuzzing. Meanwhile,
selecting the type of formal description is especially
important because of the characteristics of the stateful
network protocol.

Test case generation for the protocol is the key step
of fuzzing. Therefore, for stateful network protocol,
we need to improve the efficiency of the fuzz testing
case generation and guarantee vulnerability discovering
ability.

2.1 Characteristics of stateful network protocols

If a network protocol needs multiple message
interactions when performing logical functions
and considers the preceding state when data was
transmitted, the network protocol can be called a
stateful network protocol.

The stateful network protocol has four
characteristics:

(1) Complexity of communication: Complete
interaction processes generally include hand shaking,
permissions validation, and so on.

(2) State transition: The stateful network protocol

can switch to different states according to the type of
messages currently being processed. State transitions
can lead to state space explosion in the process of fuzz
testing case generation for the stateful network protocol.

(3) Relevancy of contextual information: During
message processing, we need not only the attributes of
the current state, but also the attributes of the previous
state in the entire state trajectory until now.

(4) Good transaction semantics: The stateful network
protocol divides complex function requests into several
sub-stages. The interaction of multiple sub-stages
describes the process of a complete transaction.

2.2 Formal description of stateful network
protocols

A formal description of the network protocol is the
premise of fuzzing[2]. An appropriate protocol formal
description model can not only accurately describe
the details of the protocol, but also provide credible
foundation for fuzzing.

There are several common technologies currently
used: Petri net, temporal logic, Finite State Machine
(FSM), CCS, and Z Representation[3]. Nevertheless,
in the aspect of protocol interaction, especially for the
stateful protocol based on state transition and message-
driven, the FSM is the optimal formal description
model. The acquisition of test sequences based on
the FSM has many well-developed theories. For
example, focusing on the vulnerability discovering
for the protocol, Shu et al.[4] proposed a model-
based method of monitoring security vulnerability.
This method uses the extended L* algorithm and the
thought of machine learning to construct the protocol
specification FSM model based on a normalized
model—Symbolic Parameterized Extended Finite State
Machine (SP-EFSM). The proposed model guides the
specific implementation of the testing.

2.3 Stateful network protocol fuzzing

Lately, research on stateful network protocol fuzzing
has matured. Exceedingly more fuzzers can discover
vulnerabilities of the stateful network protocols. Banks
et al.[5] developed a Stateful NetwOrk prOtocol
fuzZEr (SNOOZE), which allows users to describe
a state operation of the protocols and the messages
that need to be created in that state. Abdelnur
et al.[6] proposed a fuzzer named KiF for stateful
Session Initiation Protocol (SIP), and discussed the
usage of detecting vulnerabilities caused by software

460 Tsinghua Science and Technology, October 2017, 22(5): 458–468

failures. Raniwala et al.[7] proposed the Linked-
aware Reliable Transport Protocol (LRTP) method for
stateful transport protocols. Alrahem et al.[8] proposed
INTERSTATE, which is a fuzzer for stateful SIP.
Chen et al.[9] used a protocol description language
to describe the format of a network protocol so that
the generated test cases can be effective. Kitagawa et
al.[10] presented the AspFuzz, a state-aware protocol
fuzzer for application. The AspFuzz can discover
vulnerabilities caused by neglecting the order of the
protocol states or message sequences. Akbar and
Faroop[11] proposed a security framework for Real-
time Transport Protocol (RTP) fuzzing, named RTP-
miner. Gorbunov and Rosenbloom[12] designed an
automated network protocol fuzzing framework based
on an open-source framework, named AutoFuzz. This
framework constructs an FSM for network protocols
to extract protocol specifications, and guides test
case generation. Li et al.[13] proposed a method that
automatically identifies a variety of network protocols
and generates a fuzzer for vulnerability discovery. Sui
et al.[14] introduced a method that combines stochastic
signal processing with regular expressions to guide
test case generation, and then performs fuzzing to test
the protocol robustness. Tsankov et al.[15] proposed a
light-weight technique for fuzz-testing security stateful
protocols and used a set of fuzz operations to performed
mutation. Seo et al.[16] put forward a stateful rule
tree algorithm for stateful network protocol fuzzing.
To generate test sequences, it maps each state and
SIP grammar rule. Pan et al.[17] proposed a model-
based testing method for network protocols. Using the
protocol specification, the method builds up a formal
model for the input data, constructs the corresponding
syntax tree for the selected test nodes, and then uses
these nodes to guide the test case generation. Ma
et al.[18] presented a fuzzing case generation method
for network protocols using a classification tree and
heuristic operators to reduce the number of test cases.
Later, Ma et al.[19] proposed a new method, using a rule-
based state machine and a stateful rule tree to guide the
generation of fuzz testing cases.

2.4 Defects of traditional stateful network protocol
fuzzing

Although network protocol fuzzing has been widely
used and can discovery vulnerabilities effectively, there
still exist some issues for the stateful network protocol:

(1) Lack of support for state information: Owing to

the characteristics of stateful network protocols, test
case generation should consider not only each state,
but also the entire state trajectory. Because traditional
fuzzing does not include contextual information and all
states of a message sequence, test cases generated for
each state are discrete and cannot cover the entire state
trajectory. Thus, traditional fuzzing cannot discover
vulnerabilities in the state transitions.

(2) Many redundant test cases: Traditional fuzzing
generates test cases randomly, so there must be
numerous redundant test cases neglected by the target
protocol.

(3) Lack of specificity and reliance on manual
operations: Testers define specifications to reduce the
blindness of test case generation. However, significant
reliance on manual operations may lead to lower
coverage and incomplete testing.

For the above issues, this paper proposes the SFSNP.
This method can construct the protocol FSM according
to the protocol interaction. It can also decrease the
size of generated fuzz testing case sets and improve the
quality of fuzz testing cases using the state transition
marking algorithm and the semi-valid algorithm.

3 Semi-valid Fuzz Testing Case Generation
for Stateful Network Protocol

3.1 Overview

Based on the state transition marking algorithm and the
semi-valid algorithm, this paper proposes the SFSNP
method based on the extended FSM. The basic idea and
main steps of the method are as follows.

First, analyze the target network protocol and mark
each state transition path in the state machine. Then, we
will obtain the extended FSM model with the marking
variables. In this network protocol FSM, every state
transition path is a tested object.

Second, obtain test sequences of the network protocol
FSM using the test sequence generation method based
on the FSM. Each obtained test sequence is composed
of multiple state transitions.

Third, reduce the redundancy rate of test sequences
and shrink the size of the test case sets using the
marking algorithm.

Finally, divide the protocol message into several sub-
protocol domains using the protocol stateful rule tree.
Then, at the level of sub-protocol domain, create the
“brute” semi-valid fuzz testing cases for the network
protocol using the semi-valid algorithm. Thus, it could

Rui Ma et al.: Semi-valid Fuzz Testing Case Generation for Stateful Network Protocol 461

improve the quality of the generated fuzz testing cases
for the network protocol.

3.2 Constructing extended FSM abstract model

The network protocol model based on the FSM is a
quintuple represented by PFSM D < s0; S;M; f;L >.
s0 represents the initial state of the state set. It is the

start of the entire state space. From this state, it can
reach any other state after a series of state transitions.
S D fs0; s1; s2; ...; sn�1g represents the state set of

FSM.
M D fm0; m1; m2; ...; mn�1g represents the test case

set. It contains the protocol messages enabling the FSM
to perform state transitions.
f : Si � mi ! Sj is the state transition function. It

represents the transfer relation between the states.
L D fl0; l1; l2; ...; ln�1g is the marking variable set

of the state transition. It indicates whether the fuzzing
has been completed. The default value of li is false.

A directed graph, as shown in Fig. 1, can represent a
network protocol described by the FSM. In this graph,
nodes represent states and directed edges represent state
transitions. From Fig. 1, the network protocol FSM
model perfectly reflects that the protocol states can
transfer from some states to corresponding states under
the message-driven protocol. It also reflects that the
stateful network protocol is context-sensitive, and is
related to data and its historical trajectory.

3.3 Obtaining test sequences for the network
protocol

To obtain the test sequences of the network protocol
FSM, we first provide some definitions as follows.

State transition: A state transition is defined as
� D .si ; mi ; sj /, where f .si ; mi / D sj , mi 2 M .
Here si represents the state before state transition � ; sj
represents the state after state transition � ; mi is the
protocol message, which enables the FSM to transfer
from state si to state sj .

Test sequence: A test sequence includes multiple
state transitions. Hence, for the network protocol FSM,

Fig. 1 State transition of network protocol FSM.

a whole test sequence can be formally expressed as
t D < �1; �2; ...; �nC1 >, where �i D .si ; mi ; sj /.
The test sequences contained in Fig. 1 are t1 D <

.s0; m0; s1/; .s1; m1; s2/; .s2; m3; s4/ > and t2 D <

.s0; m0; s1/; .s1; m2; s3/; .s3; m4; s4/ >.
A single state transition represents a protocol FSM

transfer from one state to the next state using the
message driven protocol. In network protocol fuzzing,
the state transition is the basic unit of the obtained
test sequences. A fuzzing sequence includes multiple
state transitions, which could follow and embody the
interactive process of the protocol.

3.4 Marking state transitions

There may be the same state transitions between
different test sequences. These identical state transitions
can directly lead to the generation of redundant fuzz
testing cases. It will also result in excessive generated
test cases, prolong the testing time, and reduce the
efficiency of the test case sets.

Therefore, we provide some principles to determine
whether to mark the state transition:

(1) Determine whether the depth testing has been
completed for the current state transition. If not,
generate the fuzzing sequences for this state transition
using the semi-valid algorithm. Otherwise, move to
principle (2) for further verification.

(2) Evaluate whether the preceding state of the
current state transition is obtained by more than one
state transitions. If so, conduct secondary depth testing;
otherwise, it is unnecessary to perform the secondary
deep testing. Just stop the mutation operation and
directly assign the valid request information.

From Fig. 1, there is an identical state transition
.s0; m0; s1/ in the test sequences t1 and t2. When
generating the fuzz testing cases, the secondary depth
testing is supposed to be performed for the current
state transition. However, according to the proposed
principles, the secondary depth testing can be omitted
in some circumstances. Thus, it is necessary to mark the
state transitions of the network protocol state machine
to reduce the number of generated fuzz testing cases
based on the marking principles.

Algorithm 1 shows the pseudo code of the state
transition marking algorithm. This algorithm has two
input variables, Edges and TS. The Edges variable
represents the state transition set of the protocol state
machine. The TS variable represents the initial test
sequence obtained according to the protocol state

462 Tsinghua Science and Technology, October 2017, 22(5): 458–468

Algorithm 1 State transition marking algorithm
Edges D fstate transition set of network protocol finite state
machineg,
TS D fobtained initial test sequence set for network protocol
finite state machineg,
ResultsD fgenerated fuzz testing case sets for network protocolg

Input: Edges, TS
Output: Results

1: while TS is not empty do
2: SELECT and REMOVE t from TS;
3: while edge is in t do
4: SEARCH the match edge in Edges;
5: if edge0s flag is not TRUE then
6: SET the edge0s flag to be TRUE;
7: CALL the semi-valid model to GENERATE a

test case t 0 for t ;
8: Results ResultsCt 0I
9: else if edge0s preceding states are multiple then

10: CALL the semi-valid model to GENERATE a
test case t 0 for t ;

11: Results ResultsC t 0;
12: end if
13: end while
14: end while

machines. The output is Results, which is a collection-
type variable to store the semi-valid fuzz testing cases.

3.5 Generating semi-valid fuzz testing cases

3.5.1 Concept of the semi-valid test case
A test case, which only violates one constraint in the
protocol specification and satisfies all the remaining
constraints, is called the semi-valid test case. Therefore,
the legitimacy of the semi-valid data may have high
probability to bypass the verification. However, at the
same time, it still has illegitimacy capability to trigger
the vulnerability. Compared with fuzz testing cases
for the network protocol created randomly, semi-valid
test cases have higher quality and are not easy to be
discarded in the early stage of fuzzing. Therefore,
the efficiency of the semi-valid test case sets is higher.
In addition, the protocol specification has constraints;
when constructing malformed data, only the single
protocol specification will be damaged. Therefore, the
number of generated fuzz testing cases will be reduced
accordingly.

Relevant definitions of the semi-valid fuzz testing
cases are as follows.

Input data set: The infinite set I represents all input
data sets. The input data contained in the set I includes
all data types, such as string, message sequence, integer,

and so on.
Constraint of input data: c is the constraint of the

input data. It is the subset of I , namely c � I . The
constraint c defines the range of valid values or the input
data formats.

Input data: Symbol i represents the input data,
where i 2 c means that input data i satisfies the
constraint c; otherwise, input data i violates the
constraint c.

Valid input data set: The finite nonempty set C
includes all constraints of the testing object. Thus,
the valid input data set Ivalid satisfies: Ivalid D

T
c2C

c,

which means that valid input data must totally satisfy
the constraints.

Semi-valid input data: If input data i is not in the set
Ivalid, that is, i … Ivalid, it is called invalid input data. If
the invalid input data only violates one constraint, it is
called semi-valid input data. Assume �c is a semi-valid
input data set. It should satisfy the following formula:

�c D fi 2 I ji … c ^ .8c
0 2 C � fcg; i 2 c0/g.

Moreover, the semi-valid input data set Isemi-valid is
the union set of all sets �c .

Figure 2 shows an example of semi-valid input data,
where there are three constraints c1, c2, and c3. The
intersection of the constraints is a valid input data set,
which is represented by Ivalid D c1 \ c2 \ c3; and �c2

is the semi-valid input data. It satisfies two constraints,
namely c1 and c2. At the same time, it only violates one
constraint c3.

3.5.2 Fuzz testing case generation
To improve the quality of generated protocol fuzz
testing cases and more completely describe the network
protocol model, one needs to construct the semi-
valid protocol fuzz testing cases with finer granularity.
Thus, this paper references the idea of the protocol
stateful rule tree[20, 21]. According to the construction
rules of the protocol stateful rule tree, the protocol
comprises four layers, from top to bottom: state

I

Fig. 2 An example of semi-valid input data.

Rui Ma et al.: Semi-valid Fuzz Testing Case Generation for Stateful Network Protocol 463

representation layer, message-type representation layer,
message representation layer, and sub-protocol domain
presentation layer. Figure 3 shows the schematic
diagram of the stateful rule tree. The first layer is
the state transition from state si to state sj . In the
second layer, the protocol message is divided into the
request message and the response message. The third
layer is the specific request or response message. The
fourth layer is the sub-protocol domains obtained by
dividing the specific protocol messages according to the
format in the protocol specifications. Because of the
fine granularity of the sub-protocol domain, different
protocol messages can share the same sub-protocol
domain. When constructing malformed packets, the
semi-valid algorithm will act on the sub-protocol
domains. Because the protocol message is composed of
several sub-protocol domains, the malformed protocol
messages mainly embody constraint violation of the
sub-protocol domain.

The construction process of the semi-valid protocol
message is:

(1) Select the protocol message mi on the current
state transition.

(2) Divide the protocol messagemi into sub-protocol
domains according to the protocol specification. Then,
we obtain the set of sub-protocol domains mi D

ffield1; field2; ..., fieldng, which can be presented by the
ordered n-tuples < field1; field2; ...; fieldn >.

(3) Ivalid D fI1; I2; I3; ...; Ing is a set. Every
element in Ivalid corresponds to a sub-protocol domain
and indicates the range of values satisfying constraints.
The constraints can be derived from the protocol
specification of the targeted network protocol or third-
party software.

(4) Set the invalid value set of the sub-protocol
domains as the complementary set of the valid value set
Ivalid, that is, Iinvalid D fI1; I2; I3; ...; Ing. According
to the definition of the semi-valid fuzz testing cases, we

m1 m2 mn

fieldnfield3field2field1

100 699

ResponseRequest

Si Sj

Fig. 3 Network protocol state-rule tree.

perform the following operations for whole sets of the
sub-protocol domains in the protocol messagem: every
time only one sub-protocol domain in the set violates a
protocol constraint. It can obtain the complementary set
of valid values in the corresponding domain, as shown
in Fig. 4.

(5) After Step 4, the semi-valid protocol messages,
such as mi1 D <∼ field1; field2; ...; fieldn >, mi2 D <

field1;∼ field2; ...; fieldn >; ... ; min D < field1; field2;

:::; ∼ fieldn >, can be obtained in turn. The set
Mi D fmi1; mi2; ...; ming is the constructed semi-valid
protocol messages.

4 Experimental and Evaluation

4.1 Experimental environment

In this paper, the verification platform is the open-
source fuzzer, namely Sulley. The target protocol
is the Simple Mail Transfer Protocol (SMTP).
The experimental operating system environment is
Windows 7.

4.2 Generating fuzz testing cases for the SMTP

4.2.1 Constructing extended FSM for the SMTP
The SMTP needs to orderly send HELO, MAIL, RCPT,
DATA, and QUIT in the transmission of e-mail. To
better execute the fuzzing for SMTP and conveniently
obtain fuzzing sequences, we obtain the extended FSM
of SMTP by analyzing the SMTP specification and the
state characteristics of SMTP. Figure 5 shows the SMTP
extended FSM.

The extended FSM model of SMTP is PSMTP D< s0;

S;M; f;L >, where:

[I , I , I , …, I]1 2 3 n

[I , I , I , …, I]1 2 3 n

[I , I , I , …, I]1 2 3 n

[I , I , I , …, I]1 2 3 n

… …

_

_

_

_

//sub-protocol domain field violates1

//the constraint conditon

//sub-protocol domain field violates2

//the constraint conditon

//sub-protocol domain field violates3

//the constraint conditon

//sub-protocol domain field violatesn

//the constraint conditon

Fig. 4 Semi-valid sub-protocol domain.

464 Tsinghua Science and Technology, October 2017, 22(5): 458–468

(1) s0 is the initial state of the whole FSM for SMTP.
(2) S is the state set of the SMTP.
(3) M is the protocol message in the FSM for SMTP.

It is the fundamental of driving the protocol state
machine to perform the state transition. In Fig. 5, set
M of the protocol extended FSM as M D fhelo, ehlo,
mail from, soml, saml, rcpt to, data, rset, quitg.

(4) f is the state transition function. It represents the
transfer relation between the states.

(5) L is the marking variable set of the state
transition. It represents whether fuzzing has been
performed. The default value of each element in L is
false.

4.2.2 Obtaining test sequences for the SMTP
An SMTP command consists of stages: establishing
the connection, sending the e-mails, and terminating
the connection. Because some vulnerabilities of the
protocols can be triggered only when sending specific
fuzz testing cases for the protocol under specific state
paths, the obtained test sequence sets need to closely
cover all state transitions. According to the description
of test sequences in Section 3.3, partial original test
sequences are obtained, as shown in Table 1.

4.2.3 Marking state transition for the SMTP
From the original test sequences obtained in Section
4.2.2, we observe that there are multiple identical
state transitions between them. If the secondary depth
testing is performed for each state transition in each test
sequence, it will waste time and increase the number
of redundant test cases. However, with the use of
the state transition marking algorithm and the marking
principles, it is unnecessary to perform the secondary
depth testing in some circumstances. Meanwhile,

Fig. 5 SMTP extended finite state machine.

Table 1 Partial original test sequences of the SMTP
extended FSM.

Name Original test sequence

Path1
< .s0; helo; s1/, .s1; mail f rom; s2/, .s2;
rcpt to; s5/, .s5; data; s6/, .s6; < CRLF > :

< CRLF >; s7/, .s7; quit; s8/ >

Path2
< .s0; ehlo; s1/, .s1; mail f rom; s2/, .s2;
rcpt to; s5/, .s5; data; s6/, .s6; < CRLF > :

< CRLF >; s7/, .s7; quit; s8/ >
Path3 < .s0; helo; s1/, .s1; saml; s3/, .s3; rcpt to;

s5/, .s5; data; s6/, .s6; < CRLF > :

< CRLF >; s7/, .s7; quit; s8/ >
Path4 < .s0; ehlo; s1/, .s1; saml; s3/, .s3; rcpt to;

s5/, .s5; data; s6/, .s6; < CRLF > :

< CRLF >; s7/, .s7; quit; s8/ >
Path5 < .s0; helo; s1/, .s1; soml; s4/, .s4; rcpt to;

s5/, .s5; rset; s1/, .s1; mail f rom; s2/,
.s2; rcpt to; s5/, .s5; data; s6/,

.s6; < CRLF > : < CRLF >; s7/,
.s7; quit; s8/ >

Path6 < .s0; ehlo; s1/, .s1; soml; s4/, .s4; rcpt to;
s5/, .s5; rset; s1/, .s1; mail f rom; s2/,

.s2; rcpt to; s5/, .s5; data; s6/,
.s6; < CRLF > : < CRLF >; s7/,

.s7; quit; s8/ >

Path7 < .s0; helo; s1/, .s1; mail f rom; s2/, .s2;
rcpt to; s5/, .s5; data; s6/, .s6;

< CRLF > : < CRLF >; s7/, .s7; rset; s1/,
.s1; mail f rom; s2/,.s2; rcpt to; s5/,
.s5; data; s6/, .s6; < CRLF > :

< CRLF >; s7/, .s7; quit; s8/ >
Path8 < .s0; ehlo; s1/, .s1; mail f rom; s2/, .s2;

rcpt to; s5/, .s5; data; s6/, .s6;
< CRLF > : < CRLF >; s7/, .s7; rset; s1/,

.s1; mail f rom; s2/,.s2; rcpt to; s5/,
.s5; data; s6/, .s6; < CRLF > :

< CRLF >; s7/, .s7; quit; s8/ >

the comprehensiveness of the protocol state machine
fuzzing is also not affected.

Take Path1 and Path2 as examples. These two
test sequences both include six state transitions. In
addition to the first state transition, the remaining
five state transitions are all identical. Because the
preceding state of the state transition .s1;mail from; s2/
is obtained by two state transitions, it is necessary
to conduct the secondary depth testing for this state
transition according to the marking principles. But the
remaining four state transitions are obtained by only
one state transition, so it is unnecessary to perform the
secondary depth testing. As a result, fuzzing sequence
sets of Path1 and Path2 are shown in Tables 2 and 3,
respectively. The symbol “ ∼ ” represents that we will

Rui Ma et al.: Semi-valid Fuzz Testing Case Generation for Stateful Network Protocol 465

Table 2 Fuzzing sequence sets of Path1.

Name Fuzzing sequence
Path11 < ∼ .s0; helo; s1/, .s1; mail f rom; s2/, .s2;

rcpt to; s5/, .s5; data; s6/, .s6; < CRLF > :

< CRLF >; s7/, .s7; quit; s8/ >
Path12 < .s0; ehlo; s1/, ∼ .s1; mail f rom; s2/, .s2;

rcpt to; s5/, .s5; data; s6/, .s6; < CRLF > :

< CRLF >; s7/, .s7; quit; s8/ >
Path13 < .s0; helo; s1/, .s1; mail f rom; s2/, ∼ .s2;

rcpt to; s5/, .s5; data; s6/, .s6; < CRLF > :

< CRLF >; s7/, .s7; quit; s8/ >
Path14 < .s0; helo; s1/, .s1; mail f rom; s2/, .s2;

rcpt to; s5/, ∼ .s5; data; s6/, .s6; < CRLF > :

< CRLF >; s7/, .s7; quit; s8/ >
Path15 < .s0; helo; s1/, .s1; mail f rom; s2/, .s2;

rcpt to; s5/, .s5; data; s6/, ∼ .s6; < CRLF > :

< CRLF >; s7/, .s7; quit; s8/ >
Path16 < .s0; helo; s1/, .s1; mail f rom; s2/, .s2;

rcpt to; s5/, .s5; data; s6/, .s6; < CRLF > :

< CRLF >; s7/, ∼ .s7; quit; s8/ >

Table 3 Fuzzing sequence sets of Path2.

Name Fuzzing sequence
Path21 < ∼ .s0; ehlo; s1/, .s1; mail f rom; s2/, .s2;

rcpt to; s5/, .s5; data; s6/, .s6; < CRLF > :

< CRLF >; s7/, .s7; quit; s8/ >
Path22 < .s0; helo; s1/, ∼ .s1; mail f rom; s2/, .s2;

rcpt to; s5/, .s5; data; s6/, .s6; < CRLF > :

< CRLF >; s7/, .s7; quit; s8/ >

perform the semi-valid operation for the state transition.
Assume the number of generated semi-valid fuzz

testing cases is n. According to fuzzing sequences in
Tables 2 and 3, there will be 12n test cases before
marking state transitions, and 8n test cases after the
marking. There is a reduced number of test cases, about
33% (.12n�8n/=12n � 33%). The above calculation is
just an example. It also can be inferred that if the state
transition marking operation is performed for all test
sequences, the number of generated fuzzing sequences
definitely decreases.

4.2.4 Constructing semi-valid fuzz testing cases for
the SMTP

Semi-valid fuzz testing cases for the network
protocol violate only one protocol specification in
the construction of the test cases. Therefore, during
the construction of the fuzz testing cases based on
the protocol stateful rule tree, the necessary work is
to extract the protocol constraints. In this paper, the
extraction of the SMTP constraints mainly derives
from the protocol specification. The library of protocol

constraints can be formed by information extraction
of the SMTP protocol specification RFC2821[21].
When constructing the semi-valid fuzz testing cases
for each protocol message, a negation operation can
be performed for each sub-protocol domain of the
message based on the library.

Using the command HELO of the SMTP as an
example, we introduce the generation of the test
cases. Based on the obtained protocol stateful rule
tree model, the set of sub-protocol domains is
fcommand; space; forward-path;CRLFg. The pairs of
sub-protocol domains and corresponding valid values
sets are fcommand ! HELOg, fspace ! “ ”g,
fforward-path ! “ < ” < mailbox > “ > ”g, as
shown in Table 4. Next, we can generate semi-valid
fuzz testing cases according to the length and content
of the command parameters. In Table 4, as constraint 1
described, “the maximum total length of a user name
or other local-part is 64 characters”, here 64 is the
valid value range of the sub-protocol domain; and in
constraint 5, “not including space or special characters”
is mentioned when constructing the mailbox strings.
Therefore, strings that violate the protocol specification
are also the key point when generating test cases.

4.3 Experimental evaluation

The experiment selects MailEnable Professional 4.25,
a type of implementation for the SMTP protocol, as
the testing target. To verify the SFSNP, we compared

Table 4 Partial SMTP constraints.

1.The maximum total length of a user name or other
local-part is 64 characters.

2.The maximum total length of a domain name or
number is 255 characters.

3.The maximum total length of a reverse-path or forward-path
is 256 characters (including the punctuation and
element separators).

4.The maximum total length of a command line including the
command word and the < CRLF > is 512 characters.

5.< forward � path > WWD< path >,< path > WWD “ < ”
< mailbox > “ > ”, < mailbox > WWD < local � part >
“@” < domain >, < local � part > WWD
< dot � st ring > j < quoted � st ring >,
< dot � st ring > WWD < string >j < string >

“ � ” < dot � st ring >, < string >
WWD < character >j < character > < string >,
< character > WWD < c >j “�” < x >,
< c >WWD 128 ASCII characters, not including space or
special characters, < x >WWD all 128 ASCII characters

466 Tsinghua Science and Technology, October 2017, 22(5): 458–468

the experimental results of the Sulley and the SFSNP
fuzzers in terms of vulnerability discovery, the quantity
of generated test cases, and testing execution time.

4.3.1 Vulnerability discovery
The capability of discovering vulnerability is one of the
important factors for evaluating the efficiency of fuzz
testing case generation approaches.

Table 5 compares the vulnerability information both
before and after the proposed SFSNP. The third column
represents the results obtained by the Sulley, and the
fourth column represents the results obtained by the
SFSNP.

Table 5 indicates that both the Sulley and the
SFSNP detected one vulnerability when testing
the MailEnable Professional 4.25. This vulnerability
was published by the China National Vulnerability
Database of Information Security, as well as in
the Common Vulnerabilities & Exposures. It is a
type of remote denial-of-service vulnerability. When
MailEnable receives the command “mail from” with
a very long e-mail address or the command “rcpt to”
with a very long domain name, its built-in service
(MESMTPC.exe) will crash[22].

Moreover, experimental results address that a new
valid test case was found after the SFSNP was
introduced. The new test case is a long string composed
of spaces. In addition, the structure of this string breaks
the rule “128 ASCII characters, not including space or
special characters”. The rule comes from the extraction
of the constraints of the protocol specification.

The results show that the same number of
vulnerabilities were detected before and after the
SFSNP, and the SFSNP achieves the same capability of
vulnerability discovery as the Sulley.

4.3.2 Fuzzing efficiency
The efficiency of fuzzing focuses on the quantity of test
cases and the testing execution time. Table 6 compares
the Sulley with the SFSNP.

Table 5 Effectiveness of test case.

Vulnerability
name

Vulnerability
no.

Discovering
vulnerability

Sulley SFSNP
MailEnable

‘MESMTRPC.exe’
SMTP server

Remote
denial-of-service

Vulnerability

CVE-2010-2580/
CNNVD-201009-129

Yes Yes

Table 6 Fuzzing efficiency.

Test data quantity Testing execution time
Sulley 11 112 3 h12 min
SFSNP 7884 2 h38 min

(1) Test case quantity
Table 6 indicates that the SFSNP generates test cases

that are 71% that of the Sulley, demonstrating that the
SFSNP can effectively reduce the number of test cases.

The reason is that the SFSNP adopts the state
transition marking algorithm. For some specific
commands, the secondary depth testing is not necessary
to be conducted. It further avoids repeatedly generating
fuzz testing cases. Thus, the SFSNP reduces the
redundancy rate and decreases the quantity of generated
test cases.

(2) Testing execution time
The test efficiency is represented as the number of

vulnerabilities divided by the testing execution time.
Thus, for a given number of vulnerabilities, if the testing
execution time is shorter, the test efficiency will be
higher.

When the Sulley and the SFSNP have the same
vulnerability discovering capability, the results in Table
6 indicate that the execution time was reduced by
34 min using the SFSNP, which is nearly 82% of the
Sulley.

With the number of test cases reduced, the testing
execution time will inevitably be reduced. This data
also demonstrates the effectiveness of the SFSNP in
reducing the size of test case sets and the testing
execution time.

In conclusion, the experimental results highlight that
the SFSNP could not only guarantee the capability of
discovering vulnerabilities, but also reduce the number
of generated test cases and the testing execution time.

5 Conclusion

Recent years, vulnerability discovering for stateful
network protocol fuzzing is one of the important focal
points in the field of information security. However,
the existing network protocol fuzzing fails to consider
the state transition of the network protocol. Therefore,
traditional network protocol fuzzing is not applicable to
stateful network protocol fuzzing. Based on the state
transition of the stateful network protocol, this paper
proposes the SFSNP. The SFSNP first establishes the
extended FSM model with a path marker according

Rui Ma et al.: Semi-valid Fuzz Testing Case Generation for Stateful Network Protocol 467

to the protocol interaction. It further obtains the test
sequences according to the extended FSM. Then, it
performs the semi-valid mutation operations for each
state transition in the test sequences. Finally, it obtains
the protocol fuzzing sequences. Moreover, different
test sequences have the same state transitions when
generating protocol fuzzing sequences. That may cause
redundant test cases. Therefore, the SFSNP uses the
state transition marking algorithm to solve this problem.
Experiments were conducted to verify the correctness
of the vulnerability discovery, the quantity of test cases,
and the testing execution time. The experimental
results reveal that the SFSNP could not only guarantee
vulnerability discovery, but also reduce the quantity of
test cases and decrease the testing execution time.

Our research work still exhibits some defects. For
example, the verification is not adequate. Existing
theoretical analysis and experimental verification both
apply to public protocols. It is still not perfect for the
proprietary protocols with an unknown protocol format
and an unknown interactive process. Future work is
required to determine how to apply the SFSNP to other
protocols.

Acknowledgment

This work was supported by the National Key R&D
Program of China (No. 2016YFB0800700).

References

[1] M. Stutton, A. Greene and P. Amini, Fuzzing: Brute
Force Vulnerability Discoverytab: Threesome. London,
UK: Pearson Education, 2007.

[2] W. Wang, H. Ding, and Q. Zeng, Research and
implementation of test case generation based on
formal description, (in Chinese), Journal of Computer
Applications, vol. 28, no. 4, pp. 1018–1022, 2008.

[3] Z. Zhu, Y. Xu, and M. Zhou, Generation method survey
of network protocol testing, (in Chinese), Computer
Engineering and Applications, vol. 41, no. 15, pp. 172–
175, 2005.

[4] G. Shu, Y. Hsu, and D. Lee, Detecting communication
protocol security flaws by formal fuzz testing and machine
learning, Lecture Notes in Computer Science, vol. 5048,
pp. 299–304, 2008.

[5] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R.
Kemmerer, and G. Vigna, SNOOZE: Toward a stateful
network protocol fuzzer, Lecture Notes in Computer
Science, vol. 4176, pp. 343–358, 2006.

[6] H. J. Abdelnur, R. State, and O. Festor, KIF: A stateful SIP
fuzzer, in Proc. 1st Int. Principles, Systems & Applications
of IP Telecommunications Conf., New York, NY, USA,
2007, pp. 47–56.

[7] A. Raniwala, S. Sharma, P. De, R. Krishnan, and T. C.
Chiueh, Evaluation of a stateful tansport protocol for multi-
channel wireless mesh networks, in Proc. 15th IEEE Int.
Quality of Service Workshop, Evanston, IL, USA, 2007,
pp. 74–82.

[8] T. Alrahem, A. Chen, N. DiGiussepe, J. Gee, S. Hsiao, and
S. Mattox, INTERSTATE: A stateful protocol fuzzer for
SIP, presented at DEFCON 15, Las Vegas, NV, USA, 2007.

[9] T. Y. Chen, F. C. Kuo, R. G. Merkel, and T. H. Tse,
Adaptive random testing: The art of test case diversity,
Journal of Systems and Software, vol. 83, no. 1, pp. 60–
66, 2010.

[10] T. Kitagawa, M. Hanaoka, and K. Kono, AspFuzz: A state-
aware protocol fuzzer based on application-layer protocols,
in Proc. IEEE Computers & Communications Symposium,
Riccione, Italy, 2010, pp. 202–208.

[11] M. A. Akbar and M. Faroop, RTP-miner: A real-time
security framework for RTP fuzzing attacks, in Proc. 20th
Int. Network & Operating Systems Support for Digital
Audio & Video Workshop, Amsterdam, the Netherlands,
2010, pp. 87–92.

[12] S. Gorbunov and A. Rosenbloom, Autofuzz: Automated
network protocol fuzzing framework, International
Journal of Computer Science & Network Security, vol. 10,
no. 8, pp. 239–245, 2010.

[13] M. W. Li, A. F. Zhang, J. C. Liu, and Z. T. Li, An automatic
network protocol fuzz testing and vulnerability discovering
method, (in Chinese), Chinese Journal of Computers, vol.
34, no. 2, pp. 242–255, 2011.

[14] A. F. Sui, W. Tang, J. J. Hu, and M. Z. Li, An effective
fuzz input generation method for protocol testing, in Proc.
13th IEEE Int. Communication Technology Conf., Ji’nan,
China, 2011, pp. 728–731.

[15] P. Tsankov, M. T. Dashti, and D. Basin, SECFUZZ: Fuzz-
testing security protocols, in Proc. 7th Int. Automation of
Software Test Workshop, Zurich, Switzerland, 2012, pp. 1–
7.

[16] D. Seo, H. Lee, and E. Nuwere, SIPAD: SIP-VoIP
anomaly detection using a stateful rule tree, Computer
Communications, vol. 36, no. 5, pp. 562–574, 2013.

[17] F. Pan, Y. Hou, Z. Hong, L. Wu, and H. Lai, Efficient
model-based fuzz testing using higher-order attribute
grammars, Journal of Software, vol. 8, no. 3, pp. 645–651,
2013.

[18] R. Ma, W. D. Ji, C. Z. Hu, C. Shan, and W. Peng,
Fuzz testing data generation for network protocol using
classificaiton tree, in Proc. Communication Security Conf.,
Beijing, China, 2014, pp. 97–101.

[19] R. Ma, D. G. Wang, C. Z. Hu, W. D. Ji, and J. F. Xue,
Test data generation for stateful network protocol fuzzing
using a rule-based state machine, Tsinghua Science and
Technology, vol. 21, no. 3, pp. 352–360, 2016.

[20] C. Z. Hu, R. Ma, X. Han, C. Shan, and Y. Wang, A
rule-based method of designing model for stateful network
protocol, (in Chinese), China Patent CN201410333944.0,
July 14, 2014.

468 Tsinghua Science and Technology, October 2017, 22(5): 458–468

[21] RFC2821, https://www.ietf.org/rfc/rfc2821.txt, April,
2001.

[22] Venustech, Everyday vulnerability weekly newspaper,

http://202.85.219.10/NewsInfo/124/8109.Html, Sep. 14,
2010.

Rui Ma received a PhD degree from
Beijing Institute of Technology in 2004.
She is an associate professor with the
School of Software, Beijing Institute of
Technology. Her current research interests
include software security and Internet of
things.

Shuaimin Ren is a master student in
the School of Software at the Beijing
Institute of Technology. She received the
BEng degree from Beijing Institute of
Technology in 2016. Her current research
interests include software testing and
network security.

Ke Ma received the master degree
from Beijing Institute of Technology
in 2004. He is currently a senior
engineer with Internet Center, Institute
of Communication Standard Research,
China Academy of Information and
Communication Technology. His current
research interests include information

security and IP carrier.

Changzhen Hu received the PhD degree
from Beijing Institute of Technology in
1996. He is currently a professor with the
School of Software, Beijing Institute of
Technology. His current research interest
is information security.

Jingfeng Xue received the PhD degree
from Beijing Institute of Technology in
2003. He is currently a professor with
the School of Software, Beijing Institute of
Technology. His current research interest is
software security.

		2017-09-08T14:03:09-0400
	Preflight Ticket Signature

