
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll01/10llpp447-457
Volume 22, Number 5, October 2017

A TrustEnclave-Based Architecture for Ensuring Run-Time Security
in Embedded Terminals

Rui Chang�, Liehui Jiang, Wenzhi Chen, Yaobin Xie, and Zhongyong Lu

Abstract: The run-time security guarantee is a hotspot in current cyberspace security research, especially on

embedded terminals, such as smart hardware as well as wearable and mobile devices. Typically, these devices use

universal hardware and software to connect with public networks via the Internet, and are probably open to security

threats from Trojan viruses and other malware. As a result, the security of sensitive personal data is threatened

and economic interests in the industry are compromised. To address the run-time security problems efficiently,

first, a TrustEnclave-based secure architecture is proposed, and the trusted execution environment is constructed

by hardware isolation technology. Then the prototype system is implemented on real TrustZone-enabled hardware

devices. Finally, both analytical and experimental evaluations are provided. The experimental results demonstrate

the effectiveness and feasibility of the proposed security scheme.

Key words: run-time security; trusted execution environment; hardware isolation; TrustZone

1 Introduction

Embedded terminals (e.g., smart hardware, wearable
devices, and mobile devices) have recently attracted
great attention from members of the cyberspace security
community. On the one hand, embedded systems are
already considered the central part of control and
weapons systems in the military field. On the other
hand, sundry embedded devices have been used by
several infrastructure control facilities in the civil
domain as well as in automobile control, industrial
control, transportation system, electric system, financial
system, mobile communication, and so forth.

With the rapid development of Internet of Things
(IoT) technology and improvements in the computation

�Rui Chang, Liehui Jiang, and Yaobin Xie are with
the State Key Laboratory of Mathematic Engineering and
Advanced Computing, Zhengzhou 450001, China. E-mail:
crix1021@163.com.
�Wenzhi Chen and Zhongyong Lu are with the Department of

Computer, Zhejiang University, Hangzhou 310027, China. E-
mail: chenwz@zju.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2016-09-28; accepted: 2016-10-20

performance of mobile embedded devices, the new
pattern of informatization application has emerged
(e.g., Industrial 4.0, BYOD (Bring Your Own Device),
etc.). Embedded terminals, such as smart devices in
enterprise office network, smart hardware, as well as
wearable and mobile devices, have also received great
attention from researchers and practitioners.

Typically, such devices use universal hardware
and software to connect with public networks via
the Internet, and are probably open to security
threats from Trojan viruses and other malware. As
a result, the security of sensitive personal data is
threatened, and economic interests in the industry
are compromised. How do we handle the security
problems of complex embedded devices without killing
innovation?

Different from traditional personal computers,
embedded architecture is limited by its functions
and resources. Mature security protection theories and
technologies cannot be directly applied to the protection
mechanisms of embedded devices. In fact, the security
problems of embedded systems are much more
complicated than those of desktop systems. Finding
ways to improve the security of embedded terminals is
an urgent and challenging problem for researchers.

448 Tsinghua Science and Technology, October 2017, 22(5): 447–457

Security vulnerabilities from an Operating System
(OS) or third-party software are becoming increasingly
serious. Protecting run-time systems by preventing
vulnerabilities and patching faulty programs is no
longer effective. Unfortunately, there is a lack of mature
theories and fundamental studies that focus on the run-
time security of embedded devices. The mainstream
implementation schemes are based on virtualization
technology and secure coprocessors. Virtualization
technology utilizes a supervisor to manage system
resources to achieve Virtual Machine (VM)
introspection. The supervisor monitors the conditions
of Guest Virtual Machine (GVM) in real time and
detects potential kernel attacks. However, the VM
supervisor has more vulnerabilities than the OS due
to its complexity. Furthermore, the performance
overhead resulting from hardware virtualization
is unacceptable for the computation capability of
embedded devices. Additionally, not all the embedded
devices have virtualization support. A scheme for
detecting kernel vulnerabilities based on a secure
coprocessor has already been proposed[1], but it only
supplies an isolated execution environment with a lack
of controlling capability on system resources, such as
memory and other exterior equipment. This approach
can lead to two negative results. One is that monitoring
function deployed in a kernel’s address space can
be easily tampered by attackers. Consequently, real-
time monitoring would fail. The other is that the
scheme based on a secure coprocessor can only detect
system status but cannot manage and control abnormal
behaviors. For example, the integrity measurement
scheme of Linux from IBM can measure and verify the
running processes[2], but it cannot prevent the execution
of illegal processes.

To effectively address the security problems for
embedded terminals, this paper explores several key
technologies of OS support for run-time security
(Section 3). It proposes a TrustEnclave-based secure
architecture on embedded terminals, and presents
the implementation scheme (Section 4). The major
advantage of the proposed architecture is that it builds
a TrustEnclave in the address space of the OS kernel,
which cannot be tampered by the untrusted OS kernel
itself. TrustEnclave, which is protected by hardware
isolation technology, is an area of OS kernel. We
implement the prototype system on real TrustZone-
enabled hardware devices, construct a trusted execution

environment by hardware isolation technology, and
provide both analytical and experimental evaluations
(Section 5). The experimental results demonstrate
that the proposed security scheme is effective and
feasible. Hence, we can expect that the proposed
architecture and implementation scheme would better
support potential applications on embedded terminals
where run-time security is desired (e.g., smart devices).

The main contributions of this paper are as follows:
(1) We explore mainstream technologies in recent

years and compare existing implemented schemes;
(2) We propose a novel TrustEnclave-based secure

architecture on embedded terminals, which builds a
TrustEnclave in the address space of the OS kernel that
cannot be tampered by the untrusted OS kernel; and

(3) We implement the prototype system on real
TrustZone-enabled hardware devices, and present both
analytical and experimental evaluations.

2 Overview

An embedded system is a custom-built measurement
system with demanding functions, reliability, cost,
volume, and power dissipation. It consists of an
embedded microprocessor, hardware platform,
embedded OS, and various other applications. An
embedded system is similar to a computer system and
features three security attributes of confidentiality,
integrity, and availability. The explanations of these
attributes differ greatly based on their environment.

What is a Trusted Execution Environment? Before
we answer this question, we need to first define
execution environments in general. At a high level of
abstraction, an execution environment is the software
layer running on top of a hardware layer. Both hardware
and software layers are combined to form a device. We
focus on a class of devices that contain two execution
environments, which are physically separated. One
environment contains the main OS and applications,
and the other environment contains the trusted software
components. Thus, we have a physical separation
between the Trusted Area and the Untrusted Area. The
trusted area is not intrinsically trusted; no untrusted
software executes in it, and no hardware is attached to
it. Thus, it offers a stronger guarantee than an equivalent
outside of the security perimeter. However, given that
the trusted area is separated by the hardware from OS
and applications, its isolation is guaranteed, that is,
everything outside the trusted area is untrusted. Each

Rui Chang et al.: A TrustEnclave-Based Architecture for Ensuring Run-Time Security in Embedded Terminals 449

area features a different execution environment. In other
words, a device has two different software stacks. We
denote the execution environment in the trusted area
Trusted Execution Environment (TEE), and the one
in the untrusted area Rich Execution Environment
(REE). The indeterministic software in the REE cannot
affect the software running in the TEE.

Run-time security supplies an isolated secure
execution environment (i.e., TEE), where the
confidentiality and integrity of the code and data
are guaranteed. The secure characteristics include
isolated execution, execution files integrity, run-time
code integrity, control flow integrity, and so on. The
protected resources in run-time security are OS kernel,
memory, user process, files, peripherals, etc.

3 Background and Motivation

The research on key technologies of OS support for
run-time security focuses on virtualization technology,
Trusted Platform Module (TPM), Intel Software Guard
Extensions (SGX), and ARM TrustZone.

Owing to hypervisors with higher privileges
compared with OS, the security enhancement
scheme based on virtualization technology enhances
system security by isolating and monitoring. Such
a scheme usually deploys a monitoring tool outside
the system; thus, such a tool cannot be manipulated
by malicious software. Furthermore, the untrusted
software running in special virtual machine, which are
likely to be manipulated by malicious software,
cannot bypass hypervisors and influence other
virtual machines. Secvisor utilized the Secure Virture
Machine (SVM) of AMD processor to supply run-
time kernel code integrity protection, resulting in
greater performance overhead, and is not portable for
embedded systems[3]. At present, the virtualization
products of the mobile embedded terminal field are
vmware, L4Android, OKL4, Xen, LXC, and so
on. The Arc Lab of Zhejiang University utilized LXC
in Android 4.0 to implement a lightweight virtual
machine scheme[4], which isolated applications with
different security levels. Given that several virtual
machines still shared a sole kernel, the scheme proved
to be insufficient because it was unable to supply the
solution for kernel attacks.

Zheng et al. designed and implemented a scheme for
a trusted mobile terminal based on hardware platform
with an OMAP730 processor. Chen et al.[6] proposed

a trusted mobile platform architecture based on a
Mobile Trusted Module (MTM) and gave the formal
verification based on predicate logic. Zhao et al.[7]

from Wuhan University designed and implemented
a trusted PDA based on chip JetWay2810. Kim
et al. from Korea implemented a highly efficient
hardware architecture with SHA-1 and HMAC in
2007; in 2010, they designed the first small sized
MTM chip with triple calculating speed of the current
TPM and less energy consumption[8, 9]. TPM uses
secure key, and anything untrusted did not know
the key; thus, anything encrypted by the key was
considered secure[10]. However, it cannot defend the
system against run-time attacks. SGX (Intel Software
Guard Extensions) and TrustZone respectively adopted
different methods for run-time security.

Intel SGX is a set of new CPU instructions that
can be used by applications to set aside private
isolation regions of code and data[11]. It enables
applications to preserve the confidentiality and integrity
of sensitive code and data without disrupting the
ability of the legitimate system software to schedule
and manage the use of platform resources. SGX
helps to define secure regions of code and data that
maintain confidentiality even when an attacker has
physical control of the platform and can conduct
direct attacks on OS, VMM, and memory. SGX adds
18 instructions to extend Intel ISA (Instruction Set
Architecture) to ensure software security. Given that
SGX is considered the latest security technology of
Intel since 2013, utilizing it on embedded platforms
has numerous potential applications and thus deserves
greater attention by researchers. Professor Ahmad-
Reza Sadeghi from Technische Universit Darmstadt
(CASED) of Germany pursued his studies on Trusted
Execution Environments of embedded system security
and presented the theoretical analysis for embedded
system security with Intel SGX support[12]. Researchers
from the Georgia Institute of Technology achieved a
project, openSGX, which simulated SGX by QEMU,
thus marking the first attempt to use SGX in embedded
fields[13].

ARM defines TrustZone[14] as a hardware-supported
system-wide approach to security that is integrated
in high-performance processors, such as Cortex-A9,
Cortex-A15, and Cortex-A12[15]. Today, TrustZone is
implemented in most modern ARM processor cores
including the ARM1176, Cortex-A5/A7/A8/A9/A15,

450 Tsinghua Science and Technology, October 2017, 22(5): 447–457

and the newest ARMv8 64-bit Cortex-A53 and
Cortex-A57. TrustZone supplies isolated execution
environments for key system modules and protects
system resources in security working mode. Compared
with complex hypervisors, TrustZone is a more
appropriate method for ensuring embedded system
security.

While TrustZone[16] has been introduced more than
10 years ago, it is only recently that hardware
manufacturers (e.g., Xilinx, Nvidia, or Freescale)
and software solutions (e.g., Open Virtualization 19,
TOPPERS SafeG20, Genode21, Linaro OP-TEE, T622,
or Nvidia TLK) have respectively proposed hardware
platforms and programming frameworks that enable
researchers[17] and industry practitioners to experiment
and develop innovative solutions with TrustZone. This
development has led to a more open TrustZone
technology.

4 Design and Implementation

4.1 TrustZone-based TEE architecture

In order to support TEE, a device must be able to
define a security perimeter separated by hardware from
the main OS and other applications, in which only
the trusted code executes. We present the TrustZone-
based TEE architecture in Fig. 1. We refer to this
security perimeter as a trusted area called the Secure
World (SW). The trusted area is represented on the
right side of the figure (blue), where trusted components
execute in TEE. All components outside the trusted
area form the untrusted area called the Normal World
(NW), where OS and applications execute in REE. The
untrusted area is represented on the left side of the
figure (yellow). Peripherals connected to the system

Monitor
mode

Normal World Secure World

Security

client

SMC

FIQ

Security

client
Generic

application

Security

service
Security

service
Standalone
application

Scheduler
Trustzone

drive
Scheduler

Inter-world
IPC manager

Kernel Kernel

User User
privileged privileged

IRQ FIQ IRQ

Fig. 1 TrustZone architecture.

bus belong to either of the two areas, or both of them,
depending on the specific technology. TrustZone relies
on the so-called NS bit, an extension of the AMBA3
AXI system bus to separate the execution between SW
and NW.

4.2 Design challenges

The most powerful feature of TrustZone is that it is
capable of securing any peripherals connected to the
system bus (e.g., interrupt controllers, timers, and user
I/O devices) in a way that they are only visible from the
SW. One of the most difficult points is to gain the code,
data, and real-time status from any part of NW. When
real-time protection is turned on, it will not only prevent
attacks by modifying kernel effectively, but also defend
the attacks when the two logical pages from different
processes are allocated to the same physical page with
malicious kernel behaviors.

In order to deprive NW of gaining access to hardware,
the support from hardware includes two aspects. One
is that a higher privilege code cannot run in the lower
privilege mode. The other is the PXN (Privileged
eXecution Never) mode supported by ARM’s virtual
memory management. By setting the value of the flag
bit, we can control the range of physical address space
where the privileged code is running. For example, the
instructions LDC and MCR, which access memory by
register, only run in the special segment of memory
space.

Then, we implement three technical points as
follows. First, sensitive codes that can modify the
crucial state of hardware only run in the security
memory space in plan. Second, the security physical
memory space cannot be modified. Third, there is
no such address where it is possible to obtain a
protosomatic sensitive code in the security physical
memory space. This means that we must artificially
recode the sensitive code. Executing the sensitive code
by jumping into security space is impossible, and the
result is two-fold: NW cannot execute the sensitive code
from normal memory because there is no sensitive code
in the normal memory, and the sensitive code cannot
execute in NW because NW cannot read sensitive code
from SW. Recoding can be achieved by two approaches,
similar to binary translation in full-virtualization and
kernel modification in para-virtualization. The cost of
binary translation for ARM is lower than that for X86
because of ARM’s 32 bit fixed instruction format. As
the NW ultimately executes the sensitive code, and the

Rui Chang et al.: A TrustEnclave-Based Architecture for Ensuring Run-Time Security in Embedded Terminals 451

CPU actually executes an SMC call. When NW receives
an SMC call, it checks the value of the previously saved
register, which is taken as the operation code, and jumps
according to the protocol. The hardware functions are
actualized in SW. Consequently, the instructions in NW
have the same functions as before and are also secured.

4.3 TrustEnclave-based privilege mode

TrustZone introduces new states of security for ARM
architecture, which decide whether the operations occur
in SW or NW. The hardware of SW has special design
for strengthening security, while it can isolate codes in
hardware conditions. Security software supplies basic
security services, meanwhile it provides interface to
link any other nodes of security chain, including smart
card, OS, and normal applications. In general, the
ARM processor has seven work modes divided into
two categories, namely, user mode and privileged
modes. Access rights to certain resources are restricted
in the user mode, but they are not constrained in the
other six privileged modes.
� User mode: Low-privileged mode, where the user

code outside the system code runs;
� System mode: Privileged code running in system

mode;
� Management mode: System using mode;
� DataAbort: Access data error;
� Fast interrupt: Rapid response to external

interrupt;
� External interrupt: Normal interrupt mode;
� Undefined: Illegal instructions being executed.
To improve the above mentioned design, the

TrustZone-based ARM processor adds security and
non-security modes to differentiate the state of
processor. It adds a new processor mode (i. e., Monitor
mode) to be privileged mode and user mode and then
differentiates the state of the processor by the lowest
bit of coprocessor C1 (i. e., NS bit). If NS bit=0, it is
secure and trusted; if NS bit=1, it is non-secure and
untrusted. The register can be accessed if and only if it
is privileged and in the security mode. The operational
principle of differentiating security and non-security is
similar to that of differentiating between the privileged
and user modes. The NS bit not only affects CPU core
and memory subsystem, but also affects the functions
of the peripherals on the chip.

The NS bit indicates the current running state
of kernel. The independently running mode (i.e.,
monitor mode) of the processor is used to control

the security state of system, instructions, and access
authority. It switches between security and normal
states by modifying the NS bit. Moreover, it saves
the current context state and clears the registers as
needed. The eight new-processor modes with NS bit are
shown in Table 1. Each mode of the ARM processor
corresponds to an interrupt vector table. The offset
addresses of interrupt vector tables are shown in Table
2.

As shown in Table 2, system call (SVC) and security
call (SMC) use the same interrupt vector address. SVC
is used to switch the user mode to the privileged mode,
whereas SMC is used to switch the privileged mode
to the security mode. However, undefined instruction
exception may ocur if SMC is called in the user mode.

The security feature of TrustZone can be used
in sundry safety applications. The extended security
features must be satisfied by the fundamental principles
below.

(1) Define a new operation switching security and
non-security state; the majority of codes run in NW, and
only trusted codes run in SW.

(2) Set part of memory space as security space; access

Table 1 The mode list of TrustZone support.

Mode
Privilege State

level NS bit=1 NS bit=0

User mode User Untrusted Trusted
Fast interrupt Privileged Untrusted Trusted
Common interrupt Privileged Untrusted Trusted
Privileged mode Privileged Untrusted Trusted
Illegal access Privileged Untrusted Trusted
Undefined Privileged Untrusted Trusted
System Privileged Untrusted Trusted
Monitor Privileged Trusted Trusted

Table 2 Interrupt vector table.

Interrupt exception Mode Offset
types address

Reset Privileged mode 0x00
Undefined Undefined mode 0x04
System call Privileged mode (SVC) 0x08
Secure call Monitor mode (SMC) 0x08
Prefetch failure Illegal access 0x0c
Access error Overflow 0x10
Common interrupt Common interrupt 0x18
Fast interrupt Fast interrupt 0x1c
Reset Privileged mode 0x00

452 Tsinghua Science and Technology, October 2017, 22(5): 447–457

SW only in the security state.
(3) Strictly control the entry of entering SW.
(4) Quitting from SW needs to be restricted.
We can modify the NS bit only in the privileged

mode, that is, we can switch the state from the security
mode to the non-security mode by setting the NS bit. On
the contrary, we cannot switch from non-security mode
to security mode, because the NS bit cannot be modified
in the non-security mode.

If it is in non-security mode, calling system call SMC
is the only way to enter the security mode. Yet if it is
both in the user and non-security mode, it must call
the SVC first. It is worthy to note that the modification
of modes is severely restricted. If it is in the non-
security mode, calling security call SMC is the only
way to change into the monitor mode; meanwhile, when
it is both in the privileged and security modes, we
can modify the system mode directly. All hardware
resources can be accessed in the monitor mode.

4.4 TrustEnclave construction

We construct the protected isolation TrustEnclave, and
make corresponding authority policies of page table
mapping. The structure of TrustEnclave is shown in
Fig. 2. Here, SW is represented on the right side of
the figure (blue), where trusted components execute in
TEE, and NW is represented on the left side of the
figure (yellow). TrustEnclave is the enclave that is in
the NW’s address space with normal privilege level, but
is protected by the trusted isolation environment. The
monitor codes and TrustEnclave could not be tampered
by the attacker.

The greatest challenge here is to protect the monitor
code in the NW’s address space. Given that NW
has full control over its own system resources (e.g.,

Monitor
mode

Normal World Secure World

Kernel(Enclave)

smc type1

smc type2

...

Process n

Process 2

Process 1

… …

Secure Service n

Secure Service 2

Secure Service 1

type1_handler
type2_handler

...

User space

Kernel space Priviledged mode

Non-Priviledged mode

Fig. 2 Structure of TrustEnclave.

physical memory, page table, and corresponding
control register), it is possible to bypass the security
monitor. The SW must track the behavior of the
monitor codes and construct TrustEnclave in the kernel
space. The two specific procedures are disposition of
monitor points and isolation protection of the monitored
area. It will create a security world process control
block (i. e., sw pcb) as each valid process is created
inside SW. The sw pcb manages the state information
of process, including process page table base address,
physical address of the security shared memory, process
shadow stack, process jump record table, etc. The
sw pcb can be used to provide help for the proof
procedure of security policy. Binary codes are recoded
during kernel image loading; meanwhile, system image
files need not be modified. The instruction set of ARM
architecture has a fixed-length (e.g., 16-bit in Thumb
and 32-bit in ARM), and the instruction addresses
are one-byte aligned. SW can pre-acquire the kernel
address space arrangement, making it easier to locate
and identify the location of the correlative code,
and providing a facility to recode binary codes. The
monitored kernel codes are replaced by SW with
SMC instructions, and the monitor point type is
identified by the 4-bit immediate operand of SMC
instructions. Referencing the management mechanism
of shadow page table in virtual technology, all physical
memory mappings that include the page table are
compulsively read-only. Whenever a kernel updates the
page table, this will trigger data abort exceptions due to
page permission errors and jump to the exception vector
table executing the exception handler. Thus, we insert
a monitor point into the data abort exception of the
exception vector table. Doing so ensures that all updates
of page tables are intercepted by SW.

In order to ensure that the memory page table is
mapped read-only, we add a new security strategy while
switching Translation Table Base Register (TTBR) and
updating page table, that is, we must ensure that all
physical memory page tables are read-only and that
the writable multimap does not exist. This requires
recording the physical address when all the page tables
are created in SW. ARM-Android uses the two-level
page table by default. In the following two situations,
the first-level page table is created. One situation is
initializing the page table of a kernel (i.e., swap pg dir)
itself and trying to write it into TTBR. The other is
the first time a process is scheduled to execute after
creation when TTBR is switched. The second-level

Rui Chang et al.: A TrustEnclave-Based Architecture for Ensuring Run-Time Security in Embedded Terminals 453

physical page table is created when the first level
page table is updated. Both can be intercepted by the
existing monitor points. Thus, the security strategies
above can be validated effectively by SW. We should
insert two kinds of monitor points into NW: control
register modification (MMU, WXN, TTBR) and data
abort exception.

5 Evaluation

5.1 Analytical evaluation

We provide an analytical evaluation of our
contributions. We first provide an exhaustive security
analysis for each of them, after which we look at the
design requirements we established and study how
they are met in SW. From a software point of view,
any design of a trusted service using TrustZone should
rely on the following three main components: (1) the
trusted operating system which represents a specific
way to organize the TrustZone’s secure world, and a
commodity OS that supports the execution of complex
untrusted applications (i.e., innovative services); (2)
a TrustZone driver that enables interactions between
secure and non-secure worlds; and (3) a set of trusted
modules that implement the trusted services in the
TrustZone secure world.

Our design advocates for a high integration between
the two areas to support innovative services, inevitably
exposing the components in the trusted area. Still,
we maintain the assumption that the untrusted area
(i.e., untrusted applications and commodity OS)
is completely untrusted, and the fact that it is
compromised does not affect neither the confidentiality
nor the integrity of the sensitive assets.

The generic TrustZone driver and the secure monitor
are two TrustZone components that are compromised as
soon as they are exposed to the untrusted area. These
two components are closely related, because their
locations in the untrusted area respond to two different
attack vectors. A third attack vector that we cover is
directly compromising the secure area without using the
interfaces exposed to the untrusted area.

In this analytical evaluation, we show our
contributions, i.e., resist a large percentage of the
attack vectors that we know of today, and comply
with the requirements we have established for them
in our design. Indeed, we have satisfied our main
objective: increasing the security of an embedded
system with possible theoretical complex applications

without killing innovation. The untrusted area, where
innovative applications are executed, can be fully
compromised. However, through a series of run-time
security primitives, these applications can access
trusted services while guaranteeing the confidentiality
and integrity of sensitive data. More importantly, these
trusted services not only enable the outsourcing of
secure tasks to a trusted area protected by hardware,
they also allow sensitive data to leave such trusted area
and access to innovative, untrusted services, while still
guaranteeing its confidentiality and integrity.

5.2 Experimental evaluation

As mentioned above, when we started experimenting
with TrustZone, options are limited by both hardware
and software. We rely on the CES-4412P development
board, which is formed around Samsung’s newest
Exynos4412, that is, a quad-core ARM Cortex-A9
processor. The experimental platform is one of the few
platforms that can fully support TrustZone and where
TrustZone registers are available. More concretely, we
use the CES-4412P development board, which runs
typically at 1.4–1.6 GHz with 32 KB L1 cache and
1 MB L2 cache. The CES-4412P is depicted in Fig. 3.

In our experiments, the TrustZone operating system
is Sierraware’s GPL version of Open Virtualization. We
use Linux kernel (version 4.0.1) as the operating system
running in the NW, together with a light command-
based version of Ubuntu. These systems respectively
manage the secure space, kernel space, and user space.

Every time a secure task (or a trusted module) is
called from the kernel space, a context switch takes
place between the kernel and secure space. Even though
this process is implementation specific, it at least

Lin
e i

n

M
M

C S
LO

T
1

U
SB O

T
G

JT
A

G

U
SB H

O
ST

 2
.0

SIM
 C

A
RD

V
G

A
Battery

S5M
8767A

Exynos 4412

LCD

iN
A

N
D

 (8 G
B)

H
D

M
I

EIN
T

31
EIN

T
0

nR
ESET

nW
R

ESET

POWER

DC_IN (5V)

UART 3

KEYPAD

UART 0/1/2

GPS

WiFi

Camera 1

Camera 2

LA
N

M
ic

in

H
ea

dp
hon

e

Fig. 3 Samsung CES-4412P development board.

454 Tsinghua Science and Technology, October 2017, 22(5): 447–457

involves the following: saving the untrusted state,
switching software stack, loading the secure state,
dispatching the secure task, and returning to the kernel
space (save secure state, change software stack, load
untrusted sate). We denote this double context switch as
Secure Round Trip. The metric we use, which is defined
below, is the overhead introduced by the secure space.

Overhead D
Tsecure � Tkernel

Tkernel
(1)

We present a comprehensive evaluation for the
influence of our work by Lmbench, i.e., embedded
platform evaluation tool. It evaluates the switching
privileged mode, memory mapping, page fault
exception handling, and so on. We compare the
execution efficiencies of system call between the
original OS and the TrustEnclave-based one. Then, we
calculate the overhead. The experimental results are
shown in Fig. 4.

6 Discussion and Future Work

Different from the schemes based on secure
coprocessor, TEE architectures provide a secure
processor environment, wherein a single core supports
multiple virtual cores that are mutually exclusive of
one another, i.e., when one is running, the other is

In Origin OS
With TrustEnclave
Overhead

0

1

2

3

4

5

6

7

8

9

10

0

20

40

60

80

100

120

140

160

180

O
ve

rh
ea

d
(%

)

E
xe

cu
ti

on
 t

im
e

(m
s)

fork write execve clone send open read

Fig. 4 Performance evaluation for TrustEnclave.

suspended. Generally, there is a kind of trigger that
allows the core to switch from one state to the other. We
implement one of the TEE architectures, which is
different from those presented by other international
studies. The comparison results are shown in Table 3.

Based on our experience in designing and building
support for trusted embedded terminals, we now
propose a roadmap for future works. As demonstrated
in the current work, hardware isolation is indeed
an effective solution for providing run-time security
in commodity OS without making assumptions on
their trustworthiness. Meanwhile, it also introduces an
affordable overhead in terms of performance. On top of
our initial hypothesis, our future work includes utilizing
sensitive assets, and serving as a basis for usage policy
enforcement via hardware isolation.

We divide this roadmap for future work in three
sections. First, we would like to further improve
the current architecture in terms of OS support and
security modules. Second, it would be interesting
to make improvements upon the current protection
modules. Here, we take the threat model and memory
protection mechanism separately. Finally, we would
also like to provide the memory integrity verification
by formalization in the future.

7 Related Work

In terms of size and overhead, the separate TPM chip
in embedded terminals is inadequate. TPM module
implemented in software is another choice. Aaraj
et al.[23] tested the overhead and execution time of
software TPM instructions on PDA. Choi et al.[24]

from Korea implemented a mobile trusted system
based on micro-kernel. Bugiel and Ekberg[25] from
Sweden introduced the Dynamic Root of Trust for
Measurement (DRTM) to protect and measure MTM,
which attempted to establish a dynamic trusted
computing environment. Meanwhile, Ekberg et al.[26]

from the Nokia Research Institute implemented the

Table 3 Comparison of TEE architectures with international researchers.

Researchers Secure World Normal World Platform Hardware-assistent Memory protection

Gonzlez and Bonnet[17] Open Virtualization Linux3.8.0 Xilinx ZC702 Yes Implement
Pinto et al.[18] FreeRTOS Linux Xilinx ZC702 Yes Not-mentioned

McGilliion et al.[19] Linux Android/IOS/Linux Open-TEE No Not-mentioned
Winter et al.[20] Linux Android/Linux QEMU emulator No Not-mentioned
Yang et al.[21] T-OS(Trust-E) Android4.0 SMDK210 Yes Not-mentioned
Zhang et al.[22] Open Virtualization Linux2.6.35 Xilinx 7000 Yes Mentioned

Our work Open Virtualization Linux4.0.1 CES-4412P Yes Implement

Rui Chang et al.: A TrustEnclave-Based Architecture for Ensuring Run-Time Security in Embedded Terminals 455

simulator MTM based on simulator TPM. MIPS
developed security processor core, including extended
ISA, to accelerate encryption and decryption functions
and security memory management. IBM produced a
coprocessor distorting authentication. Zhang et al.[27]

from Georgia Mason University studied a probable run-
time attack and proposed the implantation scheme to
solve it. Smolyar et al.[28] from Technion aimed at
SRIOV utilizing a VM to control another VM.

In recent years, academic researchers focused
on an ARM-Android platform for embedded
terminals security[29], and new technologies and
ideas emerged within the combination of academia
and industry[30]. TrustZone-based technologies have
also been applied to the mobile terminal field[31],
including Apple SecureEnclave, Samsung KNOX,
and so forth[32]. After establishing Hypervisor-Based
IMA (i.e., HIMA), Azab et al.[33] from North Carolina
State University developed the applications for
KNOX and explored new related technologies. Ge
et al.[34] proposed a protection scheme for kernel
integrity on mobile embedded devices based on
TrustZone without implementation. On a .Net platform,
a security scheme based on TrustZone and TEE was
jointly developed by Microsoft Research and Lisbon
University[25]. Researchers from CASED proposed a
new code provisioning paradigm for the codes that are
intended to run within execution environments, and is
established on top of secure hardware[35].

In addition, Ruhr-Universitaet and Microsoft
Research Bochum utilized the newest SGX secure
mode[36] to isolate the physical memory of individual
nodes and implemented trustworthy data analytics in
the cloud[37]. Jin et al.[38] from the Korea Advanced
Institute of Science and Technology proposed a scheme
to monitor hypervisor and protect client resources with
hardware assistance.

8 Conclusion

At the beginning of this paper, we argue that one
of the main factors enabling cyberattacks includes
the increasing complexity of OS and software. Our
assertion is that complexity hides vulnerabilities in the
code, causing the software to occasionally behave in
a non-deterministic manner. In our view, cyberattacks
are indeed about detecting unspecified behaviors and
finding ways to exploit them. The question that we
asked, and one which motivated our work, was: How do

we handle the security problems of complex embedded
devices without killing innovation?

We tried to answer this question by focusing on
run-time security. With more system vulnerabilities and
much complex network environment, trusted kernel
hardly exists in execution. The key technologies of OS
support for run-time security have become research
hotspots. An efficient and feasible implementation
scheme is presented in this work. Specifically, we
proposed an architecture with which to construct
a trusted execution environment isolated from
OS kernel by hardware isolation technology for
embedded terminals. The major advantage of the
proposed architecture is that it builds a TrustEnclave
in the address space of the OS kernel, which
cannot be tampered by the untrusted OS kernel
itself. TrustEnclave, which is protected by hardware
isolation technology, is an area of OS kernel. Hence,
a system monitor program should be trusted. Our
experiments demonstrate that the proposed security
scheme is effective and feasible. The security scheme
can be used to protect memory, prevent malicious
applications, insulate sensitive data, and deal with
some other problems in the field of embedded system
security. We can expect that the proposed architecture
and implementation scheme can provide better support
for potential applications on embedded terminals where
run-time security is desired (e.g., smart devices).

Acknowledgment

Many thanks to Xian Chen and Yuxia Cheng for their
helpful discussion about this work. This work was
supported by the National Natural Science Foundation of
China (Nos. 61572516 and 61503213).

References

[1] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn,
Design and implementation of a TCG-based integrity
measurement architecture, in Usenix Security Symposium,
San Diego, CA, USA, 2004, p. 16.

[2] A. M. Azab, P. Ning, E. C. Sezer, and X. Zhang,
HIMA: A hypervisor-based integrity measurement agent,
in Computer Security Applications Conference, IEEE
Computer Society, 2009, pp. 461–470.

[3] A. Seshadri, M. Luk, N. Qu, and A. Perrig, SecVisor: A
tiny hypervisor to provide lifetime kernel code integrity
for commodity OSes, ACM SIGOPS Operating Systems
Review, vol. 41, no. 6, pp. 335–350, 2007.

[4] L. Xu, W. Chen, and Z. Wang, Research about
virtualization of ARM–based mobile smart devices,

456 Tsinghua Science and Technology, October 2017, 22(5): 447–457

Lecture Notes in Electrical Engineering, vol. 308, pp. 259–
266, 2014.

[5] Y. Zheng, D. He, and M. He, Trusted computing based user
authentication for mobile equipment, (in Chinese), Chinese
Journal of Computer, vol. 29, no. 8, pp. 1255–1264, 2006.

[6] S. Y. Chen, Y. Y. Wen, and H. Zhao, Conceptual design
of trusted mobile platform, (in Chinese), Journal of
Northeastern University, vol. 29, no. 8, pp. 1096–1099,
2008.

[7] B. Zhao, H. G. Zhang, J. Li, L. Chen, and S. Wen, The
system architecture and security structure of trusted PDA,
(in Chinese), Chinese Journal of Computers, vol. 33, no. 1,
pp. 82–92, 2010.

[8] M. Kim, H. Ju, Y. Kim, J. Park, and Y. Park, Design
and implementation of mobile trusted module for trusted
mobile computing, IEEE Transactions on Consumer
Electronics, vol. 56, no. 1, pp. 134–140, 2010.

[9] M. Kim, D. Lee, and J. Ryou, Compact and unified
hardware architecture for SHA-1 and SHA-256 of trusted
mobile computing, Personal and Ubiquitous Computing,
vol. 17, no. 5, pp. 921–932, 2013.

[10] D. Z. Shen, X. B. Hu, H. Z. Liu, F. L. Li, F.
Liu, Y. Tao, and Z. L. Ye, Security research of
state cryptographic authentication security chip in smart
grid, in China International Conference on Electricity
Distribution, Shenzhen, China, 2014, pp. 416–418.

[11] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo, Using innovative instructions to create
trustworthy software solutions, in International Workshop
on Hardware and Architectural Support for Security and
Privacy, New York, NY, USA, 2013, pp. 1–10.

[12] A. Sadeghi, Trusted execution environments Intel SGX,
Available: http://sigops.org/sosp/sosp13/, Accessed on
Nov. 18, 2014.

[13] P. Jain and S. Desai, Intel SGX emulation using QEMU,
Available: https://github.com/sslab-gatech/opensgx,
Accessed on May 15, 2015.

[14] Y. M. Zhou, The analysis of TrustZone secure technology
based on ARM architecture, (in Chinese), Microcomputer
Information, vol. 24, no. 36, pp. 69–71, 2008.

[15] A. Baumann, M. Peinado, and G. Hunt, Shielding
applications from an untrusted cloud with haven, ACM
Transactions on Computer Systems, vol. 33, no. 3, pp. 1–
26, 2015.

[16] T. Alves, TrustZone: Integrated hardware and software
security, ARM White Paper, vol. 3, no. 4, pp. 18–24, 2004.

[17] J. Gonzlez and P. Bonnet, Towards an open framework
leveraging a trusted execution environment, in the 5th
International Symposium on Cyberspace Safety and
Security, 2013, pp. 458–467.

[18] S. Pinto, D. Oliveira, J. Pereira, N. Cardoso, M.
Ekpanyapong, J. Cabral, and A. Tavares, Towards
a lightweight embedded virtualization architecture
exploiting ARM TrustZone, in IEEE International
Conference on Emerging Technologies and Factory
Automation, Barcelona, Spain, 2014, pp. 1–4.

[19] B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan,
Open-TEE — An open virtual trusted execution

environment, in TRUSTCOM’15 Proceedings of the 2015
IEEE Trustcom/BigDataSE/ISPA, Washington, DC, USA,
2015, pp. 58–67.

[20] J. Winter, P. Wiegele, M. Pirker, and R. Tögl, A
flexible software development and emulation framework
for ARM TrustZone, in International Conference on
Trusted Systems, Beijing, China, 2011, pp. 1–15.

[21] X. Yang, P. Shi, B. Tian, B. Zeng, and W. Xiao,
Trust-E: A trusted embedded operating system based
on the ARM Trustzone, in IEEE 11th Intl. Conf. on
Ubiquitous Intelligence and Computing and 11th Intl.
Conf. on Autonomic and Trusted Computing and 14th

Intl. Conf. on Scalable Computing and Communications
and Its Associated Workshops (UIC-ATC-ScalCom), IEEE
Computer Society, 2014, pp. 495–501.

[22] Y. Zhang, D. Feng, Y. Qin, and B. Yang, A Trustzone-
based trusted code execution with strong security
requirements, (in Chinese), Journal of Computer Research
and Development, vol. 52, no. 10, pp. 2224–2238, 2015.

[23] N. Aaraj, A. Raghunathan, and N. K. Jha, Analysis and
design of a hardware/software trusted platform module
for embedded systems, ACM Transactions on Embedded
Computing Systems, vol. 8, no. 1, pp. 3296–3306, 2008.

[24] S. Choi, J. Han, J. Lee, J. Kim, and S. Jun, Implementation
of a TCG-based trusted computing in mobile device, in
International Conference on Trust, Privacy and Security
in Digital Business, Springer-Verlag, 2008, pp. 18–27.

[25] S. Bugiel and J. E. Ekberg, Implementing an application-
specific credential platform using late-launched mobile
trusted module, in STC’10 Proceedings of the Fifth ACM
Workshop on Scalable Trusted Computing, Chicago, IL,
USA, 2010.

[26] J. E. Ekberg, N. Asokan, and K. Kostiainen, Method and
apparatus to reset platform configuration register in mobile
trusted module, European Patent EP2537115, May 13,
2015.

[27] F. Zhang, K. Leach, A. Stavrou, H. Wang, and K.
Sun, Using hardware features for increased debugging
transparency, in IEEE Symposium on Security and Privacy,
IEEE, 2015, pp. 55–69.

[28] I. Smolyar, M. Ben-Yehuda, and D. Tsafrir, Securing
selfvirtualizing ethernet devices, in USENIX Conference
on Security Symposium, Washington, DC, USA, 2015, pp.
335–350.

[29] S. Fahl, M. Harbach, T. Muders, L. Baumg, B. Freisleben,
and M. Smith, Why eve and mallory love android:
An analysis of android SSL (in) security, in CCS’12:
Proceedings of the 2012 ACM Conference on Computer
and Communications Security, Raleigh, NC, USA, 2012,
pp. 50–61.

[30] S. H. Kim, D. Han, and D. H. Lee, Predictability
of Android OpenSSL’s pseudo random number
generator, in ACM Sigsac Conference on Computer
and Communications Security, Berlin, Germany, 2013, pp.
659–668.

[31] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, An
empirical study of cryptographic misuse in Android

Rui Chang et al.: A TrustEnclave-Based Architecture for Ensuring Run-Time Security in Embedded Terminals 457

applications, in ACM Sigsac Conference on Computer and
Communications Security, Berlin, Germany, 2013, pp. 73–
84.

[32] N. Santos, H. Raj, S. Saroiu, and A. Wolman, Using
ARM trustzone to build a trusted language runtime
for mobile applications, in International Conference on
Architectural Support for Programming Languages and
Operating Systems, Salt Lake City, UT, USA, 2014, pp.
67–80.

[33] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar,
G. Ganeshand, J. Ma, and W. Shen, Hypervision across
worlds: Real-time kernel protection from the ARM
TrustZone secure world, in ACM Sigsac Conference on
Computer and Communications Security, Scottsdale, AZ,
USA, 2014, pp. 1028–1031.

[34] X. Ge, H. Vijayakumar, and T. Jaeger, Sprobes: Enforcing
kernel code integrity on the TrustZone architecture, arXiv:
1410.7747, 2014.

[35] A. Dmitrienko, S. Heuser, T. D. Nguyen, M. D. S. Ramos,
A. Rein, and A. Sadeghi, Market-driven code provisioning
to mobile secure hardware, in Financial Cryptography and
Data Security, Springer Berlin Heidelberg, 2015, pp. 387–
404.

[36] A. Baumann, M. Peinado, and G. Hunt, Shielding
applications from an untrusted cloud with Haven, ACM
Transactions on Computer Systems, vol. 33, no. 3, pp. 1–
26, 2015.

[37] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar, and M. Russinovich, VC3:
Trustworthy data analytics in the cloud using SGX, in
IEEE Symposium on Security and Privacy, Washington,
DC, USA, 2015, pp. 38–54.

[38] S. Jin, J. Ahn, J. Seol, S. Cha, J. Huh, and S. Maeng,
HSVM: Hardware-assisted secure virtual machines under
a vulnerable hypervisor, IEEE Transactions on Computers,
vol. 64, no. 10, pp. 2833–2846, 2015.

Rui Chang received the MS degree from
Wuhan University of Technology in 2007,
and BA degree from Zhengzhou University
in 2003. She is an associate professor with
the State Key Laboratory of Mathematic
Engineering and Advanced Computing,
Zhengzhou, China. She is currently a
PhD candidate and visiting scholar at

the College of Computer Science and Technology, Zhejiang
University. Her research interests include computer architecture,
embedded system security, and access control.

Liehui Jiang received MS degree in
computer science and technology from
PLA University of Science and Technology
in 1994, the PhD degree and BA degree
from the PLA Information Engineering
University, China in 1989 and 2007,
respectively. He is currently a professor
and a PhD supervisor with the State

Key Laboratory of Mathematic Engineering and Advanced
Computing, Zhengzhou, China. His main research interests
include computer architecture, reverse engineering, and security.
He has published over 100 refereed papers. He is a senior
member of China Computer Federation.

Yaobin Xie received MS and BA degrees
from the PLA Information Engineering
University, China in 2004 and 2007,
respectively. He is currently a PhD
candidate and a member of China
Computer Federation. His main research
interests include reverse engineering,
industrial control system, and security.

Wenzhi Chen received the PhD degree
from Zhejiang University in 2005. He is
currently a professor and a PhD supervisor
with the College of Computer Science and
Technology, Zhejiang University. His areas
of research include computer graphics,
computer architecture, system software,
embedded systems, and security. He has

published over 80 refereed papers. He has served as an editorial
board member of several international journals, including IEEE
Transactions on Information Forensics and Security. He is a
senior member of IEEE and China Computer Federation.

Zhongyu Lu received BA degree from
Zhejiang University in 2012. He is
currently working toward the PhD degree
in the College of Computer Science
and Technology at Zhejiang University,
China. His research interests include
computer architecture, cache optimization,
and emerging NVM.

