
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll07/09llpp413–426
Volume 22, Number 4, August 2017

Distributed Algorithms for Event Reporting in
Mobile-Sink WSNs for Internet of Things

Catalina Aranzazu-Suescun and Mihaela Cardei�

Abstract: Wireless Sensor Networks (WSNs) have many applications, such as climate monitoring systems, fire

detection, smart homes, and smart cities. It is expected that WSNs will be integrated into the Internet of Things (IoT)

and participate in various tasks. WSNs play an important role monitoring and reporting environment information and

collecting surrounding context. In this paper we consider a WSN deployed for an application such as environment

monitoring, and a mobile sink which acts as the gateway between the Internet and the WSN. Data gathering is a

challenging problem in WSNs and in the IoT because the information has to be available quickly and effectively

without delays and redundancies. In this paper we propose several distributed algorithms for composite event

detection and reporting to a mobile sink. Once data is collected by the sink, it can be shared using the IoT

infrastructure. We analyze the performance of our algorithms using WSNet simulator, which is specially designed

for event-based WSNs. We measure various metrics such as average residual energy, percentage of composite

events processed successfully at the sink, and the average number of hops to reach the sink.

Key words: composite events; distributed algorithm; energy efficiency; event-based clustering; Internet of Things;

mobile sink; wireless sensor networks

1 Introduction

One of the key concepts of the Internet of Things

(IoT) is to interconnect billions of devices to generate

a “smart” environment. Sensor-Actuator-Internet is the

framework for this smart environment[1].

Wireless Sensor Networks (WSNs) have been widely

used in multiple IoT applications due to ubiquitous

sensor devices[1–3]. Extensive research activities in the

topics of security[4, 5], topology[6], synergies with other

technologies[7], and energy consumption[1] in WSNs for

IoT have been conducted in the last five years.

� Catalina Aranzazu-Suescun and Mihaela Cardei are with

the Department of Computer and Electrical Engineering

and Computer Science, Florida Atlantic University, Boca

Raton, FL 33431, USA. E-mail: fcaranzazusue2014,

mcardeig@fau.edu.

�To whom correspondence should be addressed.

Manuscript received: 2016-11-20; revised: 2017-02-25;

accepted: 2017-03-01

WSNs data collection and event reporting are

important research topics in the IoT. The IoT is a world-

wide network where all devices are interconnected and

information has to be available fast and in an efficient

way, thus redundancies and useless information have

to be eliminated. A key approach for efficient

interconnection is to give devices a “smart” behavior

where they can communicate, process information, and

take decisions without human intervention[8].

We classify the events to be detected by WSNs into

atomic and composite events. Atomic events measure

changes of a single attribute in the environment, for

example, the temperature, while composite events
consist of groups of atomic events. Information from

the sensors is aggregated, and events of interest are

reported to the sink. Aggregating data closer to the

event location saves energy[6] compared to the case

when data is aggregated at the sink. An event-based

clustering is proposed in Ref. [9], where the Cluster

Head (CH) sends a report to the sink when a composite

event is detected.

414 Tsinghua Science and Technology, August 2017, 22(4): 413–426

The sink plays an important role in our application.

The sink sends a request to the WSN with the

specifications of the composite event. Actually different

sinks may initiate different requests, but in this paper

we deal with the presence of a single sink. We assume

that the sink is mobile, and it acts as a gateway between

the WSN and the IoT network. Take the forest fire

application as an example. The sink could be a forest

ranger equipped with a smart-phone. In this case the

sink can move at a pedestrian speed or higher speeds

(e.g., golf-cart or car speed). A ranger could walk

through the area, collecting data from the WSN with

his smart-phone, and using the IoT network he can

notify the responsible entities in case of abnormal

measurements.

The rest of the paper is organized as follows.

Section 2 presents related work. Section 3 introduces

the event model, consisting of atomic and composite

events. Section 4 describes the problem definition.

In Section 5 we present our distributed algorithms

for event reporting to the sink. The performance of

our algorithms is illustrated in Section 6, where we

conduct simulations using WSNet[10]. The conclusions

are stated in Section 7.

2 Related Work

WSNs have been widely used in event monitoring

applications such as environment, climate, animal

monitoring, and also in the medical field (e.g., body

sensors) and natural disaster. Some of the networks use

homogeneous sensors, where only one type of sensor

is used to monitor the environment. Heterogeneous

networks use different types of sensors to collect data

more effectively and accurately[11, 12].

Several authors have used the composite event

concept in WSNs, where variations in the sensors’

measurements in the environment are collected and

aggregated. A composite event is a collection of atomic

events or measurements of several types of sensors.

Clustering is an effective mechanism for data

aggregation in WSNs. Many clustering algorithms have

been proposed in literature, such as LEACH[13] and

HEED[14]. The authors of Ref. [15] used k-means

and three different classifiers, Feed Forward Neural

Network (FFNN), Naive Bayes, and Decision Trees, to

find patterns in data and to improve detection and data

aggregation for a fire event. Data is classified into two

different clusters: fire event and noise. It was shown

that FFNN has better prediction accuracy than the other

classifiers.

Authors of Ref. [16] proposed a fuzzy logic based

algorithm to choose a set of decision nodes and some

sensing nodes. The decision nodes use fuzzy rules and

based on the measurements of the sensing nodes they

estimate the real value of the environmental events and

determine if sensors have failures or not.

In Ref. [17], the authors proposed a Cluster-based

Energy efficient Composite event detection (CEC)

protocol. Any existing mechanism can be used for

forming the clusters. All CHs form a backbone used to

deliver reports to the sink. Each CH performs local data

aggregation to detect events. When an event is detected,

a report is sent to the sink along a backbone of CHs.

Contrary to this fixed clustering, Ref. [9] proposes an

event-based clustering, where a cluster is initiated by

and composed of nodes that detect events.

In WSNs the sink (or sinks) can be fixed or

mobile. When the sink is mobile, the trajectory of

the sink can be fixed, controlled (e.g., based on some

parameters such as the residual energy) or random

walk[18]. The Anchor-based Voronoi-scoping Routing

Protocol[19] considers several sinks that move using a

random path approach. Each sink chooses an anchor

from its neighbors, based on the nodes’ signal strength.

The anchor sends a hello message to the sink’s Voronoi

scope neighbors, so that they know how to send the

information to the sink.

The sink sends beacons to the anchor to maintain the

link. If the signal strength between the sink and the

anchor is low, then the sink chooses another node to

be the anchor and the process repeats. The sink has a

constant speed between 1 and 10 m/s.

Two of the algorithms that we propose in this article,

NewTree-based Routing and Anchor-based Routing,

also use the anchor concept and assume a random walk

movement of the sink. Main differences are as follows:

(1) In our algorithms, the anchor sends beacon

messages to maintain the link, not the sink. This is

more efficient, because when the sink ceases to receive

beacon messages, it can conclude that the anchor is

not in range any longer. In addition, sending of

data messages can substitute the beacon messages. In

Ref. [19], the sink sends the beacons, so the anchor has

to ACK the receipt and then the sink determines if the

anchor is still in range.

(2) In Ref. [19], the sink speed is constant, while

in our case the speed varies, which is a more realistic

model.

Catalina Aranzazu-Suescun et al.: Distributed Algorithms for Event Reporting in Mobile-Sink WSNs for ... 415

(3) Our algorithms use a cluster-based framework,

where data is collected and aggregated by the cluster

head and then sent to the sink.

(4) Anchor-based Routing uses up to ˇ anchors as

intermediate steps for data collection from the CHs to

the sink. This is more energy efficient than having the

sink choose a new anchor and broadcast the information

in the whole network.

In the TRAIL protocol[19], the sink generates a trail

of its movement through the network. A node that has

messages for the sink uses a recent trail if it has one, or

uses a random walk protocol to send data to the sink or

to a sensor node that has a recent trail of the sink.

Reference [20] also uses the concept of anchor or

agent, which is a node closer to the sink. If the sink

moves, it waits a specific time T to receive information

from the agent node. If no information is received,

then the sink selects another agent node. The previous

agent stores information for some time, until the sink

broadcasts a message from the new location and new

paths are formed. Source node paths are computed

by the new agent using the Endocrine Cooperative

Particle Swarm Optimization Algorithm. The algorithm

computes a fitness function of the path that depends on

the energy of the nodes, the distance between nodes,

and the communication delay. A path with a bigger

fitness function has a more optimal path from the source

node to the sink. The sink moves with 5 m/s. Our

anchor-based algorithms use a different framework for

forwarding data from the sensor nodes to the sink,

different sink speeds, and multiple anchors to avoid the

expense of selecting a new anchor too often.

Another random path approach is Data Driven

Routing Protocol[21]. There are three types of nodes,

based on a given parameter k. O-nodes are 1-hop away

from the sink, M -nodes are the nodes between 2- and

k-hops away from the sink, and I -nodes are the nodes

at distance at least .k C 1/-hops away from the sink.

While the sink moves, it sends beacon messages to

its 1-hop neighbors. Beacon messages are resent in the

network, so that the O-nodes and the M -nodes can

update their routes to the sink. I -nodes send data to

the sink using a random walk protocol until the first

M -node or O-node is reached. Each route has an

expiration time. M -nodes update their routes only if

the time-stamp of the route is newer than the one stored

in the memory. The nodes keep the older route in the

memory as a backup, so two paths are stored in the

routing table. This approach is used for one or multiple

sinks.

In our approaches and the algorithms discussed so

far, the sink moves using a random walk. Alternatively,

the sink could move along a fixed path[22], a circular

path[23, 24], or a tour[25].

In Ref. [22], the sink location is based on the energy

of the network, thus saving energy. Sink movement

is controlled by a genetic algorithm that calculates

a population of chromosomes. Each chromosome is

evaluated by a fitness equation that depends on the

energy of each sensor and the distance between the sink

and the sensor. A chromosome is selected if it has the

highest probability, computed as the ratio of the fitness

of the chromosome and the sum of the fitness of all

chromosomes. In this way, the sink will move to the

position of the chromosome selected.

In Ref. [23], the sink moves along a circular path,

centered in the middle of the area. The sink moves

only when the nearby sensor nodes have less energy

than some predefined threshold. This results in less

sink movements and less route update messages flowing

through the network.

The protocol proposed in Ref. [24] uses three types

of nodes: ring, anchor, and regular nodes. Ring nodes

are located at a specific distance from the center of

the network and store information about the position

of the anchor. The anchor node is the node closest to

the sink and it is renewed when the link quality to the

sink is lower than some threshold. When a regular node

wants to send information to the sink, it first requests the

position of the anchor from a ring node. The ring node

replies with the position of the anchor, then the regular

node can send the information to the anchor node using

Geographical routing. The sink moves with a speed

between 0 and 5 m/s.

The sink movement in Ref. [25] follows a predefined

tour. The sink visits all the nodes in the area and

collects data using 1-hop transmissions. The approach

sets a number of polling points, where the sink moves

to collect data. Using these polling points, the sink

must cover all sensor nodes. The authors compute

the movement tour of the sink through the network

using a special case of the traveling salesman problem.

This heuristic approach involves building a minimum

spanning tree and it runs in polynomial time.

The Virtual Grid-based Dynamic Routes Adjustment

scheme[26] is an infrastructure-based approach which

partitions the network into fixed cells, where the node

closest to the center is the cell-header. Adjacent cell-

416 Tsinghua Science and Technology, August 2017, 22(4): 413–426

headers communicate via gateway nodes, which are

normally located on the border of the clusters. Only

cell-headers send information to the sink. When the

sink moves through the network, the cell-headers adapt

their path to the sink using the following procedure.

The sink sends beacons to the 1-hop cell-header which

becomes the Originating Cell-Header (OCH). The OCH

sets the sink as its next-hop. The OCH sends a route

update to its neighbors called downstream cell-headers.

The sink moves outside the field in counter-clockwise

direction, with constant speed of 10 m/s.

In this paper we propose two infrastructure-based

algorithms, called Grid Flooding and Grid Sink-based

Routing. The CH is the node with the highest residual

energy, and we set-up the cell size such that any CH

is 1-hop neighbor with the CHs of the nearby cells on

horizontal and vertical directions. In this way we do not

need gateway nodes to ensure CH connectivity. In the

Grid Flooding, data are flooded along the CH backbone,

and as long as the sink is connected to at least one CH,

it will receive the message. In our case the sink moves

inside the deployment area using a random walk, thus it

will always be within communication range of at least

one CH.

In the Mobile Sink based Adaptive Immune Energy

Efficient Clustering Protocol[27], the network is divided

into R regions, where each region has the same number

of nodes. The sink passes through each region and

uses the adaptive immune algorithm to find its sojourn

location and the location of the optimum CH. The

communication range of each node is larger than

the area of the region, so each node can send the

information directly to the CH. Each CH uses Time

Division Multiple Access to receive information from

its cluster members without collisions. In addition,

Code Division Multiple Access is used to avoid inter-

cell interference. To conserve energy, the nodes in the

network sleep until the sink reaches its sojourn location

in that region. The path of the sink through the network

is fixed (circular, rectangular, or linear), depending on

the distribution of the regions.

In Ref. [28], the sink has a fixed movement path. The

approach uses the concept of Rendezvous Points (RPs),

which are a subset of nodes that collect information

from their neighbors. The RPs are similar to source

nodes. The goal of the approach is to find a tour, using

a Traveling Salesman Problem approach, which passes

through all the RPs. This tour is used by the sink to

collect data in the network. RPs are nodes with a larger

degree, which are farther away from other RPs. An

optimal tour uses less RPs and covers the network with

a minimal length. The sink moves with 1 m/s.

Reference [29] proposes algorithms for data

gathering when the sinks move along fixed paths

and controlled paths. In the fixed path approach, the

sinks move along hexagonal perimeters, and they stop

periodically to collect data. In the controlled path

approach, a sink moves if the energy level of its 1-hop

neighbors drops under a threshold. The sinks are

interconnected all the time.

3 Event Model Description

A WSN event is defined as an observable occurrence of

a phenomenon or an object during a period of time in

a specific area[30]. We distinguish two types of events:

atomic events and composite events.

An atomic event is triggered when a single sensing

value (or attribute) exceeds a given threshold. Similar

to Ref. [30], we denote an atomic event by e.t; s; R/

where t is the time when the event occurs and it can

be a specific time or an interval, s is the location of the

event and it can be a point or a region, and R is a logical

expression defining the conditions when the event

occurs. For example, the atomic event e.t; s; R/ D
.9=1=2016; .x; y/; temperature > 100 ıC/ means that

the temperature at the location .x; y/ on 9=1=2016 was

greater than 100 ıC.

To detect complex events in certain areas, variations

in several attributes have to be detected, not only in one

attribute. To detect a composite event, a combination of

several sensing values is needed. A composite event is

therefore composed of several atomic events. Similar to

Ref. [30], we denote a composite event as

E..e1; ı1/; .e2; ı2/; � � � ; .ek; ık/; Ct ; Cs; ı/ D
.R1 ^ R2^; � � � ; ^Rk ^ Ct ^ Cs; ı/;

where ei , i=1, : : : ; k, are the atomic events forming the

composite event. ıi with 0 � ıi � 1 is the confidence

of ei , indicating the probability of E occurring when

ei occurs. Ri is a logical expression defining when ei

occurs.

Ct is the constraint on atomic events’ times

t1; t2; : : : ; tk . If Ct is a specific time point t0, then Ct

is satisfied if ti D t0 for all 1 � i � k. If Ct is a

time interval I , then Ct is satisfied if ti 2 I for all

1 � i � k.

Cs is the constraint on atomic events’ locations

s1; s2; :::; sk . Cs can be a location point or a region.

If Cs is a specific location point s0, then Cs is satisfied

Catalina Aranzazu-Suescun et al.: Distributed Algorithms for Event Reporting in Mobile-Sink WSNs for ... 417

if si = s0 for all 1 � i � k. If Cs is a region R, then Cs

is satisfied if si 2 R for all 1 � i � k.

Usually the confidence ı of the composite event is

defined as ı D ı1 C ı2 C � � � C ık , and it is expected to

satisfy the property ı1 C ı2 C � � � C ık D 1[30].

As an example, consider the composite event forest
fire detection which is defined using three atomic

events: e1.t1; s1; temperature > th1/, e2.t2; s2; light >

th2/, and e3.t3; s3; smoke > th3/. The threshold values

th1, th2, th3 as well as the attributes constituting the

composite event are assigned by experts in the field.

The composite event forest fire detection can be

defined as E..e1; 0:5/; .e2; 0:3/; .e3; 0:2/; I; R; ı/ =

.light > th1 ^ temperature > th2 ^ smoke > th3 ^
t1; t2; t3 2 I ^ s1; s2; s3 2 R; ı = 0:5 C 0:3 C 0:2/.

In this example, the confidence of forest fire

occurring when e1 is detected is 0:5 or 50%. If both

e1 and e2 occur, then the confidence increases to 0:8.

If all three atomic events occur, then the confidence of

forest fire event is 1 or 100%.

4 Problem Definition

We consider a WSN consisting of n heterogeneous

nodes N1, N2, ..., Nn and a sink S . We assume that

the nodes are densely deployed and they are connected

to the sink. All the nodes have the same communication

range Rc and the same initial energy Einit.

The nodes are heterogeneous, since each node is

equipped with one or multiple sensing components

from the set fs1; s2; :::; smg. Each sensing component

can be used to detect an atomic event for that attribute.

For example, the Waspmote events sensor board[31] can

detect temperature, humidity, vibration, and water, and

measurement values can be sent using 802.15.4/ZigBee

radio. There are few reason that nodes have different

sets of sensing components[32]:

� Nodes may be manufactured with different sensing

capabilities.

� Some nodes may have purposely turned off some

sensing components due to energy constraints.

� Some sensing components may fail over time.

� Some of the sensing components cannot be used

due to lack of memory for storing data.

Nodes in WSN are resource constraint in terms

of power, bandwidth, memory, and computing

capabilities. Since WSNs are sometimes deployed in

hostile environments where human access is limited,

and recharging or replacing wireless nodes is prohibited

in such situations, mechanisms for event detection and

reporting have to minimize power consumption in order

to prolong network lifetime[33].

Table 1 shows the main notations used in this paper.

In Fig. 1 we illustrate an example with 40 nodes. There

are m = 2 types of sensing components. For each node

Ni , 1 � i � 40, we indicate the sensing components

that the node is equipped with. The problem definition

is presented next.

Problem Definition—Composite Event Detection
and Reporting (CEDR) in Mobile-Sink WSNs: Given

a WSN deployed in an area A, consisting of n

nodes with different sensing components from the

set fs1; s2; :::; smg and a mobile sink S , design an

energy-efficient distributed algorithm for detecting and

reporting a composite event E inquired by the sink S .

The composite event E is defined using some or all

of the m atomic events corresponding to the attributes

Table 1 Notations.

E Composite event

ı Confidence of the composite event

ei Atomic event i

ıi Confidence of atomic event i

n Number of nodes

m Maximum number of sensing components

T Convergecast tree rooted at S

Nj Node j , 1 � j � n

Nj :fsj1
; sj2

;:::; sjk
g Sensing components of node Nj , 1 �k�m

Nj :Eresidual Residual energy of node Nj

Nj :tp Parent of node Nj in T

Rc Node communication range

A Deployment area

A:L Length of the side of the deployment area

Einit Initial energy of each node

Fig. 1 Example of network deployment.

418 Tsinghua Science and Technology, August 2017, 22(4): 413–426

measured by the sensing components fs1; s2; :::; smg.

5 Distributed Algorithms for CEDR in
Mobile-Sink WSNs

In this paper we assume that only one composite event is

requested by the sink at a time. We propose the network

protocol shown in Fig. 2.

An energy-efficient mechanism to aggregate data

or events is using clustering. There are several

approaches proposed in literature for clustering in

WSNs[9, 13–15, 17]. We distinguish fixed clustering and

event-based clustering.

5.1 CEDR for fixed clustering

In this case we assume that the clusters are fixed and

they are constructed after the network is deployed, that

means before Phase 1 begins. Therefore, in this case,

the clustering does not account for the type of event to

be monitored.

The area is divided into a grid, see Fig. 3, where

the grid cell size is at most Rc=
p

5. In this way any

two nodes from neighboring horizontal or vertical cells

can communicate directly. The nodes in each grid cell

form a cluster. We assume that the network is dense,

so that each grid cell has at least one sensor node. The

nodes are aware of their location. After the nodes are

deployed, they can compute their grid cell based on

their location. The CH is the node with the largest

residual energy and in case of a tie, the one with the

smallest ID becomes the CH. This can be implemented

Fig. 2 Network organization.

Fig. 3 Network deployment for fixed clustering.

using the following simple protocol. After deployment,

nodes send a Hello message containing their ID,

location, and residual energy. The CH node, selected as

specified previously, sends a message JoinCluster and

all the nodes in the cluster reply with an ACK message

containing their ID.

The CHs form a connected backbone, see Fig. 3, used

to communicate with the sink. The sink is always within

communication range of at least one CH.

We propose two mechanisms for event reporting,

Grid Flooding and Grid Sink-based Routing. For each

mechanism we describe the three phases from Fig. 2.

5.1.1 Grid flooding
In Phase 1, the sink S broadcasts a message

CompositeEventRequest(S , E, ıth/ along the CH

backbone. E is the composite event with the fields

E..e1; ı1/, .e2; ı2/, ..., .ek , ık/, Ct , Cs , ı/, as

specified in Section 3. The field ıth is the required

minimum confidence, that means if ı � ıth then the

composite event is detected successfully. The composite

event E involves atomic events based on the sensing

components from the set fs1; s2; :::; smg and k � m.

The CompositeEventRequest message is

flooded in the network along the backbone of

CHs. More specifically, when a CH receives a

CompositeEventRequest message for the first time, it

will broadcast the message once. At that time the nodes

in the cluster store the specifications of the request. The

non-CH nodes do not re-transmit this message.

In Phase 2, the nodes that satisfy the location

requirement Cs and are equipped with sensing

components needed to detect one or more atomic events

e1; :::; ek , start the detection process for a time duration

Ct .

Phase 3 deals with event detection and event

reporting. Phase 3 starts when one or more nodes detect

variations in one or more attributes currently monitored.

If an attribute value exceeds the threshold value, then an

atomic value is detected.

We note that the event may span few grid cells,

therefore one or more CHs are involved in the event

reporting. There are instances when only the sink has all

the information needed to detect the composite event,

therefore all aggregated atomic events are reported to

the sink.

When a sensor detects an atomic event it sends an

atomicEvent message to its CH. The CH aggregates

the atomic events received from its cluster and sends

Catalina Aranzazu-Suescun et al.: Distributed Algorithms for Event Reporting in Mobile-Sink WSNs for ... 419

an aggregated message eventReport to the sink by

flooding, along the CH backbone. The sink is mobile,

but as long as it is within communication range of at

least one CH, it will receive the eventReport message.

Note that the sink may be within communication range

of multiple CHs, and in that case it will drop the

duplicate messages. The pseudocode of the event

reporting mechanism is presented in Algorithm 1.

5.1.2 Grid Sink-based Routing
In Grid Sink-based Routing, the report message is sent

along a path of CHs rather than flooding.

In Phase 1, the sink S selects the closest CH as

the root, denoted by R. This can be done using a

simple protocol: the sink broadcasts FindClosestCH
and the CHs in range reply with their ID and residual

energy after a small random delay. The sink chooses

the closest CH based on the signal strength and in the

case of a tie chooses the CH based on the residual

energy and the smallest ID. Then the sink sends the

request SinkInitiatedRequest.S , R, E, ıth/. Similar to

the previous algorithm, E is the composite event with

the fields E..e1; ı1/, .e2; ı2/, ..., .ek , ık/, Ct , Cs , ı/.

The field ıth is the required minimum confidence, that

means if ı � ıth then the composite event is detected

successfully.

The root R then broadcasts a message

CompositeEventRequest(R, E, ıth, hops = 0/ along the

CH backbone. As the CompositeEventRequest message

is flooded along the backbone of CHs, a convergecast

Algorithm 1 Grid Flooding — Event Reporting (node Nj)
1: if Nj:isCH == true then
2: if first atomicEvent received from a node in Nj ’s cluster then
3: start timer t1

4: while t1 > 0 do
5: aggregate atomic events received from nodes in Nj ’s cluster

into atomicEventList
6: end while
7: if t1 DD 0 then
8: send eventReport(Nj , atomicEventList) after a small random

delay

9: end if
10: end if
11: if eventReport message initiated by another CH is received for the

first time then
12: send eventReport message after a small random delay

13: end if
14: end if
15: if Nj.isCH == false then
16: if Nj detects one or more atomic events then
17: send atomicEvent(Nj , Nj :CH, atomicEventList) after a small

random delay

18: end if
19: end if

tree T is formed, where R is the root. The tree T

contains only CH nodes.

Each CH node Nj that receives the message for the

first time, increments the hops field, sets the sending

CH node as its parent in T , stored in the field Nj :tp,

and sends a message CompositeEventRequest(Nj , E,

ıth; hops/.

Note that the sink is mobile, thus the convergecast

CH-tree T must change when S is not within R’s

communication range. Sometimes S may be stationary

for some time, or move with a slow speed. T will not

change as long as S is within R’s communication range.

The following mechanism is used to update T . The

root R sends periodically a beacon message. If R

reports data, then the beacon is omitted that period. If

the sink S does not hear a beacon (or data) from R for

˛ periods (e.g., ˛ D 2), then a new convergecast tree

T is formed. S chooses a new root R using the same

mechanism, and the process of forming a new tree T is

repeated as described previously.

Phase 2 is the same as in the Grid Flooding
mechanism. Event reporting in Phase 3 is done along

the parent path in the convergecast tree T . When a CH

node Nj receives an eventReport message for the first

time, it sends it to its parent Nj :tp. The pseudocode

of the event reporting mechanism is presented in

Algorithm 2.

5.2 CEDR for event-based clustering
In this section we propose mechanisms for event-based

Algorithm 2 Grid Sink-based Routing — Event Reporting
(node Nj)

1: if Nj :isCH == true then
2: if first atomicEvent received from a node in Nj ’s cluster then
3: start timer t1

4: while t1 > 0 do
5: aggregate atomic events received from nodes in Nj ’s cluster

into atomicEventList
6: end while
7: if t1 DD 0 then
8: send eventReport(Nj , Nj :tp, atomicEventList) after a small

random delay

9: end if
10: end if
11: if receive eventReport(Ni , Nj , atomicEventList) then
12: send eventReport(Ni , Nj :tp, atomicEventList) after a small

random delay

13: end if
14: end if
15: if Nj :isCH == false then
16: if Nj detects one or more atomic events then
17: send atomicEvent(Nj , Nj :CH, atomicEventList) after a small

random delay

18: end if
19: end if

420 Tsinghua Science and Technology, August 2017, 22(4): 413–426

clustering. Rather than using fixed (or predetermined)

clustering, in this case the cluster is initiated by nodes

that detect events.

We note few drawbacks to the fixed clustering

approach. First of all, communication consumes high

energy in WSNs and more CHs need to report the event

if it spans multiple grid cells. For example, even a small

event located at the border of multiple grid cells will

trigger event detection in multiple grid cells. Second,

if the composite event involves sensing components

from nodes located in neighboring grid cells, then only

the sink has all the information needed to detect the

composite event. Event-based clustering is expected

to detect the composite event earlier, as the result of

aggregation.

In the event-based clustering mechanisms, one or

more clusters are formed by the nodes with sensing

components that detect atomic events. A CH collects

and aggregates information from the nodes in its cluster

and then reports the event to the sink.

Clusters are formed in Phase 3 of the algorithm. We

proposed two mechanisms for event reporting, Anchor-
based Routing and NewTree-based Routing.

5.2.1 Anchor-based Routing
The maximum number of anchors ˇ is a given argument

and it is expected to have a small value such as ˇ D 3.

In Phase 1 the sink S selects the closest node

as the first anchor, denoted A1, using the following

mechanism. S broadcasts FindClosestNode and the

nodes in range reply with their ID and residual

energy after a small delay. The sink chooses the

closest node based on the signal strength, and in

case of a tie the residual energy and the smallest

ID criteria are used. The sink S sends the request

SinkInitiatedRequest.S; A1; E; ıth/, where E is the

composite event and ıth is the threshold parameter for

the composite event.

A1 then broadcasts a message

CompositeEventRequest.A1, E, ıth, hops = 0/ in

the whole network. As the CompositeEventRequest
message is flooded, a convergecast tree T is formed,

where A1 is the root. Each node Nj that receives

the message for the first time, increments the hops

field, sets the sending node as its parent in T ,

stored in the field Nj :tp, and sends a message

CompositeEventRequest.Nj , E, ıth; hops/.

Event reports will flow from the nodes to CH, from

CH to A1 along T , and from A1 to S . As long as

S is within communication range of A1, no change is

needed. To determine this, A1 sends beacons (or data)

periodically. If S does not hear a beacon (or data) from

A1 for ˛ periods (e.g., ˛ D 2), then a mechanism

for selecting a new anchor A2 is initiated as follows.

S broadcasts a message NewAnchorRequest.S; A1/.

Nodes which receive both A1’s beacons (or data)

and S ’s message NewAnchorRequest.S; A1/ are

candidates to become the second anchor A2, since

they are connected to both A1 and S . Such a node

Nj waits a time based on the signal strength of the

message NewAnchorRequest.S; A1/, and sends a

message NewAnchorReply.S; A1; Nj /. The waiting

time is smaller when the signal strength is higher. When

the first message is received by the sink, S replies

with NewAnchorAck.S; A1; Nj /, and Nj becomes

the second anchor.

A2 sends now beacons (or data) periodically. The

events flow along the path node ! CH ! A1 ! A2 !
S . On the other hand, if no NewAnchorReply message

is received by the sink, then the anchor selection

process is reset, that means S selects a new first anchor

A1 and broadcasts CompositeEventRequest.A1, E, ıth,

hops = 0/ in the whole network.

If S moves out of the range of A2, then the process

repeats and a new anchor A3 is selected. After the

maximum number of anchors ˇ is reached, the anchor

selection process resets, that means a new anchor A1 is

selected.

In Phase 2, the nodes that satisfy the location

requirement Cs and are equipped with sensing

components needed to detect one or more atomic events

e1; :::; ek , start the detection process for a time duration

Ct .

Phase 3 deals with event detection and event

reporting. We use the event-based clustering
mechanism from Ref. [9]. We give here a brief

overview. The cluster contains nodes that detect atomic

events part of the composite event requested by the

sink. The cluster may also contain some relay nodes

which are only involved in connecting the sensing

nodes to the CH. A node can become CH only if it

detects at least one atomic event and if its residual

energy is larger than a predefined threshold. Based on

the residual energy and ID which is used for breaking

ties, a node proclaims itself CH and sends a message

JoinCluster over hcluster hops. The nodes in the cluster

form a cluster tree Tcluster rooted at CH. Tcluster is

expected to have a small height hcluster, such as 2

or 3. Since there is no guarantee that all the nodes

Catalina Aranzazu-Suescun et al.: Distributed Algorithms for Event Reporting in Mobile-Sink WSNs for ... 421

detecting atomic events are within hcluster-hops of the

CH, additional clusters may form.

A CH receives atomic events from cluster members,

which are sent along Tcluster. As messages are sent

from cluster members to the CH, the aggregation is

performed.

The event reporting mechanism is as follows. The

event is reported from CH to the anchor node A1 along

the tree T using the tp parent attribute. From A1 the

event is reported directly to the sink (if A1 is the last

anchor) or is using a path of at most ˇ anchors to reach

the sink S . The attribute ap stores the next anchor in the

path to the sink. For example, for ˇ D 3, A1:ap D A2,

A2:ap D A3, and A3:ap D S .

The pseudocode of the event reporting mechanism is

given in Algorithm 3.

5.2.2 NewTree-based Routing
The NewTree-based Routing mechanism is

the same as Anchor-based Routing for ˇ D 1

anchor, and it follows the same framework. More

Algorithm 3 Anchor-based Routing — Event Reporting
(Node Nj)

1: if Nj 2 Tcluster then
2: set timer t1 based on the height of Nj in Tcluster

3: start timer t1

4: while t1 > 0 do
5: aggregate atomic events received from its children in Tcluster into

atomicEventList
6: end while
7: end if
8: if Nj 2 Tcluster and Nj :isCH DD false then
9: if t1 DD 0 then

10: send atomicEvent.Nj ; Nj :cp; atomicEventList/ after a small

random delay

11: end if
12: end if
13: if Nj :isCH DD true AND t1 DD 0 then
14: if Nj :isFirstAnchor DD true then
15: send eventReport.Nj , Nj :ap, atomicEventList,

firstAnchorReached = true/ after a small random delay

16: else
17: send eventReport.Nj , Nj :tp, atomicEventList,

firstAnchorReached = false/ after a small random delay

18: end if
19: end if
20: if receive eventReport.Ni , Nj , atomicEventList, firstAnchorReached/

then
21: if (firstAnchorReached == false AND Nj :isFirstAnchor DD true)

OR (firstAnchorReached == true) then
22: send eventReport.Nj , Nj :ap, atomicEventList,

firstAnchorReached = true/ after a small random delay

23: else
24: send eventReport.Nj , Nj :tp, atomicEventList,

firstAnchorReached = false/ after a small random delay

25: end if
26: end if

specifically, in Phase 1 the sink S selects the

closest node as the root, denoted R. The sink

sends SinkInitiatedRequest.S; R; E; ıth/ and then

R broadcasts a message compositeEventRequest.R, E,

ıth, hops = 0/ in the whole network. A convergecast

tree T is formed, where R is the root.

Event reports flow from the cluster nodes to CH,

from CH to R along T , and from R to S . As long

as S is within communication range of R, no change

is needed. R sends beacons (or data) periodically. If S

does not receive a beacon (or data) from R for ˛ periods

(e.g., ˛ D 2), then a new root R is selected, and a new

convergecast tree T rooted at the new root R is formed.

Phase 2 is similar to Anchor-based Routing. In Phase

3, the event-based clustering mechanism is used to build

one or more clusters. The event reporting mechanism is

briefly described next. Events are reported from cluster

members to CH along Tcluster. From CHs, events are

reported to the root R along the convergecast tree T ,

using the tp parent attribute. From R, the event is

reported to the sink S . The pseudocode of the event

reporting mechanism is presented in Algorithm 4.

Algorithm 4 NewTree-based Routing — Event Reporting
(Node Nj)

1: if Nj 2 Tcluster then
2: set timer t1 based on the height of Nj in Tcluster

3: start timer t1

4: while t1 > 0 do
5: aggregate atomic events received from its children in Tcluster into

atomicEventList
6: end while
7: end if
8: if Nj 2 Tcluster and Nj :isCH DD false then
9: if t1 DD 0 then

10: send atomicEvent.Nj ; Nj :cp; atomicEventList/ after a small

random delay

11: end if
12: end if
13: if Nj :isCH DD true AND t1 DD 0 then
14: if Nj :isRoot DD true then
15: send eventReport.Nj , S , atomicEventList/ after a small random

delay

16: else
17: send eventReport.Nj , Nj :tp, atomicEventList/ after a small

random delay

18: end if
19: end if
20: if receive eventReport.Ni , Nj , atomicEventList/ then
21: if Nj :isRoot DD true then
22: send eventReport.Nj , S , atomicEventList/ after a small random

delay

23: else
24: send eventReport.Nj , Nj :tp, atomicEventList/ after a small

random delay

25: end if
26: end if

422 Tsinghua Science and Technology, August 2017, 22(4): 413–426

6 Simulations

We conducted simulations using WSNet[10], an open

source event-based simulator for WSNs. WSNet

was developed by the Center of Innovation in

Telecommunication CITI Laboratory associated with

INSA Lyon France. WSNet uses object-oriented C++

language, Linux operating system, and provides a

platform where new modules can be developed. In

addition, it provides support for energy model and event

modeling, features which are important in WSNs. In

this section we compare the performance of the four

event-reporting mechanisms presented in Section 5.

6.1 Simulation environment

The main parameters used in simulations are listed in

Tables 2 – 4.

The WSN is deployed into a square area A, where

the square length A.L takes values between 440 m and

1100 m, see Table 3. The values have been selected

such that the area can be divided into a grid, with cell

size of 44 m. In this way, any sensors in horizontally

or vertically adjacent cells can communicate directly.

This feature is useful for our grid-based algorithms.

Table 2 Simulation parameters.

Simulation time 1 h

Antenna type Omnidirectional

MAC layer 802:11

Einit 1 J

Node communication range Rc 100m

Packet length 132 bytes

Confidence threshold ıth 0:75

Table 3 Network deployment parameters.

Number of rows
Number

of cells
A.L (m)

Number of

nodes, n

10 100 440 500

15 225 660 1125

20 400 880 2000

25 625 1100 3125

Table 4 Sink speed.

Average speed (m/s) Maximum speed (m/s)

1.0 2

2.5 5

5.0 10

7.5 15

10.0 20

12.5 25

The nodes are deployed as follows. First, one node is

deployed randomly in each cell. Then the remaining

nodes are deployed randomly in A. In this way the

resulting network is connected and each cell has one

node, thus each cell can select a CH in the grid-based

algorithms.

Initially, the sink S is located in the middle of the

right side of A, see Fig. 3. The sink moves in the area

A using a random walk, with the average and maximum

speeds indicated in Table 4. The sink pauses for some

time, then it moves with a speed between 0 and the

maximum value for a random time. The direction angle

has a random value between 0ı and 360ı.

The maximum number of sensing components is

m D 5. Each node is equipped randomly with sensing

components. We define a composite event with five

atomic events. The sensing components involved, with

confidence and threshold values, are presented in Table

5.

The five atomic events are defined as follows:

� e1.ts; A; temperature > 150/;

� e2.ts; A; pressure > 50/;

� e3.ts; A; humidity > 10/;

� e4.ts; A; smoke > 100/;

� e5.ts; A; light > 80/.

ts is the simulation time after the request is sent by

the sink S and A is the deployment area. The composite

event that the WSN monitors is defined as E..e1; 0:35/,

.e2; 0:1/, .e3; 0:15/, .e4; 0:3/, .e5; 0:1/, ts , A, ı/.

In each simulation run, we generate an event which

has a circular coverage, see Fig. 1. The center is

generated randomly. Three types of events are used in

the simulations:

� Small events, where radius has a random value

between 10% and 20% of A.L.;

� Medium events, where radius has a random value

between 20% and 40% of A.L;

� Large events, where radius has a random value

between 40% and 60% of A.L.

The nodes located in the event area, equipped

with the corresponding sensing components, detect an

Table 5 Types of sensors used.

Sensor type Confidence Threshold

Temperature 0.35 150

Pressure 0.1 50

Humidity 0.15 10

Smoke 0.3 100

Light 0.1 80

Catalina Aranzazu-Suescun et al.: Distributed Algorithms for Event Reporting in Mobile-Sink WSNs for ... 423

atomic event with probability 95%.

The initial energy of each node is Einit = 1 J. To

measure the energy consumed, we implemented the

energy model from LEACH[13]. The energy consumed

to transmit/receive an l-bit message over a distance d is

computed as

ET x.l; d/ D Eelec � l C �amp � l � d 2;

ERx.l/ D Eelec � l;

where Eelec D 50 nJ/bit and �amp D 100 pJ=.bit � m2/.

We do not take into account the energy consumed on

sensing, since it is negligible compared with the energy

consumed on transmitting and receiving messages.

We run each simulation scenario 5 times using

different seed values to generate random numbers and

report the average values in the graphs.

The simulation time for each algorithm is 1 h. If

events are detected, then they are reported to the sink

S every 5 s. More specifically, every 5 s nodes that

detect atomic events send a report to the CH, and from

here to the sink according to the rules presented in each

algorithm. Based on the messages received, the sink

computes the confidence to determine if the composite

event was detected or not.

6.2 Simulation results

Figure 4 shows the residual energy of the network for

n D 3125 nodes, A.L D 1100 m, and medium size

events. The average sink speed is 1 m/s, 5 m/s, and

12:5 m/s, respectively. We observe that Grid Flooding

consumes the most energy, since all CHs resend all

event reports. The Grid Sink-based Routing consumes

the least energy, since event reports are sent along a path

of CHs, so fewer nodes are involved. Also, compared

to NewTree-based Routing, updating the convergecast

tree is done using only CH nodes.

NewTree-based Routing and Anchor-based Routing

have comparable results when the average sink speed

is small (see Fig. 4a), since in this case the process

of building a new convergecast tree or adding a new

anchor is not used too often. On the other hand, for

higher speeds (see Figs. 4b and 4c) we observe that the

Anchor-based Routing consumes less energy. When the

sink is not in the range of the anchor and the maximum

number of anchors ˇ has not been reached, then another

anchor is selected, thus avoiding to spend energy on

building a new convergecast tree in the whole network.

In Fig. 5, the average sink speed is 5 m/s and the

number of nodes is n D 3125. Results are measured for

small, medium, and large events. The results on energy

consumed by the four algorithms are consistent with

those from Fig. 4. In addition, the larger the event, more

energy is spent by the network on data reporting. This

Fig. 4 Average residual energy of the network: (a) Average sink speed 1 m/s, (b) Average sink speed 5 m/s, (c) Average sink
speed 12.5 m/s.

Fig. 5 Average residual energy of the network: (a) Small events, (b) Medium events, (c) Large events.

424 Tsinghua Science and Technology, August 2017, 22(4): 413–426

is because more nodes detect the event and participate

in data reporting. Also, more clusters will be formed.

Figure 6 measures the percentage of composite events

processed successfully at the sink, for small and large

events. The number of nodes is n D 3125, and the sink

average speed varies between 1 m/s and 12:5 m/s, using

the values from Table 4. Except for Grid Flooding,

in all algorithms the percentage of composite events

processed successfully at the sink decreases as the

average speed of the sink increases. In Grid Flooding,

all CHs resend the event report messages, therefore the

sink receives all messages regardless of its speed. We

note that the sink moves in the deployment area, thus

it will be within the communication range of at least

one CH at all the times. The algorithm which is mostly

affected by an increase in sink speed is Grid Sink-based

Routing. The reason is that multiple nearby clusters are

likely to use the same CH path to the root R, thus when

the number of packets increases, some are lost due to

contentions and collisions.

NewTree-based Routing gets slightly better results

than Anchor-based Routing. The difference is less than

1% in our results. For a large number of event reports,

some may be lost when they reach the root R or the

first anchor A1, which may be seen as a bottleneck.

For Anchor-based Routing, if the path of anchors and

the sink overlap with the part of network actively

involved in event reporting, then additional contentions

and collisions may result, thus more packets are

dropped. On the other hand, NewTree-based Routing

reconstructs the convergecast tree, thus this situation

does not occur.

From the results of Fig. 6 we can also see that the

percentage of composite events processed successfully

by the sink is slightly larger for large events. This

is because more sensors detect the event, thus the

redundancy in event reporting help alleviate the impact

of packet dropping.

Figure 7a shows the average number of CHs for the

Event-based Clustering and Fixed Clustering, when n

varies between 500 and 3125, using the values from

Table 3. NewTree-based Routing and Anchor-based

Routing are using Event-based Clustering, while Grid

Flooding and Grid sink-based Routing are using Fixed

Fig. 6 Percentage of composite events processed successfully at the sink: (a) Small events, (b) Large events.

Fig. 7 (a) Average number of CHs, (b) Average number of hops to reach the sink.

Catalina Aranzazu-Suescun et al.: Distributed Algorithms for Event Reporting in Mobile-Sink WSNs for ... 425

Clustering. Based on the size of the event, one or more

clusters are formed. This figure show comparatively

the number of clusters for small and large events. As

expected, more clusters are formed for large events.

We also observe that the average number of clusters

in Fixed Clustering is larger than those in Event-based

Clustering.

Figure 7b illustrates the average number of hops

between event-reporting CHs and the sink, for

NewTree-based Routing and Anchor-based Routing.

We considered medium size events, when the sink

speed varies between 1 m/s and 12:5 m/s. We take two

cases: A.L D 660 m, n D 1125, and A.L D 1100 m,

n D 3125. The Anchor-based Routing has a larger

number of hops compared to NewTree-based Routing.

When the sink moves closer to the event, Anchor-

based Routing routes the messages through the first

anchor A1, which may result in longer paths. On the

other hand, a new convergecast tree is initiated by the

NewTree-based Routing every time the sink moves out

of R’s range, thus events are reported on shorter paths.

As expected, a larger network size with a larger A.L

results in longer delivery paths.

7 Conclusion

This paper presents four distributed algorithms for

event detection and reporting in mobile-sink WSNs.

Fixed clustering algorithms, Grid Flooding, and Grid

Sink-based Routing, require nodes to know their

location, using GPS or running a location computation

mechanism. Grid Flooding consumes the most energy,

but achieves the highest percentage of composite events

processed successfully at the sink. Grid Sink-based

Routing consumes the least energy among the four

algorithms, but achieves the lowest percentage of

composite events processed successfully at the sink.

NewTree-based Routing and Anchor-based Routing

are using event-based clustering, where nodes do not

need to know their location. Anchor-based Routing is

more energy-efficient than NewTree-based Routing, but

it may result in longer paths, and has a slightly less

percentage of composite events processed successfully

at the sink.

Based on our results, we conclude that the network

designer should select the event reporting algorithm

based on the performance metrics he tries to optimize.

For WSNs, nodes which have limited energy resources

and using GPS is considered too expensive, the Anchor-

based algorithm with a small number of anchors ˇ is

the recommended energy-efficient approach. If node

energy is not a concern, and getting a high percentage

of composite events processed successfully at the sink

is a priority, then Grid Flooding algorithm can be used.

References

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,

Internet of Things (IoT): A vision, architectural elements

and future directions, Future Generation Computer
Systems, vol. 29, no. 4, pp. 1645–1660, 2013.

[2] S. D. Tebje Kelly, N. Kumar Suryadevara, and S. Chandra

Mukhopadhyay, Towards the implementation of IoT for

environmental condition monitoring in homes, IEEE
Sensors Journal, vol. 13, no. 10, pp. 3846–3853, 2013.

[3] R. Fisher, L. Ledwada, G. Hancke, and C. Kruger, Open

hardware: A role to play in wireless sensor networks?

Sensors, vol. 15, no. 3, pp. 6818–6844, 2015.

[4] R. Roman, P. Najera, and J. Lopez, Securing the Internet of

Things, IEEE Computer, vol. 44, no. 9, pp. 51–58, 2011.

[5] M. Turkanivic, B. Brumen, and M. Hlbl, A novel

user authentication and key agreement scheme for

heterogeneous ad hoc wireless sensor networks, based on

the Internet of Things notion, Ad Hoc Networks, vol. 20,

no. 2, pp. 96–112, 2014.

[6] D-G. Zhang, Y-N. Zhu, Ch-P. Zhao, and W-B. Dai, A

new construction approach for a weighted topology of

wireless sensor networks based on local-world theory for

the Internet of Things (IoT), Computer and Mathematics
with Applications, vol. 64, no. 5, pp. 1044–1055, 2012.

[7] P. Rawat, K. Deep Singh, H. Chaouchi, and J.

M. Bonnin, Wireless sensor networks: A survey on

recent developments and potential synergies, Journal of
Supercomputing, vol. 68, no. 1, pp. 1–48, 2014.

[8] D. Morandi, S. Sicari, F. De Pellegrini, and I. Chlamtac,

Internet of Things: Vision, applications and research

challenges, Ad Hoc Networks, vol. 10, no. 7, pp. 1497–

1516, 2012.

[9] C. Aranzazu Suescun and M. Cardei, Event-based

clustering for composite event detection in wireless

sensors networks, in 2016 IEEE 35th International
Performance Computing and Communications Conference
(IPCCC) (2016), 2016.

[10] WSNet—An event driven simulator for large scale

wireless networks, Available: http://wsnet.gforge.inria.fr/,

Accessed on Feb. 10, 2017.

[11] H. Wu, J. Cao, and X. Fan, Dynamic collaborative

in-network event detection in wireless sensor networks,

Telecommunication Systems, doi: 10.1007/s11235-015-

9981-0.

[12] C. T. Vu, R. A. Beyah, and Y Li, Composite

event detection in wireless sensor networks, in

IEEE International Performance, Computing, and
Communications Conference, 2007.

[13] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,

426 Tsinghua Science and Technology, August 2017, 22(4): 413–426

Energy efficient communication protocol for wireless

microsensor networks, in Proceedings of the 33rd Hawaii
International Conference on System Sciences, 2000.

[14] O. Younis and S. Fahmy, HEED: A hybrid, energy-efficient

distributed clustering approach for ad hoc sensor networks,

IEEE Transactions on Mobile Computing, vol. 3, no. 4, pp.

366–379, 2004.

[15] M. O. Oladimeji, M. Turkey, M. Ghavami, and S. Dudley,

A new approach for event detection using K-means

clustering and neuronal networks, in 2015 International
Joint Conference on Neural Networks (IJCNN), 2015.

[16] S. Zhang, H. Chen, Q. Zhu, and J. Jia, A fuzzy-decision

based approach for composite event detection in wireless

sensor networks, The Scientific World Journal, p. 816892,

2014.

[17] I. Memon and T. Muntean, Cluster-based energy-efficient

composite event detection for wireless sensor networks, in

SENSORCOMM 2012, 2012.

[18] A. W. Khan, A. H. Abdullah, M. H. Anisi, and J.

I. Bangash, A comprehensive study of data collection

schemes using mobile sinks in wireless sensor networks,

Sensors, vol. 14, no. 2, pp. 2510–2548, 2014.

[19] K. Tian, B. Zhang, K. Huang, and J. Ma, Data gathering

protocols for wireless sensor networks with mobile sinks,

in Proceedings IEEE GLOBECOM10, 2010.

[20] Y-F. Hu, Y-S. Ding, L-H. Ren, K-R. Hao, and H. Han,

An endocrine cooperative particle swarm optimization

algorithm for routing recovery problem of wireless

sensor networks with multiple mobile sinks, Information
Sciences, vol. 300, pp. 100–113, 2015.

[21] L. Shi, B. Zhang, H. T. Mouftah, and J. Ma, DDRP: An

efficient data-driven routing protocol for wireless sensor

networks with mobile sinks, International Journal of
Communication Systems, doi: 10.1002/dac.2315.

[22] B. Patel and D. Bhagat, Shifting of sink position in wireless

sensor network, International Journal of Engineering
Development and Research, vol. 2, no. 2, pp. 2566–2571,

2014.

[23] M. I. Khan, W. N. Gansterer, and G. Haring, Static vs

mobile sink: The influence of basic parameters on energy

efficiency in wireless sensor networks, Computer

Communications, vol. 36, no. 5, pp. 965–978, 2012.

[24] C. Tunca, S. Isik, M. Y. Donmez, and C. Ersoy, Ring

routing: An energy-efficient routing protocol for wireless

sensor networks with a mobile sink, IEEE Transactions on
Mobile Computing, vol. 14, no. 9, pp. 1947–1960, 2015.

[25] M. Ma, Y. Yang, and M. Zhao, Tour planning for mobile

data-gathering mechanisms in wireless sensor networks,

IEEE Transactions on Vehicular Technology, vol. 62, no.

4, pp. 1472–1483, 2013.

[26] A. W. Khan, A. H. Abdullah, M. A. Razzaque, and J. I.

Bangash, VGDRA: A virtual grid-based dynamic routes

adjustment scheme for mobile sink-based wireless sensor

networks, IEEE Sensors Journal, vol. 15, no. 1, pp. 526–

534, 2015.
[27] M. Abo-Zahhad, S. M. Ahmed, N. Sabor, and S. Sasaki,

Mobile sink based adaptive immune energy efficient

clustering protocol for improving the lifetime and stability

period of wireless sensor networks, IEEE Sensors Journal,
vol. 15, no. 8, pp. 4576–4586, 2015.

[28] H. Salarian, K-W. Chin, and F. Naghdy, An energy-

efficient mobile-sink path selection strategy for wireless

sensor networks, IEEE Transactions on Vehicular
Technology, vol. 63, no. 5, pp. 2407–2419, 2014.

[29] M. Marta and M. Cardei, Improved sensor network

lifetime with multiple mobile sinks, Pervasive and Mobile
Computing, vol. 5, no. 5, pp. 542–555, 2009.

[30] J. Gao, J. Li, Z. Cai, and H. Gao, Composite event

coverage in wireless sensor networks with heterogeneous

sensors, in 2015 IEEE Conference on Computer
Communications (INFOCOM), 2015.

[31] Waspmote—Open source sensor node, Available: http://

www.libelium.com/products/waspmote/, Accessed on Feb.

10, 2017.

[32] M. Marta Y. Yang, and M. Cardei, Energy-efficient

composite event detection in wireless sensor networks, in

International Conference on Wireless Algorithm, 2009.

[33] Y. Yang, A. Ambrose, and M. Cardei, Coverage for

composite event detection in wireless sensor networks,

Wireless Communications and Mobile Computing, vol. 11,

no. 8, pp. 1168–1181, 2010.

Mihaela Cardei is a professor with the

Department of Computer and Electrical

Engineering and Computer Science at

Florida Atlantic University, Boca Raton,

Florida, USA. She received the PhD

and MS degrees in computer science

from the University of Minnesota, Twin

Cities, in 2003 and 1999, respectively. Her

research interests include wireless networking, wireless sensor

networks, network protocol and algorithm design, and resource

management in computer networks. She has over 90 publications

with over 6300 citations on Google Scholar, and 3 Best Paper

awards. Dr. Cardei is a recipient of an NSF CAREER Award and

the recipient of the 2007 Researcher of the Year Award at Florida

Atlantic University. She is a senior member of IEEE.

Catalina Aranzazu-Suescun is a PhD

candidate at the Department of Computer

and Electrical Engineering and Computer

Science at Florida Atlantic University,

Boca Raton, Florida, USA. She received

the MS degree in telecommunications

from the Pontificia Bolivariana University

and the bachelor degree in electronic

engineering from the University of Antioquia, Medellin-

Colombia, in 2011 and 2007, respectively. Her research interests

include wireless sensor networks, communication protocols,

optimization of algorithms, and networking planning. She has

5 publications and has received the Best Paper Award at IEEE

IPCCC 2016. She is an IEEE student member.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

		2017-07-19T18:18:54-0400
	Certified PDF 2 Signature

