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RouteGuardian: Constructing Secure Routing Paths in
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Abstract: Software-Defined Networking (SDN) decouples the control plane and the data plane in network switches

and routers, which enables the rapid innovation and optimization of routing and switching configurations. However,

traditional routing mechanisms in SDN, based on the Dijkstra shortest path, do not take the capacity of nodes

into account, which may lead to network congestion. Moreover, security resource utilization in SDN is inefficient

and is not addressed by existing routing algorithms. In this paper, we propose RouteGuardian, a reliable security-

oriented SDN routing mechanism, which considers the capabilities of SDN switch nodes combined with a Network

Security Virtualization framework. Our scheme employs the distributed network security devices effectively to

ensure analysis of abnormal traffic and malicious node isolation. Furthermore, RouteGuardian supports dynamic

routing reconfiguration according to the latest network status. We prototyped RouteGuardian and conducted

theoretical analysis and performance evaluation. Our results demonstrate that this approach can effectively use

the existing security devices and mechanisms in SDN.

Key words: Software-Defined Networking (SDN); network security virtualization; capacity-based routing; security-

oriented routing; dynamic routing reconfiguration

1 Introduction

Software-Defined Networking (SDN) is a typical

centralized network architecture for managing and

operating networks. It facilitates network management

and eases the burden of solving networking problems

via the logically centralized control offered by a

controller[1–7]. SDN decouples the control layer from

the data layer and provides new ways for the dynamic

control and management of packet forwarding and

processing in switches. In SDN, a centralized controller

defines network behaviors and configures network
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devices via a set of policies, which control where

network traffic flows, e.g., whether or when network

traffic should go through a particular security device.

Therefore, the network intelligence in SDN is logically

centralized in the controllers, while the devices in

the infrastructure layer are simple packet-forwarding

devices.

Many security modules, devices, and middle-

boxes are employed to improve the security of SDN

networks[8–16]. Although these security resources can

provide many security benefits to SDN networks, they

may not be deployed in the physical locations that can

best meet the diverse and increasing security demands

of different users. SDN offers the opportunity to use

security resources in a network flexibly. For example,

Shin et al.[17] presented the concept of Network Security

Virtualization (NSV), which uses SDN technology to

virtualize security functions and resources to network

administrators/users, and thus improve the utilization

of existing security devices. However, NSV does not

consider network capacity when virtualizing security
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resources in the network, which introduces unexpected

network loads. If the load exceeds the network capacity

near a security device, this results in congestion and

denial of service.

In this paper, we propose RouteGuardian, a reliable

security-oriented routing mechanism, which enables the

SDN controller to make full use of security resources

and ensures the reliability of established routing

paths. RouteGuardian provides a weighted shortest-

path routing algorithm, in which the weighting is

derived from the network nodes’ capabilities, including

the network and security capabilities. RouteGuardian

supports adaptive routing path reconfiguration when

the controller perceives practical congestion caused

by attack events or other network accidents in the

established paths.

We prototyped our approach and deployed

RouteGuardian on a POX controller[18]. We extended

the existing Application Layer and POX controller

with RouteGuardian modules. We evaluated the

effectiveness and performance of RouteGuardian and

demonstrated its effectiveness.

Our Contributions. In summary, we make following

contributions in this paper:

� We propose a reliable security-oriented SDN

routing mechanism, RouteGuardian, according to

the capabilities of SDN switch nodes combined

with an NSV framework. Our scheme effectively

employed the distributed network security devices

to ensure analysis of abnormal traffic and malicious

node isolation. Furthermore, RouteGuardian supports

dynamic routing reconfiguration according to the latest

network status.

� We develop a reliable security-oriented routing

algorithm. The proposed algorithm takes the network

and security capabilities of network switches as inputs,

and makes use of the k-shortest path algorithm to

ensure minimum cost to the network when establishing

a routing path. Our algorithm offers a good balance of

efficiency, availability, reliability, and security.

� Finally, we implement a prototype of

RouteGuardian, and evaluate its performance. The

results demonstrate that our approach can optimally use

the existing security devices and mechanisms in SDN,

and effectively ensure the abnormal flow isolation with

dynamic routing path reconfiguration .

Paper Organization. The rest of this paper

is organized as follows: Section 2 illustrates the

background to our work. Section 3 illustrates the

proposed reliable security-oriented routing scheme.

Section 4 describes the detailed system design of

RouteGuardian. Section 5 presents the prototype

implementation of RouteGuardian and analyzes the

performance of the system. Section 6 discusses related

work and Section 7 concludes the paper.

2 Background

We present a novel model for constructing secure

routing paths through security entities and nodes with

high capabilities in SDN. This will improve the security

of data delivery in SDN and prevent adversaries from

launching attacks through malicious or non-trusted

node selection.

The method of constructing secure routing paths is

significantly different in SDN compared with traditional

networks. As illustrated in Fig. 1a, the security policies

in traditional networks are enforced by physically

forcing traffic to flow through a certain device (e.g.,

an intrusion detection system, or a firewall). However,

SDN topology is virtual. As illustrated in Fig. 1b, the

logically centralized controller in SDN provides a high-

level view of the whole network to control programs.

This means that the controller has a strong ability to

control network flow and can deploy security policies

generated by corresponding applications to switches.

Fig. 1 Routing path construction in SDN and traditional
networks.
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Therefore, the architecture of SDN makes it more

flexible to control if and when the network traffic goes

through a security device.

For example, in an SDN network, as illustrated in

Fig. 1b, if Host 1, which is controlled by an attacker,

wants to visit Host 4 for a malicious service, Host 1

should first send its request to the nearest switch. As

switch 1 is unable to find a flow rule/policy to respond to

the request that requires rerouting, it reports this request

to the SDN controller as a Packet-In message. With

centralized control of the SDN controller, the routing

application that communicates with it can build a global

view of the topology of all the switches connected

to the controller. Then, the controller runs a routing

algorithm, based on the current topology information, to

compute a new route from the source to the destination,

and pushes a route update to the involved switches for

future communication between Hosts 1 and 4. Then, if

the green road (Road 2) in Fig. 1b is pushed to these

involved switches, once the compromised Host 1 is

detected by the security device deployed in this road,

Host 1 is immediately isolated. However, if the red road

(Road 1) in Fig. 1b is pushed, as there is no filtering

or security protection in this road, Host 4 would be

attacked.

Routing rules/policies in SDN, which are assigned

by the controller to switches, control where and when

traffic flow goes through a certain device. If the

controller does not consider the network and security

capabilities of the nodes in the SDN network, it cannot

find the optimal routing paths that match the reliability

and security requirements of the users.

With increasing security demands, more and more

nodes need to be deployed in the already complicated

SDN networks. Thus, the centralized controller

is required to push more security polices when

constructing routing paths, which makes constructing

secure routing paths in SDN more and more error-prone

and challenging.

3 Reliable Security-Oriented Routing
Scheme

In this section, we present our reliable security-oriented

routing scheme. The SDN network topology is shown

in Fig. 2 and consists of three types of entities:

Controller, Hosts, and Switches. Hosts 1, 3, and 4 are

benign hosts and Host 2 is a malicious client. The

nodes S1; � � � ; S11 are switch nodes. Switch nodes

Fig. 2 Overall topology.

equipped with security resources (e.g., firewall or IDS)

are called security nodes, e.g., S9 and S10 in Fig. 2,

which are equipped with security devices SD1 and SD2,

respectively.

3.1 Problem definition

We first define the problem addressed in this paper. The

network is represented as a graph G D .V; E/. V is

a set of nodes, where each node represents a switch in

the SDN network. E is a set of edges, which represents

the connections between the SDN switches. A switch

vi 2 V has several properties that will be discussed in

Section 3.2. With this notion of network, our problem

is formulated as follows.

Given a source node vs, a destination node vd, and a

set of security requirements R D fr1; r2; � � � ; rng, find

the max-capacity path from vs to vd that passes nodes

satisfying the requirement set R.

To achieve this, in Section 3.2, we will present

our basic routing algorithm that ensures minimum

network cost and maximum reliability when selecting

the routing path. Taking the security requirements into

account, we will propose our security-oriented routing

path algorithm in Section 3.3.

3.2 Basic algorithm—Network capability based
routing

3.2.1 Network capability
The capability of each node in an SDN network is

attached to its unique identity, which is used in making

routing decisions. We represent the network capability

of a switch node in SDN by a multi-attribute vector,

where each attribute indicates the tendency of the

switch node to conduct a specific action[19]. The

capability of a switch node vi is defined as a k-
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dimensional vector of Ti , shown as follows:

Ti D ft .1/
i ; t

.2/
i ; � � � ; t

.k/
i g (1)

where t
.j /
i stands for the j -th dimension of the

capability of node vi , j 2 f1; 2; � � � ; kg, and each

dimension t
.j /
i 2 Œ0; 1� corresponds to one action

Action
.j /
i .

The network capability of a node is calculated based

on its past behavior and is defined as the probability that

the node will behave the same in the next period. We

consider the following three actions of a network node,

similar to the model proposed by Mahmoud et al.[19]

t
.1/
i W The probability of successfully relaying a

packet. Let Nrelay be the number of packets that are

relayed in the last � sessions and Ntotal be the total

number of incoming packets in the last � sessions, then,

t
.1/
i depicts the probability that vi will relay a packet

successfully.

t
.1/
i D Nrelay

Ntotal

(2)

t
.2/
i W The probability of not breaking a route. Let

Nbroken be the number of sessions broken by vi in the

last � sessions, then, the capability value t
.2/
i depicts

the probability that vi will not break a route in the last

� sessions.

t
.2/
i D 1 � Nbroken

�
(3)

t
.3/
i W The probability of relaying at least � packets

in a session. Let N �
s�relay be the number of sessions that

vi relayed in at least � packets, then, t
.3/
i depicts the

percentage that vi relayed at least � packets in the last �

sessions.

t
.3/
i D N �

s�relay

�
(4)

3.2.2 Reliability of a routing path
To ensure the reliability of a routing path, we take

two types of network capability into account: node
capability and link capability. Link capability is

usually measured from the link’s bandwidth between

two nodes. The bandwidth requirements (specified by

the users) of the network links should be satisfied,

before we evaluate the reliability of the routing path

based on the nodes’ capabilities. As the SDN controller

obtains the status of the network resources periodically,

it can create a refined network topology, in which the

links satisfy the bandwidth requirements. In the rest

of this paper, we take the refined topology as the input

for our algorithm, which means the link bandwidth is

already satisfied, and our algorithms should evaluate

the reliability of the routing path according to node

capabilities only.

Given a routing path p D fv1; � � � ; vng, the

corresponding reliability attributes of p are depicted as

T
.j /

p , which depicts the probability that the j -th action

will be conducted in all nodes on the path p, where

j 2 f1; 2; 3g. T
.j /

p can be calculated according to Eq.

.5/.

T.p/.j / D
Y

vi 2fv1;��� ;vng
t .j /
vi

(5)

We aggregate the reliability properties of a routing

path and compute its reliability by following Eq. .6/.

T .p/ D
kX

j D1

T.p/.j /!j (6)

where !j is a weight corresponding to the reliability

attributes T.p/.j /, where j 2 f1; 2; 3g. !j reflects

the sensitivities of each attribute specified by users in

the SDN network. Given a specified sensitivity vector

.˛.1/; ˛.2/; ˛.3//, the weight value !j .j 2 f1; 2; 3g/ is

normalized as

!j D ˛.j /

3P
kD1

˛.k/

(7)

We illustrate the detailed process of our Network

Capability based Routing algorithm in Algorithm 1. If

Algorithm 1 Network Capability based Routing Algorithm
Input: start node: vs

destination node: vd

bandwidth requirements: br

Output: the path with the max-capacity from vs to vd

1: BEGIN

2: The SDN controller detects topology of the network based

on the bandwidth requirements

3: Compute a set of possible paths Ppaths D fP1; � � � ; PKg with

the K-shortest path algorithm, which consists K different

paths from vs to vd

4: The SDN controller collects the latest status of all the nodes

in Ppaths

5: for each path PK 2 Ppaths do

6: T .route/
.j /

PK
D Q

Nodei 2fNode1;��� ;Nodeng

t
.j /
Nodei

T .route/PK
D

KP
j D1

T .route/
.j /

PK
!j

7: Select the path with the max-capacity from Ppaths as the

routing path

8: Prepare the routing path information and distribute them to

the corresponding switches

9: END
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the bandwidth requirement from a user is not given, the

controller detects the topology of the network without

considering the link bandwidth. Therefore, depending

on these various parameters in real time, nodes with low

capabilities will not have a chance to take part in routes

as they significantly degrade route reliability.

Figure 3 shows an example clarifying the process of

using our Network Capability based Routing algorithm.

As illustrated in Fig. 3, there are six possible routing

paths from the source node S1 to the destination node

S7, and the first column in Table 1 illustrates the

detailed information on each path. In this example, the

parameter K is set as K D 6, so the K-shortest path

algorithm outputs six routing paths.

Then, the SDN controller collects the latest status of

all the nodes along these six routing paths, as shown

in Table 2. Suppose !1 D !2 D !3 D 1

3
, the third

column in Table 1 shows the capability value of each

possible routing path. Therefore, route2 will be output

Fig. 3 Possible routing paths and nodes status.

Table 1 Capability of each possible routing path.

Case Route path Capability

route1 (S1! S2! S3! S7) 0.20

route2 (S1! S4! S5! S6! S7) 0.27

route3 (S1! S8! S9! S10! S11! S7) 0.26

route4 (S1! S2! S5! S6! S7) 0.22

route5 (S1! S2! S5! S10! S11! S7) 0.20

route6 (S1! S4! S5! S10! S11! S7) 0.24

Table 2 The latest status of all the nodes in Ppaths.

Node t .1/ t .2/ t .3/

S1 0.8 0.7 0.8

S2 0.5 0.5 0.7

S3 0.4 0.6 0.7

S4 0.7 0.8 0.7

S5 0.8 0.7 0.8

S6 0.8 0.9 0.8

S7 0.8 0.6 0.9

S8 0.9 0.8 0.8

S9 0.7 0.8 0.7

S10 0.9 0.7 0.9

S11 0.8 0.8 0.9

as the last routing path by the Network Capability based

Routing algorithm, because it is the path with the max-

capacity and a relatively low communication overhead

(it takes 4 hops) from S1 to S7.

3.3 Security-oriented routing and dynamic
reconfiguration

As different users in SDN usually specify or adjust their

security requirements according to the current network

status, we present the Security-oriented Routing and

Dynamic Reconfiguration Algorithm based on the

capacity of each network node and the realtime security

requirements of users. As illustrated in Algorithm 2,

this algorithm considers how network packets should

pass through specific security devices to meet the

security requirements from different users. Meanwhile,

it also considers the various security devices and

functions for routing path construction, and aims to help

the controller choose reasonable security devices based

on the security demands from different users.

Figure 4a is the original network topology, which

contains eleven SDN-enabled switches (denoted as S1–

S11). Among these switches, S1 is the start node, and

S7 is the destination node. Figure 4b shows traditional

packet delivery, which is based on shortest path routing

without considering the capability of nodes or the

Algorithm 2 Security-oriented Routing and Dynamic
Reconfiguration Algorithm
Input: start node: vs

destination node: vd

bandwidth requirements: br

security requirements: R D fr1; r2; � � � ; rng
Output: the max-capacity path meets R from vs to vd

1: BEGIN

2: The SDN controller detects the security devices in the

network

3: Analyse R and get the set of security devices D D
fsd1; sd2; � � � ; sdng that meets R

4: Find the max-capacity path P.vs; sd1/ from vs to sd1 with

Algorithm 1

5: for each sd� 2 D do

6: if � > 1

7: find the max-capacity path P.sd��1;sd�/ from sd��1 to sd�

with the Algorithm 1

8: Find the max-capacity path P.sdn; vd/ from sdn to vd with

Algorithm 1

9: The max-capacity path from vs to vd that meets R is:

fP.vs; sd1/; P.sd1; sd2/; � � � ; P.sdn�1; sdn/; P.sdn; vd/g
10: Prepare the routing path information and distribute them to

the corresponding security devices and switches

11: END
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Fig. 4 Example scenario for our security-oriented routing
algorithm.

security requirements from users. Thus, packets from

the start node S1 are simply delivered to S7 through the

path (S1! S2! S3 ! S7).

Then, we describe how our new algorithms work

and illustrate them using the same network structure.

Figure 4c shows an example of constructing routing

paths while considering the capability of nodes and

routes in an SDN network. Based on the status

information collected by the SDN controller along

the possible K routing paths, the Network Capability

based Routing Algorithm computes the capability of

each path, and selects the max-capacity path as the

last routing path. Therefore, in this case, all the

packets from S1 to S7 would be forwarded through

the path .S1 ! S4 ! S5 ! S6 ! S7/ by running our

Capability-based Routing Algorithm, as illustrated in

Algorithm 1.

Figure 4d shows our example when the security

requirement from a user is specified, which demands

that all packets from the start node S1 to the destination

node S7 should be inspected by a security device (e.g.,

an IDS or a firewall). In this scenario, when the SDN

controller detects the security devices in the network,

it could find that switch S10 is attached to a firewall,

which could meet the security requirement of this user.

Therefore, our Security-oriented Routing Algorithm

would first find the max-capacity path from S1 to S10

with Algorithm 1, then, find the max-capacity path

from S10 to S7. Finally, it outputs .S1 ! S8 ! S9 !
S10 ! S11/ as the last routing path.

Therefore, our Security-oriented Routing Algorithm

will help the SDN controller deliver and redirect the

flow traffic in SDN to different security nodes, and

deploy security entities into reasonable places, thus

providing more secure routing path for users and

improving the security resource utilization in SDN.

4 RouteGuardian

In this section, we present the system design

of the security-oriented routing path mechanism,

RouteGuardian, which resides in the SDN controller. In

our system, RouteGuardian timely monitors the status

of network resources in the SDN, thereby perceiving

the network and security capabilities of the network

nodes. RouteGuardian calculates the security-oriented

routing paths based on the transmission and security

requirements specified by users and the network nodes’

capabilities. Benefiting from the network resource

virtualization infrastructure, RouteGuardian ensures

that the established routing path satisfies the network

security and reliability requirements effectively. If

there is any abnormal traffic detected by the network

security resources deployed in the selected routing path,

RouteGuardian will react in a timely manner according

to the security policies and dynamically reconfigure the

routing paths.

4.1 Overall architecture

As shown in Fig. 5, RouteGuardian extends regular

controllers with four additional modules: (1) Policy
Parser, (2) Resource Status Monitor, (3) Routing Rule
Generator, and (4) Incident Reactor.

Policy Parser. This module is an interface that

mediates a set of high-level security requirements into

the corresponding security policies. For example, if the

security requirement of a user in SDN specifies that all

network packets from Host 1 to port 80 of Host 2 should

be blocked, then the Policy Parser module translates

this security requirement into a corresponding security

policy that the Routing Rule Generator module can

accept when constructing routing paths. As illustrated

in Fig. 5, if SD2 (security device) just has a rule to block

Fig. 5 Conceptual architecture of RouteGuardian.
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network packets from Host 1 to port 80 of Host 2, then

SD2 would be selected as the necessary passing security

device when the Routing Rule Generator constructs the

secure routing paths from Host 1 to Host 2.

Resource Status Monitor. As the status of

nodes and the bandwidth in SDN is dynamic and

time-sensitive, the Resource Status Monitor module

periodically collects the status of switch nodes,

bandwidth, and security devices in the network, and

stores this information in the Capability Value database.

The information collected by this module is critical

metrics/input data for the Routing Rule Generator

module to construct an optimal routing path that meets

the security requirements of a user.

Routing Rule Generator. The Network Capability

based Routing Algorithm and the Security-oriented

Routing and Dynamic Reconfiguration Algorithm run

in this module. This module constructs routing paths

based on the latest status of the nodes and the various

security needs of users in SDN. Specifically, based on

the realtime security requirements of a user in SDN, this

module outputs the max-capacity path from the source

node to the destination node satisfying the security

requirements.

Incident Reactor. This module creates response

strategies corresponding to the security policies, e.g.,

isolating the malicious node/host that creates abnormal

traffic, dropping the malicious packets, etc. Meanwhile,

the Resource Status Monitor module updates the

capability status of the network resource and the SDN

controller reconfigures the routing paths according to

the outputs of the Routing Rule Generator module.

4.2 Typical operations of RouteGuardian

In this subsection, we use Fig. 6 to illustrate typical

operations of RouteGuardian.

Fig. 6 Secure routing path establishment and security
response.

Security-oriented routing path construction.
When a user applies for a secure routing path from

its host node Host 1 to a destination node Host 3,

Host 1 should first send its request to the nearest

switch S1. Then, S1 sends a routing establishment

request to the controller. The Policy Parser module

creates the corresponding reliability and security

policies according to the capability and security

requirements included in the routing request sent

by Host 1. The Resource Status Monitor module

timely collects the capability status of the network

resources. The Routing Rule Generator module

calculates and outputs routing/flow rules according

to the polices and capability status of the network

resources using the Security-oriented Routing and

Dynamic Reconfiguration Algorithm. The controller

assigns the secure routing flow rules to the switch

nodes included in the routing path, and establishes

the required route ensuring the security and reliability

requirements simultaneously.

Security Response and Reconfiguration. Once

there is malicious traffic (such as the red-line shown

in Fig. 6) inspected by a security node (e.g., S9),

the security node will inform the controller. The

Incident Reactor module creates the response strategies

corresponding to the security policies, e.g., isolating

the malicious node/host (e.g., Host 2) that creates

the abnormal traffic, dropping the malicious packets,

etc. Meanwhile, the Resource Status Monitor module

updates the capability status of the network resources

and the controller reconfigures the routing paths

according to the output of the Routing Rule Generator

module.

5 Evaluation

We prototyped our approach, RouteGuardian, and its

functionality and performance overhead are evaluated

in this section. We select Mininet[20], which is popularly

used for emulating OpenFlow network environments,

to emulate our network topologies. We also extended

the POX controller with four additional modules as

illustrated in Fig. 5 to support the main functionality

of RouteGuardian. We set up the experiment on a

3.40 GHz Intel Core(TM) I3-2130 platform with 6 GB

RAM, running 32-bit Ubuntu 12.10 (Kernel version

3.8.0).

We compared RouteGuardian with the shortest path

algorithm from two aspects: .1/ the method of routing
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path construction, and .2/ the performance overhead

introduced by the routing algorithm.

5.1 Routing path comparison

Figure 7 illustrates the network topology used in our

experiment. Our goal is to show the main differences

in the method of routing path construction between

RouteGuardian and the basic shortest path algorithm.

In our experiment, Host 1 requests to send a packet to

port 80 of Host 2, while Host 2 has specified a security

requirement that all network traffic from Host 1 to port

80 should be audited by a security device. Meanwhile,

Switch 3 (with IP 192.168.1.3) is a malicious node,

which usually breaks a route. The ping test from Switch

2 (with IP 192.168.1.2) in this network is shown in

Fig. 8.

While Host 1 requests to send a packet to port 80

of Host 2, Switch 1 (the nearest switch) reports it to

the controller. In a common SDN controller, as there

are no special modules for security demands, it just

Fig. 7 Routing paths construction comparison.

Fig. 8 Ping test (IP 192.168.1.2).

runs the shortest path algorithm (Dijkstra’s algorithm)

based on the topology information, outputs a path

without any security policy, and pushes this routing

path update to the involved switch(es). In this case,

the path .Switch 2 ! Switch 3 ! Switch 5/ will be

selected as the optimal path. However, as Switch 3 (with

IP 192.168.1.3) is a malicious node, it usually captures

the network scenario, rewrites packets, and then breaks

routes by replaying packets with tcpreplay, as shown

in Fig. 9. Therefore, the routing path .Switch 2 !
Switch 3 ! Switch 5/ will not be a secure routing path.

With RouteGuardian deployed on the controller,

things are different. After resolving the network

topology information, RouteGuardian accommodates

the high-level security requirement from Host 2

into the corresponding security policy. As Switch 3

usually breaks a route with low capability, then it

cannot be selected by RouteGuardian for routing path

construction. Finally, RouteGuardian outputs the path

.Switch 2 ! Switch 1 ! Switch 4 ! Switch 5/ as

the optimal path, which meets the security requirement

from Host 2. Meanwhile, RouteGuardian can also give

a security response to these malicious events and isolate

a certain malicious node. The ping test from Switch 2

(with IP 192.168.1.2) is shown in Fig. 10. We can see

that Switch 3 is isolated by RouteGuardian.

5.2 Time complexity analysis

For an SDN network G D .V; E/, V is a set of nodes,

E is a set of edges. Let n be the number of nodes in

V , and m be the number of edges in E. Then, for the

shortest path from the source node vs to the destination

node vd, the time complexity of the Dijkstra’s algorithm

using a Fibonacci heap is O.m C n log n/, and the K-

shortest path algorithm[21] used in RouteGuardian has a

time complexity of O.K.m C n log n//.

Figure 11 illustrates the overhead between the

shortest path algorithms and the K-shortest path with

different K values. The X -axis corresponds to the

number of nodes in an SDN network, and the Y -axis

corresponds to the time consumed when constructing

Fig. 9 Switch 3 captures, rewrites, and replays packets.
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Fig. 10 Security response from RouteGuardian.

Fig. 11 Time complexity comparison.

the routing paths. Then, when the value of k is small,

RouteGuardian is efficient.

5.3 Impact of network size on the performance of
algorithms

The performance of RouteGuardian changes with the

size of the SDN network. To investigate the impact of

network size on the performance of RouteGuardian, we

consider SDN networks with 20, 30, 40, 50, and 100

nodes. The detailed configuration of each network is

shown in Table 3, and Fig. 12 illustrates an example of

an SDN network with 50 nodes. In Fig. 12, the switch

nodes with color markers, e.g., S9 and S19, are security

nodes equipped with security resources (e.g., firewall,

IDS, etc.). Meanwhile, the capacity of each node is

uniformly chosen in the range Œ0:01; 1:00�.

For each network size, we evaluated the performance

Table 3 Network configuration.

Case Number of nodes Number of links

Network 1 20 23

Network 2 30 34

Network 3 40 49

Network 4 50 63

Network 5 100 127

Fig. 12 Topology example for network with 50 nodes.

of our proposed algorithms. Figure 13 illustrates the

time cost of RouteGuardian with different k and

network sizes. Each simulation result is averaged

over 50 samples. The X -axis corresponds to the SDN

network size, and the Y -axis corresponds to the average

time cost for RouteGuardian to compute routing paths

during the processes of routing path construction. The

time cost is also affected by the network topology. We

observe that the performance overhead introduced by

RouteGuardian for routing computation is acceptable.

6 Related Work

The field of routing in SDN has been actively

researched. Here we focus on work related to our

central topic, i.e., constructing secure routing paths

in SDN. Two types of prior work are particularly

relevant: routing paths construction in SDN, and secure

routing scheme analysis in traditional networks, which

Fig. 13 Time cost with different network sizes.
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considers the parameters (i.e., bandwidth, trust, node,

and link capability) for routing generation.

6.1 Secure routing path construction in SDN

Recently, several studies have been proposed to address

the SDN routing construction issue. To maximize

the security resource utilization in SDN, Shin et

al.[17] presented the concept of NSV and four basic

routing algorithms, which virtualize security resources

and provide security response functions from network

devices when necessary. However, current routing

algorithms in NSV do not consider the capability of

each network node when routing network packets.

Huang et al.[22] proposed a novel cost model, which

simulates the usage costs of nodes and link resource,

to maximize the network throughput under both

critical network resources and user bandwidth demand

constraints. Shen et al.[23] proposed a new reliable

multicast tree for reliable multicast routing in SDN

to minimize both tree and recovery costs. However,

solutions[22, 23] consider many more multicast routing

problems and costs in SDNs. Compared with them, we

focus more on the security of routing.

Lee and Sheu[24] proposed a routing algorithm for

SDN with segment routing, which considers the balance

of traffic load and reduces the extra cost of packet

header size in a network. Agarwal et al.[25] considered

the problem of traffic engineering in the case where

an SDN controller controls only a few forwarding

elements, and tried to optimize the network utilization

and decrease the packet drop rate. To balance the

usage of link bandwidth and flow table when routing

in SDN, Lee et al.[26] proposed a novel resource

preference aware routing algorithm. Meanwhile, Li

et al.[6] focused on the problem of routing under

middlebox sequence constraints and designed a fast

recovery mechanism by exploiting the remaining link

and middlebox resources locally. Huang et al.[27] and

Wan et al.[28] also developed an evaluation system that

considered routing engineering in SDN.

In addition, Yoon et al.[29] explored the attack

surface of SDN by actually attacking each layer in

an SDN stack. Park et al.[30] considered how to

enrich security functions/features in software-defined

environments and proposed a new software switch

architecture, which enables software switches to easily

provide security services without additional security

devices or applications.

Compared with these previous works, the primary

focus of our work is security and network capability-

based routing path construction. We take the network

capability of these security devices and switches as a

unique concern.

6.2 Secure routing path construction in traditional
networks

Previous work on secure routing in traditional networks

has extensively discussed trust, vulnerability, and

reliability issues. These techniques are complementary

to our design of RouteGuardian.

Mahmoud et al.[19] presented a trust-based routing

protocol that directs network traffic to those highly-

trusted nodes having sufficient energy, to minimize

the probability of breaking a route. Johnson et al.[31]

considered the various security concerns for route

selection in anonymity networks. Chen et al.[32]

proposed a dynamic trust model to optimize the secure

routing protocol in DTN environments. Kang and

Gligor[33] introduced the notion of routing bottlenecks,

and presented their key characteristics, including size,

link type, and distance from host destinations. Chen et

al.[34] used symmetric cryptography for data forwarding

and presented a highly-scalable anonymity system that

leverages next-generation Internet architecture design.

Meanwhile, some schemes regarding mobility-

aware routing and multicast routing[35–38] can also be

combined with our dynamic routing path construction.

7 Conclusion

In this paper, we propose RouteGuardian, a new

mechanism based on NSV, which dynamically

establishes reliable secure-oriented routing paths

in SDN, and aggregates switch node capabilities.

RouteGuardian takes the nodes’ network and

security capabilities as critical metrics, thus ensuring

the establishment of a reliable routing path and

enforcing malicious traffic detection, isolation, and

dynamic routing reconfiguration. We prototyped our

approach and the experiment results demonstrate that

RouteGuardian supports robust secure routing path

establishment and effectively utilizes the existing

security devices distributed in SDN. We will improve

the performance of RouteGuardian in our future work,

and aim to deploy it to distributed controllers to

improve control plane scalability.
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