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Adaptive Linearized Alternating Direction Method of Multipliers
for Non-Convex Compositely Regularized Optimization Problems

Linbo Qiao, Bofeng Zhang, Xicheng Lu, and Jinshu Su�

Abstract: We consider a wide range of non-convex regularized minimization problems, where the non-convex

regularization term is composite with a linear function engaged in sparse learning. Recent theoretical investigations

have demonstrated their superiority over their convex counterparts. The computational challenge lies in the fact

that the proximal mapping associated with non-convex regularization is not easily obtained due to the imposed

linear composition. Fortunately, the problem structure allows one to introduce an auxiliary variable and reformulate

it as an optimization problem with linear constraints, which can be solved using the Linearized Alternating Direction

Method of Multipliers (LADMM). Despite the success of LADMM in practice, it remains unknown whether LADMM

is convergent in solving such non-convex compositely regularized optimizations. In this research, we first present

a detailed convergence analysis of the LADMM algorithm for solving a non-convex compositely regularized

optimization problem with a large class of non-convex penalties. Furthermore, we propose an Adaptive LADMM

(AdaLADMM) algorithm with a line-search criterion. Experimental results on different genres of datasets validate

the efficacy of the proposed algorithm.

Key words: adaptive linearized alternating direction method of multipliers; non-convex compositely regularized

optimization; cappled-l1 regularized logistic regression

1 Introduction

In this research, we focus on solving a class of non-
convex compositely regularized learning problems:

min
x2Rd

l.x/C r.F x/ (1)

where r W Rl ! R is a non-convex regularization
function and l W Rd ! R is a smooth convex function
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associated with the prediction rule x. Furthermore, we
denote F 2 Rl�d as a penalty matrix (not necessarily
diagonal) specifying the desired structural sparsity
pattern in x.

When r is a convex function, Formula (1) can
cover graph-guided regularized minimization[1]

and generalized Lasso[2]. However, non-convex
regularization usually yields a solution with more
desirable structural properties. Let us take the `0-norm
regularized least-squares problem (i.e., l is a least-
squares function) as an example. It is well known that
such a problem is NP-hard because of its combinatorial
nature. To this end, the `1-norm regularized model
was proposed to pursue the computational tractability
and has been widely used in signal and image
processing[3, 4], biomedical informatics[5], and
computer vision[6]. And there is potential advances
in high performance computing[7], tracking[8], energy
saving[9], vehicular ad hoc network[10], and hierarchical
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reinforcement learning[11]. Despite of computational
advantages and successful applications, the `1 model
has some limits under certain scenarios[12], because the
`1-norm comes at the price of shifting the resulting
estimator by a constant[13] and hence leads to an
over penalized problem. To circumvent the issues
pertaining to the `1-norm, researchers impose some
non-convex regularizations on problem (1), which
have been proven to provide better approximations
of the `0-norm theoretically and computationally.
The existing non-convex regularizations include the
p̀-norm (0 < p < 1)[14], Smoothly Clipped Absolute

Deviation (SCAD)[13], Log-Sum Penalty (LSP)[12],
Minimax Concave Penalty (MCP)[15], and Capped-`1
penalty[16, 17].

In addition to the non-convex structures, another
challenge of problem (1) derives from the linear
composition. Specifically, when F is not diagonal, it is
very likely that the proximal mapping associated with
r.F x/ is not easily obtained. A standard technique
which is useful in this case is to introduce an auxiliary
variable z and reformulate problem (1) with linear
constraints as follows:

min
x; z

l.x/C r.z/;

s.t. Fx � z D 0 (2)

Moreover, since l.x/ is smooth and the solution
of the proximal mapping associated with r.z/

can be explicitly given for many commonly used
non-convex regularizers, the Linearized Alternating
Direction Method of Multipliers (LADMM)[18] can be
applied regardless of the availability of the proximal
mapping on l.x/. However, it is unclear whether
the LADMM algorithm converges when applied to
the non-convex problem in problem (2), although
its global convergence is established for convex
objectives[19, 20]. This issue is successfully addressed
in this research affirmatively. Moreover, we propose a
novel Adaptive LADMM (AdaLADMM) algorithm for
solving problem (2), which achieves faster convergence
by incorporating a line-search criterion into determining
an appropriate penalty parameter at each iteration
compared to the LADMM algorithm. The detailed
convergence analysis is presented for both the LADMM
and AdaLADMM algorithms. The efficacy of the
proposed AdaLADMM algorithm is demonstrated by
encouraging empirical evaluations of the non-convex
graph-guided regularized minimization on several real-
world datasets.

This research provides the first convergence analysis
of the LADMM algorithm attemping to solve non-
convex compositely regularized optimization problems,
which is an extension to the prior research[21]. In
addition, this research shows that the convergence
can still be guaranteed if the penalty parameter is
adaptively adjusted. In particular, this penalty parameter
is determined according to a line-search criterion at
each step of the AdaLADMM algorithm. Numerically,
this adaptive strategy for the penalty parameter can
lead to faster convergence, as observed in Ref. [22].
Therefore, our results can be viewed as a partial
justification of this phenomenon from the theoretical
perspective.

2 Related Work

In this section, we review some existing algorithms and
discuss their connections to our research. When F D I ,
the commonly used approaches for solving problem
(1) include the Multi-Stage (MS) convex relaxation
algorithm[16], the Sequential Convex Programming
(SCP) algorithm[23], the General Iterative Shrinkage
and Thresholding (GIST) algorithm[24], and the recent
Hybrid Optimization for NOn-convex Regularized
problems (HONOR) combining the quasi-Newton and
gradient descent methods[25].

To be specific, the MS algorithm reformulates
problem (1) as follows:

min
x2Rd

f1.x/ � f2.x/;

where f1.x/ and f2.x/ are both convex functions. It
solves problem (1) by generating a sequence fxkg via
xkC1 WD argmin

x2Rd
f1.x/ � f2.x

k/ � hg; x � xki (3)

where g 2 @f2.xk/ and @f2.xk/ is the sub-differential
of the function f2.x/ at x D xk . Although problem
(3) is a convex optimization problem, it does not admit
a closed-form solution in general and hence leads to an
expensive computational cost per iteration. In contrast,
the SCP and GIST algorithms solve problem (1) by
generating a sequence fxkg as follows:

xkC1 WD argmin
x2Rd

�
hrl.xk/; x � xki C

tk

2
kx � xkk2 C

r1.x/ � r2.x
k/ � hs2; x � x

k
i

�
;

and

xkC1 WD argmin
x2Rd

hrl.xk/; x�xkiC
tk

2
kx�xkk2Cr.x/;
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respectively, where s2 2 @r2.x
k/ and r1 and r2 are

defined in Assumption 3 shown in Section 3. The
HONOR algorithm improves the GIST algorithm
by using the second-order information of l.x/.
Specifically, it designs a framework to determine
whether we can perform a quasi-Newton step at each
iteration, which greatly speeds up the convergence.
However, when F is non-diagonal, neither the SCP
algorithm nor the GIST algorithm is efficient for solving
problem (1) as the proximal mapping of r.F x/ is
typically not available.

Other related studies include the ADMM-type
algorithms that are suitable to solve problem (2)
when F is not diagonal[26–29]. Such algorithms have
recently been shown to effectively manage some
non-convex optimization problems[30–36]. However, the
results of Refs. [30, 31] require a not-well-justified
assumption about the generated iterations, while some
other studies focus on certain specific problems,
such as the consensus and sharing problems[32] and
the background/foreground extraction problems[33].
Several studies[34–36] consider proximal ADMM applied
to the following problem:

min
x;z

l.x/C r.z/;

s.t. Ax C Bz D b (4)
where x 2 Rd , z 2 Rl , A 2 Rp�d , B 2 Rp�l , and b 2
Rp . The convergence is established under some mild
conditions. Obviously, the above problem includes
problem (2) as a special case. However, all these
algorithms assume that the proximal mapping of l is
easily obtained, which is not the case for many objective
functions encountered in machine learning, such as the
logistic function.

3 Preliminaries

To proceed, we make the following assumptions
throughout this research.

Assumption 1 l.x/ is continuously differentiable
with the Lipschitz continuous gradient, i.e., there exists
a constant L > 0 such that
krl.x1/ � rl.x2/k 6 Lkx1 � x2k; 8x1; x2 2 Rd :
Assumption 2 l.x/ is lower-bounded, i.e.,

infx l.x/ > l� > �1. In addition, there exists ˇ0 > 0

such that Nl.x/ D l.x/ � ˇ0krl.x/k
2 is lower-bounded

and coercive, i.e., infx Nl.x/ > Nl� > �1 and Nl.x/ !
C1 as kxk ! C1.

We remark that Assumptions 1 and 2 are not
restrictive. In fact, they are easily satisfied by many

popular functions in machine learning, such as the least-
squares and logistic functions:

l.x/D
1

2n
kAx � bk2 or

1

n

nX
iD1

log.1C exp.bi � a>i x//;

where A D Œa>1 I � � � I a
>
n � 2 Rn�d is a data matrix and

b D Œb1; � � � ; bn�
>
2 Rn. Specifically, when l.x/ is the

least-squares function, we have

Nl.x/ D
1

2n
kAx � bk2 �

ˇ0

n2
kA>.Ax � b/k2:

Therefore, Nl.x/ is lower-bounded and coercive when
ˇ0 6

n

2�max.AA>/
, where �max.AA

>/ is the largest

eigenvalue of AA>. When l.x/ is the logistic function,
krl.x/k2 is bounded. Consequently, Nl.x/ is lower-
bounded and coercive for any ˇ0 > 0.

Assumption 3 r.x/ is a continuous function, which
is possibly non-convex and non-smooth, and can
be rewritten as the difference between two convex
functions, namely,

r.x/ D r1.x/ � r2.x/;

where r1.x/ and r2.x/ are convex functions. Moreover,
r.x/ is lower-bounded, i.e., infx r.x/ > r� > �1.

The merit of the above decomposition over r.x/ is
that the sub-differential is non-empty for any convex
function. Thus, the optimality condition of the sub-
problem associated with r.x/ is readily obtained. In
Table 1, we list some non-convex regularizers widely
used in sparse learning, which satisfy Assumption
3. We refer interested readers to Ref. [24] for the
detailed decomposition of each non-convex regularizer
presented in Table 1. It should be noted that r.x/ is
not necessarily assumed to be coercive in our research,
which however is required in Refs. [34–36]. Indeed,
this property does not hold true for some non-convex
penalty functions, such as the Capped-`1 regularization.

Assumption 4 The smallest eigenvalue of FF> is
positive, i.e., �min.FF

>/ > 0.
Assumption 5 The critical point set of problem (1)

is non-empty, i.e., there exist x�, g�1 2 @r1.F x
�/, and

g�2 2 @r2.F x
�/ such that

rl.x�/C F>.g�1 � g
�
2 / D 0 (5)

Recall that x� is called a critical point of
problem (1)[37] when Eq. (5) holds. Moreover, the
Lagrangian function of problem (2) is expressed as
follows:

L.y; x; �/ D l.x/C r.y/ � h�; F x � yi ;
and it can be easily verified that a critical point
.y�; x�; ��/ of the Lagrangian function satisfies
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Table 1 Examples of the penalty function r(x) and the corresponding convex functions r1(x) and r2.x/. γ>0 is the regularization
parameter. [w]+ Dmax(0, w), r.x/ D

P
i ri.xi/, r1.x/ D

P
i r1; i.xi/, and r2.x/ D

P
i r2; i.xi/.

ri .xi / r1;i .xi / r2;i .xi /

LSP 
 log .1C jxi j=�/ .� > 0/ 
 jxi j 
 .jxi j � log .1C jxi j=�//

SCAD 


Z jxi j
0

min
�
1;
Œ�
 � y�C

.� � 1/


�
dy.� > 2/= 
 jxi j 


R jxi j
0

Œmin.�
;y/�
�C
.��1/


dy=8̂̂̂̂
<̂̂
ˆ̂̂̂:

 jxi j; if jxi j 6 
 I

�x2
i
C 2�
 jxi j � 


2

2.� � 1/
; if 
 < jxi j 6 �
 I

.� C 1/
2

2
; if jxi j > �


8̂̂̂̂
<̂̂
ˆ̂̂̂:
0; if jxi j 6 
 I

x2
i
� 2
 jxi j C 


2

2.� � 1/
; if 
 < jxi j 6 �
 I


 jxi j �
.� C 1/
2

2
; if jxi j > �


MCP 


Z jxi j
0

�
1 �

y

�


�
C

dy .� > 0/= 
 jxi j 


Z jxi j
0

min
�
1;
y

�


�
dy .� > 0/=8<: 
 jxi j � x

2
i
=.2�/; if jxi j 6 �
 I

�
2=2; if jxi j > �


8<: x2
i
=.2�/; if jxi j 6 �
 I


 jxi j � �

2=2; if jxik 6 �


Capped-`1 
 min .jxi j; �/ .� > 0/ 
 jxi j 
 Œjxi j � ��C

0 D rl.x�/ � F>��;

0 D g�1 � g
�
2 C �

�;

0 D Fx� � y�;

where g�1 2 @r1.F x
�/ and g�2 2 @r2.F x

�/. Hence, x�

is a critical point of problem (1) as well.

4 LADMM

In this section, we first review the LADMM[18] and
discuss how it can be applied to solve problem (2).
Then, we present a detailed convergence analysis of
LADMM.

4.1 Algorithm

It is well known that problem (2) can be solved by
the standard ADMM[38] when the proximal mappings
of l.x/ and r.z/ are both easily obtained. Its typical
iteration can be written as follows:

xkC1 WD argmin
x

Lˇ
�
x; zk; �k

�
;

�kC1 WD �k � ˇ
�
FxkC1 � zk

�
;

zkC1 WD argmin
z

Lˇ
�
xkC1; z; �kC1

�
;

where the augmented Lagrangian function Lˇ .x; z; �/
is defined as

Lˇ .x; z; �/ D l.x/Cr.z/�h�; F x � ziC
ˇ

2
kFx�zk2:

The penalty parameter ˇ > 0 is a constant and can
be seen as a dual step-size. Unfortunately, in many
machine learning problems, the proximal mapping
of the function l.x/ can not be explicitly computed,

thereby making ADMM inefficient in computing the
proximal mapping of the function l.x/. This inspires
a linearized ADMM algorithm[18] by linearizing l.x/
in the x-subproblem. In particular, this algorithm
considers a modified augmented Lagrangian function:
NLˇ .x; Ox; z; �/ D l. Ox/C hrl. Ox/; x � Oxi C r.z/ �

h�; F x � zi C
ˇ

2
kFx � zk2:

Then, the LADMM algorithm solves problem (2) by
generating a sequence

˚
xkC1; �kC1; zkC1

	
as follows:

xkC1 WD argmin
x

NLˇ
�
x; xk; zk; �k

�
;

�kC1 WD �k � ˇ
�
FxkC1 � zk

�
;

zkC1 WD argmin
z

NLˇ
�
xkC1; xk; z; �kC1

�
(6)

In this research, we modify the above LADMM
algorithm by imposing a proximal term on the
subproblem of x and update xkC1 using the following
equation:

xkC1 WD argmin
x

NLˇ
�
x; xk; zk; �k

�
C
ı

2
kx � xkk2;

which leads to a closed-form solution:

xkC1 WD
�
ıI C ˇF>F

��1 �
F>�k C ˇF>zk C

ıxk � rl.xk/

�
:

The updating rule of zkC1 is the same as that of
Eq. (6) and is equivalent to the proximal operator
problem:

zkC1 WD argmin
z

�
1

2
kz � ukk2 C

1

ˇ
r.z/

�
(7)
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where uk D FxkC1 �
�kC1

ˇ
. For all the regularized

functions listed in Table 1, Eq. (7) has a closed-form
solution even though r.z/ is non-convex and non-
smooth (details are provided in Ref. [24]). Considering
the capped-`1 regularized function, for example, its
closed-form expression can be expressed as follows:

zkC1i WD

(
x1; if hi .x1/ 6 hi .x2/I

x2; otherwise;

where hi .x/ D
1

2
.x � uki /

2
C 
 min.jxj; �/=ˇ; x1 D

sign.uki /max.juki j; �/; and x2 D sign.uki /min.�;
Œjuki j � 
=ˇ�C/. We next describe the details of the
LADMM algorithm in Algorithm 1.

4.2 Convergence analysis

This subsection is dedicated to the convergence analysis
for the LADMM algorithm. We first present a couple of
technical lemmas as preparation.

Lemma 1 The norm of the dual variable can be
bounded by the norm of the gradient of the objective
function and the iterative gap of primal variables,
namely:

k�kC1k2 6
1

�min.FF>/
krl.xkC1/k2 C

3L2 C 3ı2

�min.FF>/
kxkC1 � xkk2:

Similarly, the iterative gap of dual variables can be
bounded as follows:

k�kC1 � �kk2 6
3L2 C 3ı2

�min.FF>/
kxk � xk�1k2 C

3ı2

�min.FF>/
kxkC1 � xkk2:

To proceed, we define a potential function ˚1 as
follows:

Algorithm 1 LADMM
Choose the parameter ˇ such that Formula (9) is satisfied;
Initialize an iteration counter k  0 and a bounded starting
point

�
x0; �0; z0

�
;

repeat
Update xkC1 according to Eq. (7);
�kC1  �k � ˇ

�
FxkC1 � zk

�
;

Update zkC1 according to Eq. (7);
if some stopping criterion is satisfied; then

Break;
else
k  k C 1;

end if
until exceed the maximum number of outer loop.

˚1.x; Ox; z; �/ D l.x/C r.z/ � h�; F x � ziC

ˇ

2
kFx � zk2 C

3L2 C 3ı2

ˇ�min.FF>/
kx � Oxk2:

This function is built to measure the violation of the
optimality of the current iteration. Some key properties
of ˚1.xkC1; xk; zkC1; �kC1/ are stated below.

Lemma 2 Let the sequence fxkC1; �kC1; zkC1g be
generated by Algorithm 1 and ı and ˇ satisfy that ı >
L
2

and

ˇ > max
� �
3L2 C 6ı2

�
=�min.FF

>/

�
ı �

L

2

�
;

3=.2ˇ0�min.FF
>//

�
(8)

where ˇ0 is defined in Assumption 2.
Then, ˚1.xkC1; xk; zkC1; �kC1/ is monotonously

decreasing and uniformly lower-bounded.

Note that when ı D
L

2
C ˇ0 in the LADMM

algorithm, Formula (8) implies that ˇ > .3L2 C

6ı2/=.�min.FF
>/

�
ı �

L

2

�
/ as

3L2 C 6ı2

�min.FF>/
�
ı � L

2

� D 3L2 C 6ı2

ˇ0�min.FF>/
>

3

2ˇ0�min.FF>/
:

Now, we present the convergence result of LADMM
in the following theorem.

Theorem 1 Let fxkC1; zkC1; �kC1g be generated
by Algorithm 1 and ˇ and ı be specified in Lemma 2.
Then, the sequence is bounded and has at least one limit
point. Furthermore, we have

kxkC1 � xkk ! 0;

kzkC1 � zkk ! 0;

kFxkC1 � zkC1k ! 0;

and any limit point of the sequence fxkC1; zkC1; �kC1g
is a critical point of problem (2). Finally, we have

min
06k6n

kxk � xkC1k2 6
˚1.x

1; x0; z1; �1/ � ˚�

nımin
(9)

where ˚� is the uniform lower-bound of ˚1.xkC1;
xk; zkC1; �kC1/, and ımin is defined as

ımin D ı �
L

2
�

3L2 C 6ı2

ˇ�min.FF>/
> 0:

We remark that kxkC1 � xkk2 ! 0 is the key
condition for the convergence of Algorithm 1. The
proof of Theorem 1 is presented in Appendix and it
shows that both kFxkC1 � zkC1k and kzkC1 � zkk
can be bounded above by kxkC1 � xkk. Therefore,
kxkC1 � xkk2 can be used as a quantity to measure the
convergence of the sequence generated by Algorithm 1
(i.e., LADMM).
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5 AdaLADMM

Note that Formula (8) is a sufficient condition to
guarantee the convergence of LADMM. In practice, the
value of ˇ in Formula (8) could be very large, and
it consequently slows down the convergence. In this
section, we propose a novel AdaLADMM for solving
problem (2), wherein a line-search criterion is adopted
to determine an appropriate penalty parameter ˇk at
each iteration. The detailed convergence analysis of the
AdaLADMM algorithm is provided next.

5.1 Algorithm

We first introduce the adaptive augmented Lagrangian
function
NL .x; Ox; z; �; ˇ/ D l. Ox/C hrl. Ox/; x � Oxi C r.z/�

h�; F x � zi C
ˇ

2
kFx � zk2

by allowing ˇ in NLˇ .x; Ox; z; �/ to be a variable rather
than a constant. In fact, the adaptive proximal LADMM
algorithm is based on the framework of Algorithm 1. In
particular, we generate xkC1 from .xk; �k; zk/ via

xkC1 WD argmin
x

NL.x; xk; zk; �k; ˇk/C ı

2
kx � xkk2;

which has a solution in the form of Eq. (7) with ˇ

replaced by ˇk , and zkC1 from .xkC1; �kC1/ via
zkC1 WD argmin

z

NL.xkC1; xk; z; �kC1; ˇk/:

Equivalently, zk is obtained by Eq. (7) with
ˇ replaced by ˇk . The detailed procedure of the
AdaLADMM algorithm is presented in Algorithm
2. There are two issues that persist: how to initialize ˇk ,
and how to select a line-search criterion at each outer
iteration.

5.2 Initialization of the penalty parameter βk

It is known that a good initialization strategy for step-
size of outer iterations can greatly reduce the line-search
cost and hence speed up the overall convergence of the
respective algorithm. In this paper, we adopt the so-
called last rule to initialize the penalty parameter. In
the last rule, ˇkC1 is initialized by using the finally
accepted value of ˇ at the last iteration, i.e., the value
of ˇk identified by the line-search. In the experiment,
we compare this strategy with the constant initialization
strategy; the experimental results show the advantage of
the former strategy over the latter one.

5.3 Line-search criterion

We use the monotone line-search criterion, which
requires that the value of the potential function should

Algorithm 2 AdaLADMM
Choose parameters � > 1 and ˇmin; ˇmax with 0 < ˇmin <

ˇmax < C1;
Initialize an iteration counter k  0 and a bounded starting
point

�
x0; �0; z0

�
;

repeat
Initialize ˇk 2 Œˇmin; ˇmax�;
repeat

Update xkC1 according to Eq. (7) with ˇ replaced by
ˇk ;
�kC1  �k � ˇk

�
FxkC1 � zk

�
;

if some line-search criterion is satisfied; then
Break;

else
ˇk  �ˇk ;

end if
until exceed the maximum number of inner loop;
Update zkC1 according to Eq. (7) with ˇ replaced by ˇk ;
if some stopping criterion is satisfied; then

Break;
else
k  k C 1;

end if
until exceed the maximum number of outer loop.

decrease after updating x and �. In particular, we
propose to accept the penalty parameter ˇk if the
following monotone line-search criterion is satisfied:

˚2.x
k; xk�1; zk; �k; ˇk/��

�
ı�

L

2

�
kxkC1�xkk2 >

˚2.x
kC1; xk; zkC1; �kC1; ˇk/;

where � is a constant in the interval .0; 1/, and the
potential function ˚2 is defined as

˚2.x; Ox; z; �; ˇ/Dl.x/ � h�; F x � ziC
ˇ

2
kFx�zk2C

r.z/C
3L2 C 3ı2

ˇ�min.FF>/
kx � Oxk2:

5.4 Convergence analysis

Here, we present the detailed convergence analysis for
the AdaLADMM algorithm (Algorithm 2) using the
last rule strategy. We first present a key lemma which
guarantees that the monotone line-search criterion is
satisfied in Algorithm 2.

Lemma 3 Let the constant � 2 .0; 1/ be given and
ı D L

2
Cˇ0. Then, for any integer k > 0, the monotone

line-search criterion is satisfied whenever

ˇk >
3L2 C 6ı2

�min.FF>/ .1 � �/
�
ı � L

2

� :
Furthermore, ˚2.xkC1; xk; zkC1; �kC1; ˇk/ > ˚�.

In the following lemma, we show that when k is
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sufficiently large, a constant ˇk suffices.
Lemma 4 There exists K0 > 0 such that when

ˇk remains as a constant Ň, the monotone line-search
criterion is satisfied for any k > K0.

Based on Lemmas 3 and 4, we present the
convergence result of Algorithm 2 in the following
theorem.

Theorem 2 Let fxkC1; zkC1; �kC1g be generated
by Algorithm 2 and � and ı be the same as that in
Lemma 3. Then, the sequence is bounded and has at
least one limit point. Furthermore, we have

kxkC1 � xkk ! 0;

kzkC1 � zkk ! 0;

kFxkC1 � zkC1k ! 0;

and any limit point of fxkC1; zkC1; �kC1g is a critical
point of problem (2). Finally, we have

min
K06k6n

kxk � xkC1k2 6

˚2.x
K0 ; xK0�1; zK0 ; �K0 ; Ň/ � ˚�

.n �K0/�min
(10)

where �min is defined by �min D �
�
ı � L

2

�
> 0.

6 Experiments

6.1 Capped-`1 regularized logistic regression

In this section, we conduct an experiment to evaluate the
performance of our method. The first task considered is
to evaluate the capped-`1 regularized logistic regression
problem used in Ref. [24]:

min
x

l.x/C 
 min fkxk1; �g (11)

where l is the logistic function and 
 is the
regularization parameter. We formulate problem (11)
by introducing z D x as follows:

min
x;z

l.x/C 
 min fkzk1; �g ;

s.t. x � z D 0 (12)

For problem (11) with a simple structure, it is not
necessary to formulate it as a two-variable equality
constrained optimization. Instead, we can directly solve
problem (11) without any constraint by using several
popular algorithms, which are discussed in Section 2.
We select the GIST algorithm as the baseline as it
has been proven more effective than other competitive
algorithms[24]. The Barzilai-Borwein (BB) initialization
and the non-monotone line-search criterion are not used
so as to provide an unbiased comparison. Furthermore,
it is unfair to compare our method with the HONOR
algorithm as the HONOR algorithm is a combination

of the quasi-Newton method and the GIST algorithm,
whereas our method is purely a first-order method.

Experiments are conducted on eight datasets,
downloaded from https://www.shi-zhong.com/
software/docdata.zip. These datasets are summarized
in Table 2. They are sparse and highly dimensional. We
transform the multi-classes datasets into two-
classes by labeling the first half of all classes as
the positive class. For each dataset, we calculate
the Lipschitz constant L as its classical upper
bound OL D 0:25max16i6n kaik2. All algorithms
are implemented in Matlab and executed on an
Intel(R) Core(TM) CPU (i7-4710MQ@2.50 GHz)
with 16 GB memory, and we use the code
of the GIST algorithm available online from
http://www.public.asu.edu/˜pgong5/. We set � D 1�

10�5, � D 1:1, 1=ˇmin D ˇmax D 10
20 and choose the

starting point of all algorithms as zero vectors. We
terminate all algorithms when the relative change of the
two consecutive objective function values is lower than
1 � 10�5 or the number of iterations exceeds 1000.

Figure 1 shows the objective values as a function of
time with different parameter settings. Our observations
are summarized as follows:

(1) We attempted different initializations of the very
first ˇ 2 f0:1; 1; 10; 100g, the results show that setting
ˇ to 0.1 achieves better convergence speed on these
datasets.

(2) LADMM-Monotone-Last-0.1 rapidly decreased
the objective function value and achieved the fastest
convergence speed, indicating that adopting the
monotone line-search criterion greatly accelerates the
convergence speed. Moreover, LADMM-Monotone-
Last-0.1 consistently achieves the smallest objective
function values

(3) LADMM-Monotone-Last and LADMM-
Monotone-Constant may give rise to an increasing
objective function at the beginning, however, it finally
converges and has a faster overall convergence speed

Table 2 Statistics of the datasets: n is the number of
samples; d is the dimensionality of the data.

Dataset n d Dataset n d

classic 7094 41 681 sports 8580 14 866
hitech 2301 10 080 a9a 32 561 123
k1b 2340 21 839 20news 16 242 100
la12 2301 31 472 mushrooms 8124 112
la1 3204 31 472 w8a 64 700 300
la2 3075 31 472 lfcrc 84 776 234
reviews 4069 18 482
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Fig. 1 Objective value as a function of CPU time on capped-`1 regularized logistic regression problem. LADMM-Monotone-
Last/GIST-Monotone-Last refers to the adaptive linearized alternating direction method of multipliers (AdaLADMM)/general
iterative shrinkage and thresholding (GIST) algorithm using the monotone line-search criterion and the last rule to initialize β.
LADMM-Monotone-β0/GIST-Monotone-β0 refers to the AdaLADMM/GIST algorithm using the monotone line-search criterion
and β0 to initialize β, and β0 2 f0.1, 1, 10, 100g are compared. LADMM/GIST refers to the LADMM/GIST algorithm using the
sufficiently large constant β.

than GIST-Monotone-Last and GIST-Monotone-
Constant, indicating the superiority of LADMM-type
algorithms for solving problem (1).

(4) LADMM performs worse than GIST as ˇk in
LADMM needs to be set much larger than tk to
guarantee convergence, demonstrating the significance
of using the AdaLADMM algorithm.

6.2 Generalized capped-`1 regularized logistic
regression

The LADMM and AdaLADMM algorithms are more

powerful for solving problems with complex equality
constraints, for which proximal splitting methods such
as GIST and HONOR are no longer applicable.
An important class of these problems is called the
generalized Lasso[2]:

min
x

l.x/C 
kFxk1 (13)

where l is the logistic function, 
 is the regularization
parameter, and F is a penalty matrix promoting the
desired sparse structure of x. To explore the sparse
structure of the graph, we replace the `1-norm by the
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non-convex capped-`1 norm and obtain the generalized
capped-`1 regularized logistic regression expressed as
follows:

min
x

l.x/C 
 min fkFxk1; �g (14)

By introducing z D Fx, problem (14) is
reformulated as follows:

min
x;y

l.x/C 
 min fkyk1; �g ;

s.t. Fx � y D 0 (15)
Experiments are conducted on five binary

classification datasets: 20news, a9a, mushrooms, w8a,
and lfcrc. 20news is downloaded from http://www.cs.
nyu.edu/˜roweis/data.html. a9a, mushrooms, and w8a
are downloaded from https://www.csie.ntu.edu.tw/
˜cjlin/libsvm/. lfcrc is the London financial credit risk
control (lfcrc) dataset, provided by Data Scientist Yichi
Zhang. We use 80% sample data for training and 20%
of the data for testing and the regularization parameter
� D 1 � 10�5 for all datasets. We generate F using
sparse inverse covariance selection[39]. In addition,
we use the metrics in Ref. [26], and the test loss to
verify the quality of the solution obtained using the
AdaLADMM algorithm for solving problem (15).

Experimental results of solving the generalized
capped-`1 regularized logistic regression are presented
in Fig. 2. We observe that the AdaLADMM algorithm
solves both problem (13) and problem (15) efficiently.
Compared with `1 regularization, we observe that
capped-`1 regularization term recovers a better sparse
solution, which results in the smaller test loss.
This coincides with the results about statistical
learning[16, 17] and further demonstrates the efficacy of
the AdaLADMM algorithm for solving non-convex

compositely regularized optimization problems.

7 Conclusion

We presented the first detailed convergence analysis
of the LADMM algorithm in solving the non-convex
compositely regularized optimization problem with a
large number of non-convex penalties. Furthermore,
we proposed an efficient adaptive LADMM algorithm
with a monotone line-search criterion, which greatly
accelerates the convergence speed. The results indicate
that the proposed AdaLADMM algorithm achieves
the same rate of convergence as that of the
LADMM algorithm. Experimental results on eight
datasets demonstrated that the AdaLADMM algorithm
outperforms the LADMM algorithm and the GIST
algorithm.

Both LADMM and AdaLADMM algorithms are
well-suited for addressing compositely regularized loss
minimization when the penalty matrix F is non-
diagonal. In fact, the proximal splitting methods like
GIST and HONOR are no longer applicable to these
types problems. Experimental results for the other four
datasets demonstrated that the AdaLADMM algorithm
for solving a non-convex compositely regularized
optimization problem can attain better solutions than
those obtained through solving its convex counterpart,
which again validates the efficacy of the proposed
algorithm.

Appendix

A.1 Proof of Lemma 1

It follows from the updates of xkC1 that
rl.xk/ � F>�k C ı.xkC1 � xk/C
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Fig. 2 Test loss as a function of time for the generalized capped-`1 regularized logistic regression and generalized Lasso
problems.
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ˇF>.F xkC1 � zk/ D 0 (16)

Combining �kC1 D �k � ˇ
�
FxkC1 � zk

�
and Eq. (16)

yields that
rl.xk/C ı.xkC1 � xk/ D F>�kC1:

Therefore, we conclude that

k�kC1k2 6
1

�min.FF>/
kF>�kC1k2 D

1

�min.FF>/
k.rl.xk/ � rl.xkC1//C

ı.xkC1 � xk/Crl.xkC1/k2 6
3

�min.FF>/
krl.xkC1/k2 C

3L2 C 3ı2

�min.FF>/
kxkC1 � xkk2 (17)

and

k�kC1 � �kk2 6
1

�min.FF>/
kF>�kC1 � F>�kk2 D

1

�min.FF>/
k.rl.xk/ � rl.xk�1//C

ı.xkC1 � xk/ � ı.xk � xk�1/k2 6

3L2 C 3ı2

�min.FF>/
kxk � xk�1k2 C

3ı2

�min.FF>/
kxkC1 � xkk2:

A.2 Proof of Lemma 2

Combining Eq. (16) and the following inequality,

.xk�xkC1/>rl.xk/�l.xk/Cl.xkC1/ 6
L

2
kxk�xkC1k2;

we have
0 D .xk � xkC1/>Œrl.xk/ � F>�k C

ı.xkC1 � xk/C ˇF>.F xkC1 � zk/� 6

l.xk/ � l.xkC1/C .
L

2
� ı/kxk � xkC1k2 �

h�k ; F xk � zki C h�k ; F xkC1 � zki C

ˇ

2
kFxk � zkk2 �

ˇ

2
kFxkC1 � zkk2 �

ˇ

2
kFxkC1 � Fxkk2 (18)

Then, it follows from the update of zkC1 that,
r.zkC1/ � h�kC1; F xkC1 � zkC1i C

ˇ

2
kFxkC1 � zkC1k2 6 r.zk/ �

h�kC1; F xkC1 � zki C
ˇ

2
kFxkC1 � zkk2 (19)

Combining Formulas (18) and (19) and Lemma 1 yields
that:

r.zkC1/C l.xkC1/ � h�kC1; F xkC1 � zkC1i C

ˇ

2
kFxkC1 � zkC1k2 C .ı �

L

2
/kxk � xkC1k2 6

r.zk/C l.xk/ � h�k ; F xk � zki C

ˇ

2
kFxk � zkk2 C

1

ˇ
k�kC1 � �kk2 6 (20)

r.zk/C l.xk/ � h�k ; F xk � zki C
ˇ

2
kFxk � zkk2 C

3L2 C 3ı2

ˇ�min.FF>/
kxk � xk�1k2 C

3ı2

ˇ�min.FF>/
kxkC1 � xkk2; (21)

which implies that�
ı �

L

2
�

3L2 C 6ı2

ˇ�min.FF>/

�
kxk � xkC1k2 6

˚1.x
k ; xk�1; zk ; �k/ � ˚1.x

kC1; xk ; zkC1; �kC1/ (22)

where
˚1.x; Ox; z; �/ D l.x/C r.z/ � h�; F x � zi C

ˇ

2
kFx � zk2 C

3L2 C 3ı2

ˇ�min.FF>/
kx � Oxk2 (23)

Since ı >
L

2
and ˇ > 0 satisfy that

ˇ > .3L2 C 6ı2/=�min.FF
>/

�
ı �

L

2

�
;

we conclude that ˚1.x
kC1; xk ; zkC1; �kC1/ is

monotonically decreases as k increases.
On the other hand, we have
˚1 .x

kC1; xk ; zkC1; �kC1/ D

l.xkC1/C r.zkC1/ � h�kC1; F xkC1 � zkC1i C

ˇ

2
kFxkC1 � zkC1k2 C

3L2 C 3ı2

ˇ�min.FF>/
kxkC1 � xkk2 >

l.xkC1/C r.zkC1/ �
1

2ˇ
k�kC1k2 �

ˇ

2
kFxkC1 � zkC1k2 C

ˇ

2
kFxkC1 � zkC1k2 C

3L2 C 3ı2

ˇ�min.FF>/
kxkC1 � xkk2 >

l.xkC1/C r.zkC1/ �
3

2ˇ�min.FF>/
krl.xkC1/k2 �

3L2 C 3ı2

2ˇ�min.FF>/
kxkC1 � xkk2 C

3L2 C 3ı2

ˇ�min.FF>/
kxkC1 � xkk2 >

l.xkC1/C r.zkC1/ � ˇ0krl.x
kC1/k2 D

Nl.xkC1/C r.zkC1/ >
Nl� C r� D ˚� (24)

where the second inequality holds due to Formula (17) and



338 Tsinghua Science and Technology, June 2017, 22(3): 328–341

the third inequality holds since

ˇ >
3

2ˇ0�min.FF>/
:

Therefore, we conclude that ˚1.xkC1; xk ; zkC1; �kC1/ is
uniformly lowe-bounded.

A.3 Proof of Theorem 1

Combining Formula (24) and the fact that Nl.x/ is coercive,
we conclude that fxkC1g is bounded. Then, it directly
follows from Formula (17) that f�kC1g is bounded.
Furthermore, we obtain the following from Formulas (20)
and (24):�

ı �
L

2
�

3L2 C 6ı2

ˇ�min.FF>/

� 1X
kD1

kxk � xkC1k2 6

˚1.x
1; x0; z1; �1/ � ˚� < C1 (25)

which implies that kxk � xkC1k ! 0, and hence,
k�k � �kC1k ! 0 as k !C1. Since FxkC1 � zkC1 D
1

ˇ
.�k � �kC1/, we have kFxkC1 � zkC1k ! 0 which

implies that fzkC1g is bounded and kzk � zkC1k ! 0

as k ! C1. In summary, we obtain that fxkC1; zkC1;
�kC1g is a bounded sequence, and

kxk � xkC1k ! 0; kzk � zkC1k ! 0;

kFxkC1 � zkC1k ! 0:

Since fxkC1; zkC1; �kC1g is bounded, this sequence must
have at least one limit point. Let fx�; z�; ��g be a limit
point, that is, there exists a subsequence fkqg1qD1 such that

lim
q!C1

�
xkq ; zkq ; �kq

�
D
�
x�; z�; ��

�
and it holds true that

kxkq � xkqC1k ! 0;

kzkq � zkqC1k ! 0; kFxkqC1 � zkqC1k ! 0:

We consider the first-order optimality condition of
updating xkqC1, zkqC1, and r.z/ D r1.z/ � r2.z/, i.e.,

0 D rl.xkq /�F>�kqC

ı
�
xkqC1 � xkq

�
C ˇF>

�
FxkqC1 � zkq

�
;

0 2 @r1.z
kqC1/�@r2.z

kqC1/C�kq�ˇ
�
FxkqC1 � zkqC1

�
:

Letting q ! C1, by considering the semi-continuity
of @r1.�/ and @r2.�/, we obtain that

0 D rl.x�/ � F>��;

0 2 @r1.z
�/ � @r2.z

�/C ��:

Therefore, .x�; z�; ��/ is a critical point.
Moreover, it follows from Formula (25) that

min
06k6n

kxk � xkC1k2 6
˚1.x

1; x0; z1; �1/ � ˚�

nımin
;

where ımin is defined as

ımin D ı �
L

2
�

3L2 C 6ı2

ˇ�min.FF>/
> 0:

This completes the proof of Theorem 1.

A.4 Proof of Lemma 3

By the same argument as Lemma 2, we conclude that�
ı �

L

2
�

3L2 C 6ı2

ˇk�min.FF>/

�
kxk � xkC1k2 6

˚2.x
k ; xk�1; zk ; �k ; ˇk/�˚2.x

kC1; xk ; zkC1; �kC1; ˇk/;

where
˚2.x; Ox; z; �; ˇ/ D l.x/C r.z/ � h�; F x � ziC

ˇ

2
kFx � zk2 C

3L2 C 3ı2

ˇ�min.FF>/
kx � Oxk2:

Therefore, the monotone line-search criterion is satisfied
whenever�

ı �
L

2
�

3L2 C 6ı2

ˇk�min.FF>/

�
kxk � xkC1k2 >

�

�
ı �

L

2

�
kxk � xkC1k2;

which implies that

ˇk >
3L2 C 6ı2

�min.FF>/ .1 � �/

�
ı �

L

2

� :
Since ı D L

2
C ˇ0, it also holds true that

ˇ >
3

2ˇ0�min.FF>/
;

which implies that ˚2.xkC1; xk ; zkC1; �kC1; ˇk/ > ˚�.
This completes the proof of the lemma.

A.5 Proof of Lemma 4

It is trivial to show that ˇk is bounded from below,
since ˇk > ˇmin (ˇmin is defined as the AdaLADMM
algorithm). Since ˇk is a non-decreasing sequence, it is
sufficient for us to prove that ˇk is bounded from above.
We prove this by contradiction. Without loss of generality,
we assume that ˇk increases toC1 and

ˇk >
�
�
3L2 C 6ı2

�
�min.FF>/ .1 � �/

�
ı �

L

2

� :
Thus, we must try the following value of t in the previous
iterations, i.e.,

t D
ˇk

�
>

3L2 C 6ı2

�min.FF>/ .1 � �/

�
ı �

L

2

� :
t D

ˇk

�
does not satisfy the line-search criterion.

However, Lemma 3 states that the value of t is guaranteed
to satisfy the monotone line-search criterion. This leads
to a contradiction, and the conclusion ˇk is bounded from
below. Therefore, we state that there exists a K0 > 0 such
that ˇk remains a constant Ň > 0 for any k > K0.

A.6 Proof of Theorem 2

From Lemma 4, we know that ˇk remains as a
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constant as k > K0. Furthermore, the potential function
˚2.x

kC1; xk ; zkC1; �kC1; ˇk/ is uniformly lower
bounded, and

˚2.x
k ; xk�1; zk ; �k ; Ň/ �

�.ı � L=2/

2
kxkC1 � xkk2 >

˚2.x
kC1; xk ; zkC1; �kC1; Ň/ (26)

By the same argument as Theorem 1, we obtain that
fxkC1; zkC1; �kC1g is a bounded sequence, and
kxk�xkC1k ! 0; kzk�zkC1k ! 0; kFxkC1�zkC1k ! 0:

Since fxkC1; zkC1; �kC1g is bounded, this sequence
must have at least one limit point. Let fx�; z�; ��g be
a limit point, that is, there exists a subsequence fkqg1qD1
such that

lim
q!C1

.xkq ; zkq ; �kq / D .x�; z�; ��/

and it holds true that
kxkq � xkqC1k ! 0; kzkq � zkqC1k ! 0;

kFxkqC1 � zkqC1k ! 0:

We consider the first-order optimality condition of
updating xkqC1 and zkqC1 and r.z/ D r1.z/ � r2.z/, i.e.,

0 D rl.xkq / � F>�kq C ı
�
xkqC1 � xkq

�
C

ˇkF>
�
FxkqC1 � zkq

�
;

0 2 @r1.z
kqC1/ � @r2.z

kqC1/C �kq�

ˇk
�
FxkqC1 � zkqC1

�
:

Letting q ! C1, by considering the semi-continuity
of @r1.�/ and @r2.�/ and the boundedness of ˇk , one
obtains

0 D rl.x�/ � F>��;

0 2 @r1.z
�/ � @r2.z

�/C ��:

Therefore, .x�; z�; ��/ is a critical point.
Moreover, it follows from Formula (26) that

min
K06k6n

kxk�xkC1k2 6
˚2.x

K0 ; xK0�1; zK0 ; �K0/ � ˚�

.n �K0/�min
;

where �min is defined as

�min D �

�
ı �

L

2

�
> 0:

This completes the proof of Theorem 2.
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