
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll01/09llpp227–242
Volume 22, Number 3, June 2017

Efficient Currency Determination Algorithms for Dynamic Data

Xiaoou Ding, Hongzhi Wang�, Yitong Gao, Jianzhong Li, and Hong Gao

Abstract: Data quality is an important aspect in data application and management, and currency is one of the major

dimensions influencing its quality. In real applications, datasets timestamps are often incomplete and unavailable,

or even absent. With the increasing requirements to update real-time data, existing methods can fail to adequately

determine the currency of entities. In consideration of the velocity of big data, we propose a series of efficient

algorithms for determining the currency of dynamic datasets, which we divide into two steps. In the preprocessing

step, to better determine data currency and accelerate dataset updating, we propose the use of a topological graph

of the processing order of the entity attributes. Then, we construct an Entity Query B-Tree (EQB-Tree) structure and

an Entity Storage Dynamic Linked List (ES-DLL) to improve the querying and updating processes of both the data

currency graph and currency scores. In the currency determination step, we propose definitions of the currency

score and currency information for tuples referring to the same entity and use examples to discuss methods and

algorithms for their computation. Based on our experimental results with both real and synthetic data, we verify that

our methods can efficiently update data in the correct order of currency.

Key words: data quality management; data currency; dynamic determining

1 Introduction

With todays rapid growth in the volumes of data,
data quality is becoming a crucial problem in
data management. As one of the most important
dimensions of data quality, data currency problems
are becoming more troublesome in practical databases
and information systems. Statistically speaking, about
2% of all customer business data information will be
obsolete within a month[1]. In other words, about 50%
of all data is rendered unavailable because it is stale.
Furthermore, out-of-date datasets may lead to incorrect
decisions by decision-makers, which can result in

�Xiaoou Ding, Hongzhi Wang, Yitong Gao, Jianzhong Li, and
Hong Gao are with School of Computer Science and
Technology, Harbin Institute of Technology, Harbin 150001,
China. E-mail: dingxiaoou@stu.hit.edu.cn; wangzh@hit.edu.
cn; gaoyitong@163.com; lijzh@hit.edu.cn; honggao@hit.edu.
cn.
�To whom correspondence should be addressed.

Manuscript received: 2017-03-26; revised: 2017-04-06;
accepted: 2017-04-11

economic losses in organizations[2]. In the United
States alone, businesses are reported to suffer annual
financial losses of 600 billion dollars due to data quality
problems (Refs. [1, 3]). In one 2005 example, out-of-
date customer information in a bank database led to
thousands of completed tax forms being sent to obsolete
addresses, making it possible for identity thieves to
effortlessly obtain the names and bank accounts of
many individuals. In another case, the Internal Revenue
Service (IRS) accused some people for overdue tax
caused by errors in the IRS database system[4]. With
the increasing seriousness of data currency problems in
this big data era, research is both necessary and urgent.

For practical applications in which timestamps are
invalid or unavailable (Refs. [5, 6]), one major area of
data currency research involves currency determination
by the analysis of the attribute currency order of entities
with reliable currency constraints. However, during the
updating process of massive volumes of dynamic data,
traditional static determination methods cannot adapt
to the need for prompt updates in the big data and
are therefore ineffective (such as the price problem in
Ref. [7]). Existing currency determination methods can

228 Tsinghua Science and Technology, June 2017, 22(3): 227–242

fail to provide sufficient guidance for making timely
information updates in entities.

As yet, little research has been done to determine
the currency of dynamic data that lack available
timestamps. The main challenges in determining data
currency are as follows:
� Performance bottlenecks related to large

volumes of data. With the rapid growth in the
volume and diversity of information, the performance
of algorithms in determining the currency of data
faces serious challenges with respect to efficiency,
effectiveness, and accuracy.
� Complex conditions in dynamic data

updating. To minimize confusion in temporal dataset
management, when data arrives to be updated, the
corresponding entity must be queried and its tuples be
maintained in their order of currency. Accordingly,
different dynamic data types and sizes add to the
complexity of updating the original dataset.
� High demand for real-time updating. With our

growing ability to generate and obtain data, demand for
real-time information and knowledge is increasing both
in business and between customers. The efficiency and
quality of the data updating process is influenced by
numerous factors such as the computer resources and
capabilities, data volume, and algorithm performances.
� Difficulties in identifying dependable principles

for currency determination. It is not easy to identify
reliable and practicable principles for analyzing the
currency of dynamic datasets that lack timestamps.

In this paper, we propose a series of efficient
algorithms for the dynamic and real-time determination
of data currency based on the volume and velocity of
large-scale dynamic data. We present examples that
illustrate the motivation for this paper in Section 1.1
below.

1.1 Motivating examples

Example 1 As shown in Table 1, the personal
information relational dataset named Info has two

entities that record student information when they are
enrolled in college and after they graduate. The table
presents recent study and work information of two
students, Alice and Tom. Each tuple provides personal
details including tID, eID, Name, Sex, Degree,
Position, College, Address, Salary, and Status.
Here, tID and eID represent tuple ID number and entity
ID number, respectively.

To rapidly update the dataset Info, while maintaining
the correct order of currency of the tuples of each entity,
we first preprocess the dataset Info (initial dataset)
by recording the storage addresses of all entities and
maintaining the currency order of the tuples in Info.
If we assume that there are no valid or complete
timestamps in the entities in Info, we can then identify
the following currency constraints (rules) and use them
to determine the currency order in each entity.
r1: The degree in a given entity is only from Bachelor

to Master, and from Master to PhD.
r2: The status of a given entity is only from Single to

Married.
r3: The salary of a given entity only increases with

time.
r4: If a given Salary value in the same entity is the

most current, the corresponding tuple of the Address
value is also most current.

We use ti � tj to represent that tuple tj is more
current than ti , and ti D tj to indicate that ti has
the same currency order with tj [5]. Accordingly, the
above currency rules, as shown in Definition 3, can be
represented as follows:
r1: 8t1; t2 2 Info;

�
t1ŒeID� D t2ŒeID� ^

.t1ŒDegree� D Bachelor ^ t2ŒDegree� D

Master/
�
�! t1 �Degree t2;

and 8t1; t2 2 Info;
�
t1ŒeID� D t2ŒeID�^.t1ŒDegree� D

Master ^ t2ŒDegree� D PhD/
�
�! t1 �Degree t2:

r2: 8t1; t2 2 Info;
�
t1ŒeID� D t2ŒeID� ^

.t1ŒStatus� D Single ^ t2ŒStatus� D Married/
�
!

t1 �Status t2:

r3: 8t1; t2 2 Info;
�
t1ŒeID� D t2ŒeID� ^

Table 1 Entity relations dataset Info.

tID eID Name Sex Degree Position College Address Salary Status

t1 e1 Alice F Bachelor Student HIT 3-DP 40 Single
t2 e1 Alice F Master Student HIT 15-DP 500 Single
t3 e1 Alice F Master Programmer HIT Beijing 12 000 Single
t1 e2 Tom M Bachelor Student HIT 1-DP 40 Single
t2 e2 Tom M Master Student HIT 16-DP 500 Single
t3 e2 Tom M PhD Student HIT 10-DP 1000 Married

Xiaoou Ding et al.: Efficient Currency Determination Algorithms for Dynamic Data 229

.t1ŒSalary� < t2ŒSalary�/
�
�! t1 �Status t2:

r4: 8t1; t2 2 Info;
�
t1ŒeID� D t2ŒeID� ^ .t1 �Status

t2/
�
�! t1 �Address t2:

To take the entity Alice as instance, according to the
above currency rules, we can determine the currency
order of each attribute of the entity Alice to be follows:
(1) Degree: Bachelor � Master; (2) Address: 3-DP
�15-DP� Beijing; (3) Salary: 40 � 500 � 12 000. To
describe the currency order of each attribute’s value in
each of the entities in the dataset, we introduce currency
scores (numerical values) to compute the currency of
the values of some particular attributes that have a major
impact on determining the currency of the tuple. In
general, the greater is this score, the more current is the
attribute’s value. We discuss the relative definitions and
computation process in Section 4.2.

Next, we suppose we have the need to insert a tuple
tnew (as shown in Table 2) into Info as described in the
following example.

Firstly, we must rapidly identify the storage address
of the entity in the dataset Info corresponding to the
tuple tnew. Then, using the currency rules (r1 to r4),
we determine the currency of the attributes based on
the tnew currency scores. Then, we efficiently insert
this tnew currency information in the correct location
to ensure that the dataset maintains the correct data
currency.

1.2 Contributions

In this paper, we introduce a model for dynamically
determining data currency and propose several efficient
algorithms related mainly to preprocessing and real-
time dynamic determination. We can summarize our
contributions as follows:
� To the best of our knowledge, we are the first

to propose algorithms for determining the currency
of dynamic data, and we also introduce an integrated
process for the currency determining algorithms.
� To accelerate the entity updating process, we

introduce an efficient structure for indexing and
querying dataset entities, known as the Entity Query B-
Tree index (EQB-Tree) and the Entity Storage Dynamic
Linked List (ES-DLL).
� We propose methods for directly determining and

computing the currency of the attributes in an entity.

This updating approach, which uses both a currency
graph and currency score, accurately determines the
currency of information in dynamic data.
� In a series of experiments, we verify the efficiency

of our methods and algorithms on both real-life and
synthetic data.

Organization. The organization of the rest of this
paper is as follows: In Section 2, we discuss related
work in data currency determination and management.
In Section 3, we introduce our model for dynamic data
currency determination and we discuss the algorithms
used for currency determination in Section 4. We report
our experimental study results in Section 5, and in
Section 6, we draw our conclusions.

2 Related Work

In the data quality management literature, there
is no standard definition of currency[8]. In recent
years, research on data currency has mainly involved
two approaches to data repair, namely currency
determination methods based on available timestamps
and those based on constraints and rules.

Currency determining with timestamps. Datasets
that include timestamps provide clear time points for
each transaction, and out-of-date records in the dataset
can be easily identified via querying and computing
operations. The main research focus in Refs. [9, 10] is
querying the most current records based on timestamps
and temporal constraints within the databases. In some
papers, (e.g., Refs. [11–16]), the freshness degree of
the dataset is indicated by the attribute parameter age,
which is defined as the time gap between the assessment
of currency and the acquisition of the attribute’s values.
Shelf life is also an indicator of value volatility and
currency is calculated as a function of the age of an
attribute’s value and its shelf life in the dataset. The
authors in Refs. [14, 15] also proposed a probability-
based metric for determining currency that estimates the
decline rate based on historical data, in which a quick
decline rate inevitably leads to outdated currency.

With valid, accurate, and complete timestamps,
determining currency becomes much simpler and easier
as the algorithms can be easily and clearly designed,
which makes them highly efficient, scalable, and

Table 2 New tuple for Alice.

Name Sex Degree Position College Address Salary Status

Alice F Master Programmer HIT Shanghai 12 000 Married

230 Tsinghua Science and Technology, June 2017, 22(3): 227–242

accurate in their data currency analysis. Moreover,
less expertise is required to develop these algorithms,
which means lower costs related to determining
currency and repairing data. However, dependence
on timestamps also makes the metrics inapplicable to
real information systems that have no valid timestamps
due to the extensiveness of the data sources, changes
in data storage, or other circumstances. Furthermore,
data currency determination is not always reliable
when it is based merely on the age of the data or
other similar parameters in the data records. Under
certain conditions, old data may not necessarily
mean that it is no longer current. For example,
historical meteorological information for a given
location continues to be important for climate change
research.

Currency determining based on constraints and
rules. In view of the fact that timestamps are often
incomplete or nonexistent in real applications, the
authors in Ref. [5] were the first to propose a rule-
based model for determining data currency. In the
paper, the authors discussed theoretical issues related
to several fundamental problems. To investigate data
currency, they associated the partial currency orders,
denial constraints[17, 18], and copy functions[13, 19] of
data sources, but proposed no practical algorithms. The
authors in Refs. [2,20] conducted further research based
on the theory presented in Ref. [5]. In Ref. [2], the
authors presented currency evaluation methods using
currency constraints and redundant records on which
they based the construction of a currency graph for a
given entity. Then, they used a topological algorithm
to determine a time series and new values of the
entity for different attributes, as well as the time
complexity of the algorithm in polynomial time. The
authors in Ref. [20] also developed effective algorithms
and top-k heuristic algorithms underlying a model for
determining relative accuracy and currency. Based on
the work in Ref. [2] and with a focus on improving data
quality, the authors in Ref. [6] were the first to combine
data quality rules and statistical techniques to improve
data currency. They also proposed currency repairing
rules and discussed relative problems in theory.

In other work, currency problems have been
associated with other impact factors (e.g., Refs. [21–
23]) to solve data cleaning and repair problems. The
authors in Refs. [21, 23] studied both data currency and
consistency to achieve conflict resolution in datasets
and introduced a framework and efficient algorithms

for conflict resolution that combines partial currency
orders, currency constraints, and conditional functional
dependencies[5].

Rule-based methods for determining data currency
have wide applications in real information systems.
There is no denying that the process of determining
currency is generally complex and costly. Faced
with large-scale data, currency determination research
involves challenges in efficiency and data updating. In
Ref. [24], we proposed currency determination methods
for dynamic datasets, based on the use of currency
graphs and scores to determine the currency of the
different tuples of entities.

Based on our work in Ref. [24], here we
present further research to improve the accuracy and
effectiveness of the determination of data currency. We
propose the use of a topological graph of the processing
order of entity attributes and discuss the preprocessing
algorithms used to create an EQB-Tree and ES-DLL.
We also define the term Currency Information and
present a corresponding computation and updating
method.

3 Overview

In this section, we present an overview and discuss
the dynamic data currency problem. In Section 3.1, we
provide background knowledge and some fundamental
definitions of data currency, and we propose our method
framework in Section 3.2.

3.1 Definitions

The dataset and currency rules we employ in this paper
for determining currency are the same as those used by
the authors in Ref. [5], and we present them below as
Definition 1 and Definition 2, respectively.

Definition 1 Initial Relations Dataset D Suppose
the data schema R D .tID;eID; A1; :::; An/, where tID
is the tuple ID number, eID is the entity ID number,
and A D fA1; :::; Ang is the set of attributes. E D
fe1; e2; :::; emg is the set of all the entities involved in
the dataset. If ti ŒeID� D tj ŒeID�, then the tuples ti and
tj represent the same entity, and ti ŒAk� represents the
value of the attribute Ak in tuple ti . Dataset D is the set
including massive instances like those in data schema
R.

Definition 2 Currency Rules The currency
constraints are used to determine the currency
of data for which timestamps are incomplete,
unreliable, or do not exist. In the set of currency

Xiaoou Ding et al.: Efficient Currency Determination Algorithms for Dynamic Data 231

rules: ˚CR D fti ŒeID� D tj ŒeID� ^ j i; j 2 Œ1; Ne�g,
Ne is the number of entities in the dataset D, and
represents the predicate in an instance of rules. There
are mainly three main kinds of rules regarding :
'1: 8t1; t2;

�
t1ŒeID� D t2ŒeID� ^ .t1ŒAk� D v1 ^

t2ŒAk� D v2/
�
�! t1 �Ak t2I

'2: 8t1; t2;
�
t1ŒeID� D t2ŒeID� ^ .t1ŒAk� op t2ŒAk�/

�
�! t1 �Ak t2; op D f>;<;>;6;D;¤gI
'3: 8t1; t2;

�
t1ŒeID� D t2ŒeID� ^ .t1 �Ak t2/

�
�!

t1 �Am t2:

We refer to the Left-Hand Side of �! as the LHS
of 'i and the Right-Hand Side as RHS. Accordingly,
we use ˚1 to describe a set of instances, such as '1,
˚2 to describe '2, and ˚3 to describe '3 (˚1; ˚2, and
˚3 2 ˚CR). Considering the Currency Rules in the
above motivating example, r1 and r2 are the instances
similar to '1, r3 is an instance similar to '2, and r4 is
similar to '3.

To analyze the currency of the tuples of each entity,
we build a currency graph for entity ei with respect to
attribute Ak according to the method used in Ref. [2],
as expressed as Definition 3 below.

Definition 3 Entity’s Currency Graph The
Directed Graph G.ei / = fG.ei ; Ak/ j ei 2 E ; Ak 2 Ag
is the currency graph of ei , in which the vertex set
V D ft j t 2 Tei g, and the edge set E D

˚
.ti ; tj / j

ti �Ak tj 2 RHS of .˚/
	
.

3.2 Framework

In our Dynamic Data Currency Problem (DDC),
our goal is to establish dynamic real-time updating of
the data in the dataset, while maintaining the correct
currency order of all the entities in the dataset. The
dataset we use in this DDC is similar to the traditional
currency problems described in Ref. [5], which occur
immediately after the entity recognition process[25].

Due to the fact that the massive entities in large-
scale datasets can have multiple records (tuples) for the
same entity, we propose approaches for determining the
data currency of dynamic data. Figure 1 shows the
framework of our method, which consists of two main
phases: Data Preprocessing and Dynamic Currency
Determination.

As shown in Fig. 1, we propose to conduct data
preprocessing offline and data currency determination
online. We preprocess the initial dataset offline to
obtain concise currency information and avoid duplicate
computation in the following step. During the dynamic
determination step, we can efficiently update online
the current tuples to be inserted into the dataset in the
correct currency order based on the analysis results
from the preprocessing step.

(a) Preprocessing Since the original data in many
applications is often disordered and unsystematic,
preprocessing is necessary to achieve better DDC
processing. First, we create a B-Tree index structure
for querying entities (EQB-Tree) and initialize all the
entities in dataset D that record the head address of
each entity. Then, we create and initialize a dynamic
linked list for the storage of entities (ES-DLL), which
helps to reduce the time required to update data in the
dynamic determination phase. Next, we create currency
scores and currency graphs for the entities in D are
created. Suppose that the currency graph of entity ei :
G.ei / D

˚
G.ei ; Ak/ j i 2 Œ1; Ne�; j 2 Œ1; n�

	
, where

G.ei ; Ak/ represents the attribute currency graph of Ak
with respect to entity ei , shows the currency scores of
the attribute’s values in Ak that were generated by the
currency rules. We propose a definition of currency
score in Definition 4 below:

Definition 4 Currency Score Suppose the entity

Create EQB-Tree Create and initialize
ES-DLL for all tuples

Preprocessing

Create currency graphs for all entities

Dynamic determination

 Locate and identify storage address of
updating tuple in EQB-Tree

Compute and update the currency score

Update the ES-DLL and EQB-Tree

A new updating tuple

Initialize currency information for all entities

Fig. 1 Framework for determining currency of dynamic data.

232 Tsinghua Science and Technology, June 2017, 22(3): 227–242

e is one of the entities in the relational dataset D, we
express the score of the tuple ti of .ti,e/ as shown in Eq.
(1):

score.ti,e/ D
nX

Ak2A;jD1

score
�
ti ŒAk�

�
(1)

And the currency score of e is shown in Eq. (2):
score.ei / D

X
score.tj,e/; j 2 Œ1; Nej � (2)

In Eq. (1), the score of the tuple ti,e is the sum of
the currency scores score

�
ti ŒAk�

�
of all attribute values

of the entity e, and all of the scores for the tuples
or attribute values are in positive integer forms. The
score of the least current attribute value is 1, and the
more current is the attribute value ŒAk�, the larger is the
currency score of ŒAk�.

After we compute both the currency graph and
currency score, we can establish the currency
information of entity ei , as defined in Definition 5
below:

Definition 5 Currency Information The Currency
Score and Currency Graph both together comprise the
Currency Information: curInfoei=

�
G.ei /, score.ei /

�
.

(b) Dynamic Determination Considering a
tuple tnew to be updated, we firstly recognize the
corresponding entity of tnew by appropriate entity
recognition methods proposed in Ref. [26], and then
find the storage address of entity ei and create its
currency graph

�
G.ei /:addr

�
in EQB-Tree and put the

records and the corresponding currency graph G.ei /
into the memory. After that, both the currency graph
of ei and the currency scores of attributes’ values of
tnew are updated. Finally, the ES-DLL with tnew will be
updated and the most fresh currency information of ei
will be written to the external storages.

4 Algorithms for Currency Determining of
Dynamic Data

In this section, we describe in detail our proposed
methods and algorithms for determining data currency.
We introduce the algorithms used in offline processing
in Section 4.1 and present the currency rule processes
in Section 4.1.1, the creation of the EQB-Tree and ES-
DLL in Section 4.1.2, and the creation of currency
information for entities in Section 4.1.3. In Section
4.2, we discuss the algorithms for online currency
determination, including updating the EQB-Tree and
ES-DLL (Section 4.2.1), updating the currency graphs
(Section 4.2.2), and updating the currency scores
(Section 4.2.3). In addition, we analyze examples for

each algorithm. Table 3 lists some of the notations
frequently used in this section.

4.1 Algorithms for preprocessing

4.1.1 Processing currency rules
Determining whether the currency constraint (namely
CSP in Refs. [5, 27]) is satisfied as well as the currency
orders of attributes are essential to effectively address
currency problems in data quality management, and
represent the first step in the determination process.
When determining the currency of information,
numerous attributes may need to be considered, which
can result in high time costs. To improve the efficiency
of calculating the currency of entity information, we
propose the use of a topological graph showing the
processing order of the entity attributes, based on
Definition 6 below.

When processing currency rules ˚CR, such as '1 and
'2, that help to maintain tuples in the correct temporal
order, only one identical attribute is contained in the
LHS and RHS of '. However, the involvement of
two distinct attributes in '3 does change things. For
'3 D f8t1; t2;

�
t1ŒeID� D t2ŒeID� ^ .t1 �Ak t2/

�
�!

t1 �Am t2g, the rules must follow a certain processing
partial order between attributes Ak and Am.

Definition 6 Attributes Processing Order in
Determining Currency For all attributes involved in
the set of currency rules ˚CR, suppose Ai , Aj 2
A, for a certain currency rule ' 2 ˚ form as '3 D
f8t1; t2;

�
t1ŒeID� D t2ŒeID� ^ .t1 �Ai t2/

�
�!

t1 �Aj t2g. As Ai is in the LHS of '3 and Aj
in the RHS, Ai must be determined before Aj , and
their order is represented as Ai �curr Aj . Another two
attributes, Am involved in 'm and An in 'n ('m ¤ 'n),

Table 3 Frequent notations.

Notation Description

E The set of entities in dataset D
T .e/ The set of tuples referring to a given entity e
 The predicate in a currency rule
˚CR The set of currency rules

G.ei ; Ak/ The currency graph of the entity ei on Ak
score.ti;e/ The currency score of the tuple ti referring to e

scoree The total currency score of the entity e
curInfoe The currency information of e
Q˚ The currency processing order of attributes
�curr Independent processing order
O.e/T The structure used in EQB-Tree for e
O.e/L The structure used in ES-DLL for e

Xiaoou Ding et al.: Efficient Currency Determination Algorithms for Dynamic Data 233

are independent of each other when processing rules, so
Am �

curr An.
According to Definition 6, we can obtain a

topological graph of the processing order of the entity
attributes. On one hand, with this processing order, the
attributes not in ˚CR can be filtered out to save time and
avoid having to determine attributes that cannot help in
the determination of currency in corresponding entities.
In addition, it provides a more efficient and reasonable
attribute processing order that avoids duplication and
conflict when processing ' 2 ˚CR. The algorithm for
generating the processing order of the attributes Q˚ is
shown in Algorithm 1.
G.CR/ represents the topological graph of attributes

processing order, and V 0A � VA is the set of attributes
involving ˚CR. After initializing G.CR/ in Line 1, we
construct the graph according to the rules in ˚CR (Lines
2–7). Then, after initializing Queue and Q˚ (Line 8),
we add attributes with 0 in-degree in Queue to Q˚
(Lines 9–13). If in-degree of all attributes in V 0A is not

Algorithm 1 Generating the processing order of attributes
Q˚

Input: the set of currency rules ˚ CR

Output: the topological graph of attributes processing order Q˚
1: G.CR/ .V 0

A
; E/; V 0

A
 �;E �

2: for each ' 2 ˚CR do
3: add A including in ' into V 0

A
;

4: if ' 2 ˚3 then
5: add .Ali ; Alj / into E;
6: end if
7: end for
8: Queue �;Q˚ �;
9: for each A 2 V 0

A
do do

10: if Indegree(A)= 0 then
11: add A into Queue;
12: end if
13: end for
14: while Queue.noEmpty() do
15: A= Queue.pop();
16: add A to Q˚ ;
17: delete A from V 0

A
and delete .A;Alj / from E;

18: for each A 2 V 0
A

do
19: if Indegree(A)= 0 then
20: add A to Queue;
21: end if
22: if all Indegree(A)¤ 0; A 2 V 0

A
then

23: exit (�1) and adjust ˚ by users;
24: end if
25: end for
26: end while
27: return Q˚ ;

equal to 0, this indicates that the rules in ˚CR conflict
and ˚CR will be return to be re-prepared (Lines 22 and
23). Finally, we return Q˚ as the processing order of
attributes (Line 27).

Example 2 Consider currency rules r1; r2; r3; r4 in
the motivating example. Figure 2 shows a topological
graph of the processing order of the entity attributes,
correspondingly.

As we can see in Fig. 2, a possible processing order
of the attributes, which we can obtain from Info, is as
follows:

Degree �curr Salary �curr Status f currAddress.

4.1.2 Creating EQB-Tree and ES-DLL
To improve efficiency in querying entities and tuples in
dynamic datasets, we propose EQB-Tree and ES-DLL
structures in the offline data preprocessing step.

Creating EQB-Tree We designed the structure
of the EQB-Tree to find the corresponding entity
of the tuples to be rapidly updated and to reduce
the updating response time. Consider D D fei j i 2
Œ1; Ne�g. The ei node in the EQB-Tree carries important
information regarding the entity ei : O.ei /T =fei :key,
ei :addr, ei :curInfoAddrg. In the structure O.ei /T ,
ei .key represents the set of particular attribute values
that help to distinguish ei from other entities in E , which
can be generated by the similarity functions discussed
in Ref. [28]. ei .addr represents the storage address of
ei in the dataset for completely querying all the tuples
of ei and ei :curInfoAddr represents the storage address
of the currency graph in Ref. [2], which maintains the
currency orders of the values of the different attributes
of entity ei .

Algorithm 2 presents the procedure for creating the
EQB-Tree TD . First, we initialize the EQB-Tree with
the head node (Line 1), then we initialize the key, addr,
curInfoAddr of the ei node and insert this node to TD
(Lines 2–7). Lastly, we return TD as the EQB-Tree for
the entities in D (Line 8).

Example 3 Suppose another dataset Employee

Degree

AddressStatus

Salary

Fig. 2 Topological graph of the processing order of the
entity attributes in the motivating example.

234 Tsinghua Science and Technology, June 2017, 22(3): 227–242

Algorithm 2 Bulid EQB-Tree
Input: D
Output: TD

1: TD = init Tree();
2: for each ei 2 D do
3: acquire ei :key in OTei ;
4: initialize ei :addr;
5: initialize ei :curInfoAddr;
6: insert Node.ei / to TD by ei :key;
7: end for
8: return TD

containing employee information for a company with
the 21 entities that describe the employees fAlice,
Carina, Dean, Edward, George, Harry, July, Kelly,
Linda, Mary, Nick, Peter, Qearl, Rose, Sweety, Tom,
Victor, Wendy, Xavier, Yilia, Zoeg. If ei :key = name,
we can create the EQB-Tree of Employee, as shown
in Fig. 3. Accordingly, information regarding a certain
entity can be efficiently queried using the structure of
the EQB-Tree.

Creating ES-DLL After creating the EQB-Tree of
the entities, we create and initialize the ES-DLL to
efficiently insert new tuples into the dataset. Each
node in the ES-DLL carries information regarding the
structure O.ei /L= ftj;ei , addr.tjC1;ei / j i 2 Œ1; Ne�;

j 2 Œ1; Nt �g, in which tj;ei represents one of the tuples
in entity ei , and addr.tjC1;ei / represents the storage
address of the next tuple immediately following tj;ei .
If tj;ei is the last tuple describing entity ei , then
addr.tjC1;ei / D �1: As noted above, the head address
ei :addr is stored in the EQB-Tree, by which all records
for ei in the ES-DLL can be acquired.

Algorithm 3 presents the procedure for creating the
ES-DLL LD . First, we initialize a new external file for

LD (Line 1). Then, for each tuple of each entity in D,
we initialize the ei .address with the current file pointer
(Line 4) and each node of LD can be written with
the format tj , addr.tjC1/, in which �1 represents the
end of entity ei and the function getNextTupleAddress()
obtains the sum of the current file pointer and the length
occupied by tj , which is the address tjC1 in LD (Lines
5–10). Lastly, we return LD as the initiative ES-DLL
(Line 13).

Example 4 Consider the above motivating example,
we can create a linked list ES-DLL of the two entities
Tom and Alice using Algorithm 3, as shown in Fig. 4.

4.1.3 Creating currency information for entities
Creating currency graphs and obtaining currency
information is also a critical step in data preprocessing.
Furthermore, currency graphs and scores represent the
most important part of dynamic determination, as they
provide the correct currency order for the tuples of the

Algorithm 3 Init ES-SLL LD

Input: D
Output: LD

1: LD= init list();
2: for each ei 2 D do
3: for each ti 2 T do
4: ei :address = LD :getFilePointer();
5: if tj is the last tuple about ei then
6: addr.tjC1/ D �1;
7: else
8: addr.tjC1/= getNextTupleAddress();
9: end if

10: insert tj and addr.tjC1/ to LD ;
11: end for
12: end for
13: return LD

Mary

Dean, Harry Qearl, Tom, Xavier

Judy, Kelly, LindaEdward, GeorgeAlice, Carina Nick, Peter Rose, Sweety Victor, Wendy Yilia, Zoe

One Node

Alice
Alice.addr

Alice.curInfoAddr

Head[T]

Fig. 3 EQB-Tree constructed in Example 3.

Xiaoou Ding et al.: Efficient Currency Determination Algorithms for Dynamic Data 235

Fig. 4 ES-DLL created in the motivating example.

same entity. Algorithm 4 shows the pseudo code for
obtaining entity Currency Information.

In Algorithm 4, first, we obtain currency graphs of
the attributes involved in the course of determining the
currency (Lines 1–14). After creating the currency
graph of e on A (Line 1), we add it to Ge (Lines 2
and 3), and compute the currency score scoree for e
(Lines 4–13). During this process, each tuple (vertex)
of e with zero in-degree is added into the queue (Lines
4 and 5). In Lines 6–13, tuples are added with their
currency scores, and the fresher is the data, the higher is
the score. We must also determine the existence of any
conflicts between the currency rules. If there is no tuple
with a zero in-degree (Line 10) after all the vertexes and
edges in Ge are deleted (Line 8), we know that loops
exist. This indicates that the currency rules ˚ used here

Algorithm 4 getCurInfo(e, Te, Φ, QΦ)
Input: the entity e, the tuples’ set Te , the set of currency rules

˚ , and the queue of currency dependence order Q˚ .
Output: curInfoe

1: Ge;A create G (e, Te , ˚)
2: for each A 2 Q˚ do
3: add Ge;A into Ge
4: Queue �; count 0

5: add all t 2 V and Indegree(t / DD 0 into Queue
6: while Queue.noEmpty() do
7: t = Queue.pop() and score

�
t ŒA�

�
 ++count

8: delete t from V and delete (t; tx) from E // (t; tx)
represents for the edge starting from t .

9: add all t 2 V and Indegree(t / DD 0 into Queue
10: if all t 2 V and Indegree(t / ¤ 0 then
11: exit (�1) and return ˚
12: end if
13: end while
14: end for
15: for each t in Te do
16: score.t/ ˙A2Q˚

�
score.t ŒA�/C jAj � jQ˚ j

�
17: add score.t/ into scoree
18: end for
19: curInfoe .Ge; scoree/
20: return curInfoe

lead to a conflicting result and ˚ will be returned (to
domain experts).

In Lines 15–18, the currency score is computed for
each tuple in Te . Some of the attributes in Q˚ may
not be involved in the creation of the currency graph,
which means that their currency cannot be determined
by ˚ or that they have no impact on the currency of the
tuple. In these cases, they are given a currency score
with the least value (score D 1, generally). Finally, Ge
and scoree are combined as curInfoe in Line 19.

In Algorithm 4, O.m � jTej � j˚ j/ time is required to
create Ge;A (Line 1) as discussed in Ref. [2]. The total
time taken by the loop (Lines 2–13) is O.m � jTej2/.
Then, the computation of the currency score of e for
all the attributes involved the costs O.jTej � j˚ j/ (Lines
15–17). To put this all together, Algorithm 4 works in
O
�
m � jTej �maxfj˚ j; jTejg

�
time.

Example 5 Based on Definition 3 and Algorithm 4,
we can compute the currency scores of the entity Alice
in the motivating example as follows: (1) Degree:
score(Bachelor) = 1, score(Master) = 2; (2) Address:
score(3-DP) = 1, score(15-DP) = 2, score(Beijing) = 3;
(3) Salary: score(40) = 1, score(500) = 2, score(12 000)=
3. We cannot determine the currency orders of other
attributes of the entity Alice by the currency rules above,
so the score of those attributes is 1, which is the minimal
positive integer. The scores of each tuple from the same
entity all contribute to the currency of the tuple. So
we can calculate the sum of the score of each attribute
value in Alice, except for tID, eID, and Sex as follows:
(1) score(t1; Alice) = 1+1+1+1+1+1= 6, score(t2; Alice)
= 2+1+1+2+2+1= 9, score(t3; Alice) = 2+1+1+3+3+1=
11. Similarly, the currency score of Tom of the
attributes involved in ˚ are (1) Degree: score
(Bachelor) = 1, score(Master) = 2, score(PhD) = 3; (2)
Address: score(1-DP) = 1, score(16-DP) = 2, score(16-
DP) = 3; (3) Salary: score(40) = 1, score(500) = 2,
score(1000) = 3; (4) Status: score(Single) = 1,
score(Married) = 2. Accordingly, we can determine the
tuples’ currency order as follows: (1) score(t1; Tom) =
1+1+1+1+1+1= 6, score(t2; Tom) = 2+1+1+2+2+1= 9,
score(t3; Tom) = 3+1+1+3+3+2 = 13.

From the above, we find the tuple currency order of
Alice to be t1; Alice � t2; Alice � t3; Alice. Similarly the
tuple currency order of Tom is t1; Tom � t2; Tom � t3; Tom.

According to the above algorithms, by scanning the
initial relation dataset once can we construct an EQB-
Tree and ES-DLL for each entity, as well as obtain their
currency graphs and scores. We propose the complete

236 Tsinghua Science and Technology, June 2017, 22(3): 227–242

preprocessing approach in Algorithm 5.
First, we initialize the index TD and the linked listLD

in Line 1, which was introduced in Algorithms 2 and 3.
In the loop from Line 2 to 14, the currency information
of each entity curInfoe in the entity set E is computed by
Algorithm 4 and written to the file, with the first address
of the scoree in disk memory (Lines 3 and 4). The tuples
in Te are sorted in ascending order, after which the head
address e.addr of the first tuple of e in the ES-DLL
is scanned (Lines 5 and 6). Combined with e.key and
e.curInfoAddr, the node O.e/T is inserted to TD (Lines
7 and 8). In the loop from Lines 9–12, the head address
of each tuple t in Te and the next tuple immediately
following t are inserted into LD in proper order. The
data inLD are then written to the disk (Line 13). Lastly,
the TD and LD of all the entities in D are returned.

4.2 Algorithms for currency determining

As mentioned in Section 3.2, after preprocessing the
initial relations dataset offline, we can determine the
currency information of the entities. Both different
entities and tuples that refer to the same entities
can be queried efficiently by the EQB-Tree and ES-
DLL. We discuss our proposed updating and currency
determination methods below.

4.2.1 Updating EQB-Tree and ES-DLL
When updating new tuples of entity ei , first, we try to
match it with an exist entity in the EQB-Tree. If ei is
an new entity not found in E , the tuple is inserted into
the file tail of ES-DLL, and the EQB-Tree is rebuilt.
If ei is found in the EQB-Tree of the initial dataset,

Algorithm 5 Preprocessing
Input: D, ˚ , Q˚
Output: TD , LD

1: TD WD bulid EQB-Tree(); LD WD init ES-DLL();
2: for each e 2 E do
3: curInfo(e) getCurInfo();
4: write curInfo(e) into curInfoFile() and get e:curInfoAddr;
5: sort Te by curInfo(e).score;
6: e.addr LD :getFilePointer();
7: OTe init Node (e.key, e.addr, e.curInfoAddr);
8: TD :insert.OTe /;
9: for each t 2 Te do

10: OL WD
�
t; LD :getNextTupleAddr(t)

�
;

11: LD :insert.OL/;
12: end for
13: LD :writeToDisk;
14: end for
15: return TD and LD ;

the tuple is inserted into the tail of the ES-DLL of ei ,
and the e.address of ei in OT

e is updated if necessary.
Algorithm 6 presents the update procedure for the EQB-
Tree and ES-DLL.

First, we determine whether e represents a new entity
to the initial dataset and if it does, we construct its OL

e

and insert it into the OL of the dataset D (Lines 3 and
4). Then, the new entity e is inserted into the EQB-
Tree with its head address in the ES-DLL (Lines 5 and
6). If e can be matched with a corresponding entity
in E , we update the new tuples of the entity into the
tuple set Te which is recorded in LD with the loop from
Line 8 to Line 20. First, we set the tuple ID number
(tID) and entity ID number (eID) for the new tuple tnew

and set its head file address into LD in Lines 8 and
9. Thus, we have modified the address in the nodes
in the ES-DLL to maintain the currency order. Next,
we insert tnew into the correct position in TD . preTID
represents the current address of t , and if preTIDtŒnew�

is 0, t is inserted into the first line of Te , and the tuple
immediately following t is the first tuple of the previous
D, the address of which is recorded in TD (Lines 10–
12). If tnew is not the first tuple of e, the address of the
next tuple immediately following t will be taken placed
by t (Line 14), and the attribute tID of all the tuples

Algorithm 6 Updating ES-DLL and EQB-Tree
Input: e, tnew, LD , TD
Output: LD , TD

1: if e:isNewEntity == True then
2: e:addr = LD :getFilePointer();
3: OL:=

�
(1,jE j+1, tnew), �1

�
;

4: LD :insert(OL) and LD :writeToDisk();
5: OTe .setAddress(e:addr);
6: TD :insert(OTe);
7: else
8: t WD (preTIDtŒnew�+1, eID, tnew);
9: addr(t / LD :getFilePointer();

10: if preTIDtŒnew�== 0 then
11: addr(t:next) e:addr;
12: OTe .setAddress

�
addr(t)

�
;

13: else
14: addr(t:next) OLe :setNexTupleAddr

�
addr(t)

�
;

15: end if
16: for each OL

e;i
; i 2

�
preTIDtŒnew� C 1; jE j

�
do

17: OL
e;i
:t:eID +=1;

18: end for
19: OLe :=

�
t , addr(t:next)

�
;

20: LD :insert(OL) and LD :writeToDisk();
21: end if
22: return LD , TD

Xiaoou Ding et al.: Efficient Currency Determination Algorithms for Dynamic Data 237

following t will increase by 1 (Lines 16 and 17). Then,
we update the OL of e with t in LD (Lines 19 and 20).

Example 6 Consider Table 1 in the motivating
example, we create a dynamic linked list of the two
entities Tom and Alice, as presented in Fig. 5 according
to Algorithm 6, and we efficiently update a new tuple
tnew of Tom to the ES-DLL without moving any previous
tuples. In addition, the data volume does not influence
this update operation.

4.2.2 Updating currency graphs
Next, we discuss the process of updating the currency
information when inserting a new tuple tnew into Te .
First, we search the same entity in tnew using the
keyword in the EQB-Tree index. After identifying the
corresponding entity e from tnew, we update curInfoe
with the new information from tnew. When there is
no identical entity recognized by tnew in the original
dataset, we know that tnew describes a new entity. It is
then inserted into the dataset, the EQB-Tree is updated,
and the currInfo of e is initialized, accordingly.

After the entity e represented by tnew is recognized,
the currency information currInfo is updated with tnew.
Algorithm 7 presents the procedure for updating the
currency graph for all the involved attributes of the
entity e .

When the tnew describing e appears, it is added to
G.e; Ak/ as a new node. In the loop (Lines 1–9), the
currency graph of e on Ak is determined based on
the currency information curInfoe (Line 2). Then, the
tnew values of Ak are inserted into the vertex set of
G.e; Ak/, and both the in-degree and out-degree are
initialized (Lines 3 and 4). In the nested-loop (Lines
5–8), based on each 'Ak in ˚CR, we can determine
t �Ak tnew or tnew �Ak t , and then the edges will be
added into the graph correspondingly. Finally, it returns
a new currency graph G.e; A/.

We expect the loop between Lines 1 and 9 to execute
jQ˚ j times in total. The currency graphs are stored in

Fig. 5 The ES-DLL updated with the new tuple in the
motivating example.

Algorithm 7 Updating currency graph G.e; A/
Input: tnew;G.e/ D .VAk ; E/; ˚CR

Output: the new G.e; A/ after updating
1: for each Ak 2 Q˚ do
2: get G.e; Ak/ from curInfo.Ge
3: add Te :tnewŒAk � into G.e; Ak/:V
4: Outdegree.tnewŒAk �/ 0 and Indegree.tnewŒAk �/ 0
5: for each t 2 Te , t �Ak tnew or tnew �Ak t can be inferred

from 'Ak 2 ˚CR do
6: add (t; tnew) or (tnew; t) into G.e; Ak/:E
7: Outdegree.t or tnew) += 1 and Indegree.tnew or t) += 1
8: end for
9: end for

10: return G.e; A/

Hash access, with a cost of O.1/ in Line 2. We also
expect that examining the satisfiability of one currency
rule costs r time at most, so then the nested-loop (Lines
5–8) costs r � j˚ j. In total, the time complexity of
Algorithm 7 is O

�
r � j˚ j � jQ˚ j

�
.

4.2.3 Updating currency scores
After updating the currency graphs, we can update the
currency score of entity e recognized by tnew, as shown
in Algorithm 8. We then calculate the new currency
score based on the functions of score

�
tl ŒAk�

�
, where

tl ŒAk� represents the tuple that has an edge (currency
relationship order) with tnew on Ak in the currency
graph. We note that in the directed graph G.e; Ak/,�
tl ŒAk�; tnewŒAk�

�
is an edge starting from tl ŒAk�, and

vice versa.
If both the in-degree and out-degree values of

tnewŒAk� are 0, this means that the currency of tnewŒAk�

cannot be determined according to the rules in ˚CR, so
we initialize the score score

�
tnewŒAk�

�
to 1 (Lines 2 and

3). When tnewŒAk� has only out-neighbors, it becomes
the most current, so the score of tnewŒAk� is equal to
the max score of tl ŒAk� plus 1 (Lines 4 and 5). If
tnewŒAk� only has in-neighbors, we determine tnewŒAk�

to be the least current, whereupon we examine the
minimum score in score

�
tl ŒAk�

�
. If the minimum scores

in .tl ŒAk�/ is greater than 1, the new tnewŒAk� score
equals the minimum score minus 1 (Lines 7 and 8),
and if not, score

�
tnewŒAk�

�
becomes 1, and the score of

all tl ŒAk� are increased by 1, accordingly (Lines 9–12).
In other cases, the current value of tnewŒAk� is neither
the highest nor the lowest current. Obviously, the score
is expected to be one point higher than the maximum
score of tl ŒAk� with an edge

�
tl ŒAk�; tnewŒAk�

�
(Line

16). Also, the score of the tuples tmŒAk� with an edge�
tnewŒAk�; tmŒAk�

�
(more current than tnewŒAk�) must be

238 Tsinghua Science and Technology, June 2017, 22(3): 227–242

Algorithm 8 Updating the currency score of entity ewith tnew

Input: tnew;G.e; Ak/ D .VAk ; E/; scoree
Output: the new scoree after updating

1: for each Ak 2 Q˚ do
2: if Indegree.tnewŒAk�/ D 0^ Outdegree.tnewŒAk�/ D 0

then
3: score.tnewŒAk�/ 1

4: else if Indegree.tnewŒAk�/ ¤ 0^ Outdegree .tnewŒAk�/ D 0

then
5: score.tnewŒAk�/ � .max16l6N score.tl ŒAk � j

.tl ; tnew/ 2 E//C 1

6: else if Indegree.tnewŒAk�/ D 0^ Outdegree .tnewŒAk�/ ¤ 0

then
7: if min16l6N score.tl ŒAk � j .tnew; tl / 2 E/ > 1 then
8: score.tnewŒAk�/ �

�
min16l6N score.tl ŒAk � j

.tnew; tl / 2 E/
�
� 1

9: else
10: score.tnewŒAk�/ D 1

11: for each l from 1 to N do
12: score

�
tl ŒAk � j .tnew; tl / 2 E

�
C D 1

13: end for
14: end if
15: else
16: score.tnewŒAk �/ � max16l6Nin score.tl ŒAk � j .tnew;

tl / 2 E/C 1

17: for each m from 1 to Nout do
18: score.tmŒAk �/C D 1
19: end for
20: end if
21: end for
22: scoree .

P
A2Q˚

score.tnew//C jAj � jQ˚ j

23: add score.te/ into curInfoe :score
24: return scoree

one point higher than before (Lines 17 and 18). Then,
we calculate the new score of e in Line 22 and update
curInfo with the new score (Line 23). Lastly, we return
the new scoree after updating (Line 25).

In the algorithm, the whole loop (Lines 1–21) is
executed jQ˚ j times. In this loop, it costs O.1/ time
to obtain the number of both the in-degree and out-
degree of tnewŒAk�, and the calculation of the maximum
or minimum scores is executed inO.N/

�
O.jTej/

�
. The

time costs of the loop in Lines 11 and 12 and Lines 17
and 18 are O.N/ and O.Nout/, respectively. As such,
the whole loop costsO

�
jQ˚ j�jTej

�
. In Lines 22 and 23,

it takes O
�
jQ˚ j

�
time to determine the total currency

score of e andO.1/ time to update the score of the entity
in curInfo. In total, the time complexity of Algorithm 8
is O

�
jQ˚ j � jTej

�
.

Example 7 Suppose that there are five tuples for
the entity Mary in Info. We take into consideration the
attribute Degree regarding the educational background

of the person via the following currency rule:
' W 8t1; t2; t3; t4; .t1ŒStatus� D Bachelor,

t2ŒStatus� D Master, t3ŒStatus� D PhD, t1ŒStatus� D
PostDoc! t1 �Degree t2 �Degree t3 �Degree t4/:

Figure 6 shows the new currency graph of Mary
for Degree when a new tuple appears regarding Mary
with t [Degree] = Master comes. To clarify here, we
show only the edges connected with tnew. According
to ', we establish the currency graph GMary, Degree,
and the in-degree and out-degree of the node tnew

are 3 and 2, respectively. As shown in Algorithm
8, score.tnewŒDegree�/ D score.t2ŒDegree�/ C 1 D

3. And the scores of tuples more current than tnew,
namely t4, t5 are as follows: score.t4ŒDegree�/ =
score.t5ŒDegree�/ = score.tnewŒDegree�/0 C 1 D 4.

Example 8 Returning to the motivating example,
when inserting the new tuple tnew into the correct
location in Info, according to the currency
rules (r1 to r4), we compute the currency scores
of tnew for each relevant attributes as follows:
score (Master) = 2, score (Programmer) = 2, score
(Shanghai) = 4, score (Married) = 2, score (12 000) = 3.
So score(tnew) = 2+2+4+3+2 = 13. Therefore, we obtain
t1; Alice � t2; Alice � t3; Alice � tnew. The tuple tnew is
then inserted right after t3, Alice in the order in which
the tuples describing the same entity Alice maintain the
correct data currency.

5 Experiments

In this section, we present our experiments, which
we conducted on both real and synthetic datasets. In
Section 5.1, we introduce our experimental settings.
In Sections 5.2 through 5.5, we analyze the influence

Fig. 6 The currency graph and score of Mary on the
attribute Degree.

Xiaoou Ding et al.: Efficient Currency Determination Algorithms for Dynamic Data 239

of four main parameters to determine the efficiency
of the offline preprocessing and the online dynamic
determination for each dataset.

5.1 Experimental settings

We ran the experiment on a computer with an Inter(R)
3.40 GHz Core i5 CPU and 8 GB of RAM, using Java
in Eclipse.

5.1.1 Experimental data
We based the experiments on a real-life dataset, Student
data, which contains the personal information of 10 000
students both during their time in college and after
graduation. The data schema in this dataset is as
follows: ftID, eID, Name, Sex, Degree, Position,
College, Address, Salary, Ageg. To evaluate the
efficiency of the algorithms on large-scale data, the
synthetic data adhered to the same schema as that in
Student data. To effectively evaluate the impact of
various parameters (listed below), we generated entities
and the tuple number of each entity under different
conditions.

5.1.2 Currency determining implementation
To identify the currency rules adopted in the
experiments for both the real and synthetic data, we
used the methods proposed in Ref. [23]. In addition, the
semantic constraints of these currency rules also satisfy
the definitions in Refs. [2, 23].

5.1.3 Algorithms
We implemented the following algorithms in both the
preprocessing and dynamic determination steps of the
model. As such, preprocessing generates the processing
order of the attributes (Algorithm 1), creates the EQB-
Tree (Algorithm 2) and the ES-DLL (Algorithm 3), and
obtains currency information (Algorithm 4). Dynamic
determination involves updating the currency graph and
scores (Algorithms 7 and 8) and updating the EQB-Tree
and ES-DLL (Algorithm 6).

Here, we discuss the efficiency of four main
parameters with respect to the algorithms, including the
total number of entities, attributes, tuples referring to
the same entity, and currency rules. The preprocessing
running time includes the time spent creating and
initializing the EQB-Tree and ES-DLL for all entities
of the dataset and obtaining currency information
regarding the entities. The dynamic determination
running time includes the running times of Algorithms
7 and 8, which update the EQB-Tree and ES-DLL
(Algorithm 6), respectively. We discuss situations

during the determination process in which new tuples
are inserted into different locations of the ES-DLL.

5.2 Impact of the total number of entities

First, we evaluated the parameter entityNum with
respect to the efficiency of the algorithms during both
preprocessing and currency dynamic determination,
with the conditions attrNum D 10, tupleNum D 10,
ruleNum D 40.

In total, we processed 50 000 entities in the
experiment. As the number of entities increased
linearly, the preprocessing running time also increased
linearly, as shown in Fig. 7a. During dynamic
determination, we take into account four possible
positions for updating a new tuple: insertion at the top,
middle, and tail of the ES-DLL, and the insertion of a
new entity.

As shown in Fig. 7b, the response time for updating
a new tuple during the dynamic determination step is
not affected by a change in the number of entities. The
reason for this is that only a single scan is made over the
whole dataset during preprocessing. This also validates
Algorithm 7 (updating currency graph G.e; Ak/

�
and

Algorithm 8 (updating currency score scoree). The
determination process runs no more than 12 ms. In
addition, inserting the new tuple at the top of the linked
list takes only a little more time than inserting it into
either the middle or tail. Also, in cases such as these, it
takes a minimum amount of time to insert the tuple into
E if the tuple to be updated is a new entity.

(a) Time cost of preprocessing

(b) Time cost of currency determining

Fig. 7 entityNum effects on efficiency.

240 Tsinghua Science and Technology, June 2017, 22(3): 227–242

5.3 Impact of the number of attributes

When experimentally evaluating the number of
attributes, we generated at most eight attributes for
the same tuple in Student Data. Figure 8 shows
the efficiency of the algorithms with different
numbers of attributes and the following condition:
entityNum D 10 000, tupleNum D 10, ruleNum D 40.
As shown in Fig. 8a, the preprocessing running time
increases linearly. With the small-scale increase in the
number of attributes, the preprocessing running time
increases gradually, and the response time during the
dynamic determination of currency is also not affected
by an increasing number of attributes in the tuples.
With respect to updating the ES-DLL, inserting the new
tuple at the top of the ES-DLL takes the most time, but
is no more than 13 ms, as shown in Fig. 8b.

5.4 Impact of the number of tuples

Taking into account the number of tuples, we generated
a maximum of 40 tuples for the same number of
attributes in one entity. Figure 9 shows the effect of the
number of tuples on the efficiency of the preprocessing
and dynamic determination steps for the conditions
entityNum D 10 000, attrNum D 10, ruleNum D 40.
As shown in Fig. 9a, with a linear increase in the
number of tuples in a given entity, the preprocessing
time increases polynomially. It takes about 70 s to
preprocess a dataset containing 500 000 tuples in a total
of about 10 000 people. On the other hand, the dynamic

(a) Time cost of preprocessing

(b) Time cost of currency determining

Fig. 8 attrNum effects on efficiency.

(a) Time cost of preprocessing

(b) Time cost of currency determining

Fig. 9 tupleNum effects on efficiency.

updating time is independent of the total number of
tuples, and takes no more than 14 ms. As shown in
Fig. 9b, it takes less time to insert a tuple describing a
new entity than it does to insert one into the other three
positions in the linked list.

5.5 Impact of the number of currency rules

The number of currency rules used in the determination
process also has an effect on the efficiency. With the
other parameters set as follows: entityNum D 10 000,
attrNum D 10, tupleNum D 10, we computed the
running time for the total number of currency rules
varying from 60 to 140, as shown in Fig. 10. From
Fig. 10a, we can see that as the number of currency
rules increases linearly, the preprocessing time also
increases linearly at first, and then becomes stable once
the total number of currency rules exceeds 90. The
reason for this is that the number of attributes affects
only the preprocessing time. In this experiment, when
we held attrNum D 10 constant, the increase in the total
number of currency rules either added to the semantic
duplications in the tuples of a given entity or between
different entities. Similarly, this setting tends to lead to
a stable ES-DLL creation process time after the number
of currency rules reaches a certain threshold.

In dynamic determination, the change in the total
number of currency rules has almost no influence on
the updating of a new entity. For the other three cases,
the running time increases slightly as the number of

Xiaoou Ding et al.: Efficient Currency Determination Algorithms for Dynamic Data 241

(a) Time cost of preprocessing

(b) Time cost of currency determining

Fig. 10 ruleNum effects on efficiency.

rules increases up to 100, and thereafter tends to take
the same amount of time as when ruleNum D 100,
as shown in Fig. 10b. That stable time cost tendency
is consistent with the preprocessing result shown in
Fig. 10a.

6 Conclusion

In this paper, we studied the dynamic determination of
the currency of large-scale data and proposed a dynamic
data currency model consisting of offline preprocessing
and online dynamic determination. We designed
and implemented several algorithms to optimize the
attribute currency order of tuples referring to the same
entity and to create and query currency information
of entities. Using just a single scanning of the initial
dataset, we can achieve the efficient determination
and updating of data currency. In addition, we
found the response time to be uninfluenced by the
data scale within an appropriate range. In a set of
reasonable experiments, we verified that our methods
and algorithms are effective in determining the currency
of dynamic data.

Acknowledgment

This paper was partially supported by the National
Natural Science Foundation of China (Nos. U1509216
and 61472099), National Key Technology Research
and Development Program (No. 2015BAH10F01),
the Scientific Research Foundation for the Returned

Overseas Chinese Scholars of Heilongjiang Province (No.
LC2016026), and MOE-Microsoft Key Laboratory of
Natural Language Processing and Speech, Harbin Institute
of Technology.

References

[1] W. Fan, F. Geerts, S. Ma, N. Tang, and W. Yu, Data Quality
Problems beyond Consistency and Deduplication. Springer
Berlin Heidelberg, 2013, pp. 237–249.

[2] M. H. Li, J. Z. Li, and H. Gao, Evaluation of data currency,
(in Chinese), Chinese Journal of Computers, vol. 35, no.
11, pp. 2348–2360, 2012.

[3] W. Fan, F. Geerts, and X. Jia, Conditional dependencies:
A principled approach to improving data quality, in British
National Conference on Databases: Dataspace: the Final
Frontier, 2009, pp. 8–20.

[4] T. N. Herzog, F. J. Scheuren, and W. E. Winkler, Data
Quality and Record Linkage Techniques. Springer Science
& Business Media, 2007.

[5] W. Fan, F. Geerts, and J. Wijsen, Determining the currency
of data, Acm Transactions on Database Systems, vol. 37,
no. 4, pp. 71–82, 2012.

[6] M. Li and J. Li, A minimized-rule based approach
for improving data currency, Journal of Combinatorial
Optimization , vol. 32, no. 3, pp. 812–841, 2016.

[7] Y. Shen, B. Guo, Y. Shen, X. Duan, X. Dong, and H.
Zhang, A pricing model for big personal data, Tsinghua
Science and Technology, vol. 21, no. 5, pp. 482–490, 2016.

[8] C. Batini, C. Cappiello, C. Francalanci, and A.
Maurino, Methodologies for data quality assessment and
improvement, ACM Computing Surveys, vol. 41, no. 3, pp.
75–79, 2009.

[9] T. C. Godfrey, Data Quality for the Information Age.
Artech House, Inc., 1996.

[10] R. Y. Wang and D. M. Strong, Beyond accuracy: What data
quality means to data consumers, Journal of Management
Information Systems, vol. 12, no. 4, pp. 5–33, 1996.

[11] Q. Gorz, An economics-driven decision model for data
quality improvement—A contribution to data currency, in
Proc. 17th Americas Conference on Information Systems
(AMCIS), Detroit, MI, USA, 2011, pp. 1–8.

[12] B. Heinrich and M. Klier, Assessing data currency—A
probabilistic approach, Journal of Information Science,
vol. 37, no. 1, pp. 86–100, 2011.

[13] C. Cappiello, C. Francalanci, and B. Pernici, A model of
data currency in multi-channel financial architectures, in
International Conference on Information Quality, 2002,
pp. 106–118.

[14] B. Heinrich, M. Klier, and M. Kaiser, A procedure to
develop metrics for currency and its application in CRM,
Journal of Data and Information Quality, vol. 1, no. 1, pp.
1–28, 2009

[15] B. Heinrich and D. Hristova, A fuzzy metric for currency in
the context of BIG DATA, in 22nd European Conference

242 Tsinghua Science and Technology, June 2017, 22(3): 227–242

on Information Systems (ECIS), 2014.

[16] C. Cappiello, C. Francalanci, and B. Pernici, Time related
factors of data accuracy, completeness, and currency in
multi-channel infor-mation systems, in The Conference
on Advanced Information Systems Engineering, 2003, pp.
145–153.

[17] L. Bertossi, Consistent query answering in databases, ACM
Sigmod Record Homepage, vol. 35, no. 2, pp. 68–76, 2006.

[18] J. Chomicki, Consistent query answering: Five easy
pieces, in Database Theory – ICDT 2007, International
Conference, Barcelona, Spain, January 10–12, 2007, pp.
1–17.

[19] X. L. Dong, L. Berti-Equille, and D. Srivastava, Truth
discovery and copying detection in a dynamic world,
Proceedings of the Vldb Endowment, vol. 2, no. 1, pp. 562–
573, 2009.

[20] Y. Cao, W. Fan, and W. Yu, Determining the relative
accuracy of attributes, in ACM SIGMOD International
Conference on Management of Data, 2013, pp. 565–576.

[21] W. Fan, F. Geerts, N. Tang, and W. Yu, Inferring data
currency and consistency for conflict resolution, in 2013
IEEE 29th International Conference on Data Engineering
(ICDE), Brisbane, Australlia, 2013, pp. 470–481.

[22] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu, Interaction

between record matching and data repairing, in ACM
SIGMOD International Conference on Management of
Data, Athens, Greece, ACM, 2011, pp. 469–480.

[23] W. Fan, F. Geerts, N. Tang, and W. Yu, Conflict resolution
with data currency and consistency, Journal of Data and
Information Quality, vol. 5, nos. 1&2, pp. 1–37, 2014.

[24] X. Ding, H. Wang, Y. Gao, J. Li, and H. Gao, Determining
the currency of dynamic data, in Proceedings of the 2017
ACM TUR-C Conference, ACM, 2017.

[25] P. Christen, A survey of indexing techniques for scalable
record linkage and deduplication, IEEE Transactions on
Knowledge and Data Engineering, vol. 24, no. 9, pp.
1537–1555, 2011.

[26] M. Bodirsky and J. Kara. The complexity of temporal
constraint satisfaction problems, in ACM Symposium on
Theory of Computing, Victoria, British Columbia, Canada,
2008.

[27] H. Wang, J. Li, and H. Gao, Efficient entity resolution
based on subgraph cohesion, Knowledge and Information
Systems, vol. 46, no. 2, pp. 285–314, 2016.

[28] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios,
Duplicate record detection: A survey, IEEE Transactions
on Knowledge and Data Engineering, vol. 19, no. 1, pp.
1–16, 2007.

Xiaoou Ding is currently a PhD
student in School of Computer Science
and Technology, Harbin Institute of
Technology. She received the bachelor
degree from Harbin Institute of Technology
in 2015. Her research interests include
data quality, data repairing and cleaning,
and big data management.

Hongzhi Wang is a professor and
doctoral supervisor at Harbin Institute of
Technology. He was awarded Microsoft
fellowship, Chinese excellent database
engineer and IBM PhD fellowship.
His research interests include big data
management, data quality, graph data
management, and web data mangement.

Yitong Gao received the master degree
from Harbin Institute of Technology in
2016. Her research interests include
big data management, data quality, and
distributed algorithms.

Jianzhong Li is a professor and doctoral
supervisor at Harbin Institute of
Technology. He is a senior member
of CCF. His research interests include
database, parallel computing, wireless
sensor networks, etc.

Hong Gao is a professor and doctoral
supervisor at Institute of Technology.
She is a senior member of CCF. Her
research interests include database, parallel
computing, wireless sensor networks, etc.

		2017-04-27T12:59:28-0400
	Preflight Ticket Signature

