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Load Feedback-Based Resource Scheduling and Dynamic
Migration-Based Data Locality for Virtual Hadoop Clusters

in OpenStack-Based Clouds

Dan Tao�, Zhaowen Lin, and Bingxu Wang

Abstract: With cloud computing technology becoming more mature, it is essential to combine the big data

processing tool Hadoop with the Infrastructure as a Service (IaaS) cloud platform. In this study, we first propose

a new Dynamic Hadoop Cluster on IaaS (DHCI) architecture, which includes four key modules: monitoring,

scheduling, Virtual Machine (VM) management, and VM migration modules. The load of both physical hosts

and VMs is collected by the monitoring module and can be used to design resource scheduling and data locality

solutions. Second, we present a simple load feedback-based resource scheduling scheme. The resource allocation

can be avoided on overburdened physical hosts or the strong scalability of virtual cluster can be achieved by

fluctuating the number of VMs. To improve the flexibility, we adopt the separated deployment of the computation

and storage VMs in the DHCI architecture, which negatively impacts the data locality. Third, we reuse the method of

VM migration and propose a dynamic migration-based data locality scheme using parallel computing entropy. We

migrate the computation nodes to different host(s) or rack(s) where the corresponding storage nodes are deployed

to satisfy the requirement of data locality. We evaluate our solutions in a realistic scenario based on OpenStack.

Substantial experimental results demonstrate the effectiveness of our solutions that contribute to balance the

workload and performance improvement, even under heavy-loaded cloud system conditions.
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1 Introduction

Cloud computing is one of the hottest areas of
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research at home and abroad, which integrates large-
scale computing, storage, and network resource via
a network, and provides these resources for different
users on demand[1]. As an open-source framework for
distributed system architecture, Hadoop can achieve
large-scale data computing and storage, and is usually
deployed on physical cluster. There are some drawbacks
in traditional Hadoop clusters. First, its deployment and
configuration are tedious tasks. When Hadoop starts
running, the realtime monitoring on Hadoop consumes
plenty of manpower and financial resources. Second,
the fluctuation of tasks causes imbalance of resource
utilization. With the appearance of peaks in the tasks,
resource bottlenecks may be encountered. In contrast,
the troughs in the tasks will bring idle resource. Hadoop
cannot realize dynamic resource allocation. Third, the
utilization of high-performance computers in physical
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clusters is insufficient, particularly for computation and
storage resource, resulting in severe resource wastage.

To solve the abovementioned problems, it is essential
to deploy a Hadoop cluster on an OpenStack-based
cloud as its service[2]. This study adopts OpenStack,
which can provide an Infrastructure as a Service
(IaaS) solution in the form of Virtual Machines
(VMs). Sahara, an open-source project, is developed
to rapidly deploy a Hadoop cluster in an OpenStack-
based cloud environment. A virtual cluster, which
can simplify cluster management, enables autonomic
management of the underlying hardware, facilitating
cost-effective workload consolidation and dynamic
resource allocations for better throughput and energy
efficiency. However, virtualization in such cloud
platforms is known to cause performance overheads[3].
Understanding how to optimize the performance of
a Hadoop cluster has attracted considerable attention.
Researchers have accumulated a series of research
achievements on resource scheduling and data locality
in the related context.

Scheduling techniques for dynamic resource
adjustment have been recently addressed. Sandholm
and Lai[4] presented a dynamic priority parallel task
scheduler for Hadoop. It allowed users to control
their allocated capacity by adjusting their spending
time. Sharma et al.[5] proposed a MapReduce resource
Orchestrator (MROrchestrator) framework, which
dynamically identified resource bottlenecks and
resolved them through fine-grained, coordinated,
and on-demand resource allocations. However,
the abovementioned studies focused on a resource
scheduling-based traditional Hadoop cluster. Lama
and Zhou[6] studied automated resource allocation and
configuration of the MapReduce environment in the
cloud without considering the load of physical hosts.
Zuo et al.[7] proposed a resource evaluation model
based on entropy optimization and dynamic weighting.
The entropy optimization filtered the resources that
satisfied user QoS and system maximization by
goal function, constraints of maximum entropy,
and the entropy increase principle, which achieved
optimal scheduling and satisfied user QoS. Liu et al.[8]

presented an adaptive method aiming at spatio-temporal
efficiency in a heterogeneous cloud environment. A
prediction model based on an optimized kernel-based
extreme learning machine algorithm was proposed for
a quick forecast of job execution duration and space
occupation, which consequently facilitates the process

of task scheduling.
For data locality, to address the conflict between

locality and fairness, Zaharia et al.[9] proposed a simple
delay scheduling algorithm wherein a job waited for
a limited amount of time for a scheduling opportunity
on a node that has data on it. Experimental results
showed that waiting can achieve both high fairness and
high data locality. Jin et al.[10] proposed an availability-
aware data placement strategy, and its basic idea was
to dispatch data based on the availability of each node
for reducing network traffic and improve data locality.
Both works were studied on a traditional Hadoop
cluster. Thaha et al.[11] presented a data location-
aware virtual cluster provisioning strategy to identify
the data location and provision the cluster near the
storage. However, multiple tasks might be executed on
a same physical host, which negatively impacted system
performance.

Motivated by this, we propose load feedback-based
resource scheduling and dynamic migration-based data
locality solutions based on a novel Dynamic Hadoop
Cluster on IaaS (DHCI) architecture. The resource
utilization can be improved by the load balance of
physical hosts and the flexible scalability of VMs.
Moreover, based on the separated deployment of the
computation and storage VMs, computation VMs can
be quickly migrated to match their corresponding
storage VMs in order to effectively guarantee data
locality.

The remainder of this study is organized as follows.
In Section 2, we introduce a DHCI architecture. Based
on this architecture, load feedback-based resource
scheduling and dynamic migration-based data locality
solutions are explored in Section 3. In Section 4,
we perform a comprehensive evaluation to validate our
solutions. Finally, we conclude this study in Section 5.

2 DHCI Architecture

There exists a huge difference on Hadoop’s running
environment between a physical cluster and an IaaS
cloud platform[12]. In the IaaS cloud environment,
Hadoop is deployed on VMs provided by the cloud
platform. In this case, the Hadoop cluster cannot
sufficiently understand the resource usage of the
underlying physical hosts, which will result in load
imbalance and performance degradation. In addition,
the scalability of the Hadoop cluster is not satisfactory.
In contrast, the virtual Hadoop cluster on the cloud
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platform is more convenient for the flexible adjustment
of cluster scaling.

Motivated by this, we integrate Hadoop onto an IaaS
cloud platform and propose a new DHCI architecture.
In the DHCI architecture illustrated in Fig. 1, we
introduce four kernel modules besides the original
packages of private cloud and Hadoop.
� Monitoring Module: Considering that different

clusters in a virtual environment are isolated,
Hadoop cannot obtain the load of physical hosts
at all. A monitoring module is introduced to
periodically monitor the load on the physical hosts
as well as the VMs. The load information collected
can be used to provide the basis for resource
scheduling.
� Scheduling Module: It is responsible for two

aspects: (1) periodically pushing the load
information of the physical hosts to the scheduling
node (e.g., ResourceManager) in Hadoop and (2)
issuing the corresponding scalability strategy to
the VM management module according to the
load of the VM clusters.
� VM Management Module: It achieves dynamic

scaling of the VMs by adding or deleting
operations. This is an execution module which
takes instructions from the scheduling module and
interacts with the VMs on the IaaS platform.
� VM Migration Module: It is used to detect a task’s

data locality and execution process. Once this
module finds (1) the execution progress of a task
is slower than a given threshold and (2) its CN and

SN do not meet the data locality, it will migrate
this task to a suitable physical host by the storage
of data duplication.

In summary, the DHCI architecture has two features:
(1) joint load monitoring, and (2) flexible resource
scheduling. The monitoring module monitors the
physical and virtual resources with full awareness of the
current system load conditions. This necessary data can
be utilized to optimize subsequent resource scheduling.
Through the scheduling and VM management modules,
the resource utilization can be optimized according to
the load balancing of the physical hosts and the flexible
scalability of the VMs. Based on the idea of “mobile
computing”, the reuse of VMs migration, achieved by
the VM migration module in the DHCI architecture,
can also reduce bandwidth consumption and improve
system performance.

3 Resource Scheduling and Data Locality

3.1 Load feedback based resource scheduling

The resource scheduling selects appropriate resources
assigned to different tasks for execution[13]. Currently,
most evaluation indicators are static or predictive
physical performance items, such as the computing
power of CPU, storage capacity, and network
bandwidth[14]. However, in the dynamic environment
of cloud computing, it is difficult for these indicators to
reflect the actual service ability of the physical resource.

In our solution, the load of physical hosts can be
described from two aspects: CPU utility rate and
load average. Load average is a kind of performance
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Fig. 1 DHCI architecture.



152 Tsinghua Science and Technology, April 2017, 22(2): 149–159

parameter (e.g., memory, disk, and network). This
parameter denotes the average utilization rate of run
queues. The higher the values of CPU utility rate
and load average, the heavier the workload of a
physical host. The VMs mentioned here run Linux
OS; therefore, the performance of the system can be
monitored every minute using the Top command in
Linux. For the whole VM cluster, we adopt a unified
script to collect the status of resource consumption.

In the DHCI architecture, for a physical host, its
load information will be uploaded and fed back to
the scheduling module periodically via the monitoring
module. We adopt a single-level threshold method
to compare the load information, and its workflow
can be illustrated in Fig. 2. Once the load exceeds
a preset threshold, the physical host is considered as
stressed out, and the resource application using it will
be canceled. Otherwise, the resource application will
be supported.

One of the most significant advantages of integrating
Hadoop onto the IaaS cloud platform is flexibility.
In other words, the scale of the virtual cluster can
dynamically adjust according to its real-time workload.
Similarly, for the virtual Hadoop cluster comprising
multiple VMs, the monitoring module in the DHCI
architecture collects its load information and feeds
it back to the scheduling module. A double-level
threshold method is used to distinguish between the
lowest load VM and the highest load VM, as shown
in Fig. 3. If the load exceeds a ceiling value, the VM
addition operation will be issued and a new VM will be
created on the lowest load physical host. However, if it
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Fig. 2 Single-level threshold resource scheduling algorithm.
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Fig. 3 Double-level threshold resource scheduling
algorithm.

is below a floor value, the VM deletion operation will
be issued and excessive VM(s) will be deleted on the
highest load physical host.

3.2 Dynamic migration based data locality

Large-scale distributed systems aim at processing data
as close as possible to the storage location to reduce data
movement between the computer and storage facilities,
which is typically known as data locality[12]. Data
locality is a crucial factor impacting the performance of
a virtual Hadoop system. In a traditional Hadoop cluster
comprising physical hosts, computation VMs (used for
task computation, denoted by CNs), and storage VMs
(used for data storage, denoted by SNs) are combined
into a single VM. The advantage is that CNs can directly
obtain data from SNs while avoiding data transmission
across a network. However, this deployment is no
longer an effective method for a virtual Hadoop system.
The scalability of a virtual Hadoop cluster can be
achieved by dynamically adding or deleting VMs. The
combination of CNs and SNs results in poor scalability.
This means that once CNs are added or deleted, their
corresponding SNs should be applied with the same
operation. Moreover, in the process of VM migration,
VMs functioning as CNs and SNs will cause massive
data movement, thereby reducing the efficiency of VM
migration.

Therefore, in the DHCI architecture, the separation
of CNs and SNs is adopted to improve flexibility. In
particular, they are deployed as respective VMs. In
this manner, CNs can be migrated to a “suitable” place
based on the idea of “mobile computing”. It is obvious
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that this deployment form offers several advantages
over a centralized method[15]: (1) strong scalability,
which allows for respective fluctuating numbers of CNs
or SNs and (2) flexible migration, i.e., CNs can be
migrated without considering any other SNs.

Compared to that of the traditional Hadoop cluster,
data locality in the DHCI architecture can be classified
into three categories[16], as illustrated in Fig. 4.
� Host data locality: CNs and SNs are deployed on

the same host (e.g., VM1 and VM2 are on Host1).
� Rack data locality: CNs and SNs are deployed on

the same rack but different hosts (e.g., VM1 and
VM4 are on Rack1).
� Across-rack data locality: CNs and SNs are

deployed on different racks (e.g., VM1 and VM10
are on Rack1 and Rack2, respectively).

Experimental results have shown that the speeds
of task execution for meeting different types of
data locality are significantly different under the
same conditions[17]. In particular, the task completion
time for meeting “rack data locality” and “across-
rack data locality” approaches three and four times
as long as that for meeting “host data locality”,
respectively. Data transmission between co-located
VMs is often as efficient as local data access mainly
because inter-VM communication within a single host
is optimized by the hypervisor[18]. Hence, we consider
to improve “host data locality” in order to optimize
the performance of the DHCI architecture. Considering
that the separation of CNs and SNs influences data
locality, we dynamically migrate the CNs to any host(s)
or rack(s) where the corresponding SNs are deployed to
guarantee data locality. During the migration process, a
VM remains on and the program executed in this VM
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Fig. 4 Three types of data locality in a virtual Hadoop
cluster.

keeps track of the running state. Even if this VM is
connected to a network, the network connection will
not be affected. In fact, the cost of migrating the VM is
considerably less than that of reading/writing operations
among different VMs[16].

First, the initial resource allocation should keep
data locality. In the Hadoop YARN adopted,
ContainerAllocator is responsible for communicating
with Resource Manager and applying resources for
tasks. Usually, there exist three backups for each task in
HDFS. Considering the level difference of data locality,
there will be multiple resource requests. VMs can be
allocated resource, prioritized by “host data locality”,
“rack data locality”, and “across-rack data locality”. A
resource request for a task can be described as a tuple
<Priority, Hostname, Capability, Containers>, where
“Hostname” can represent the ID of the host or the
rack.

Consider the case in Fig. 4 as an example wherein a
task applies a resource in order from the host to the rack.
If this task can acquire a resource from a certain host,
the request will stop; otherwise, it will apply it one by
one in the following manner:
<20,“Host1(VM1,VM2)”,“memory:2G”,“1”>
<20,“Host2(VM3,VM4,VM9)”,“memory:2G”,“1”>
<20,“Host3(VM5,VM6,VM10,VM11)”,“memory:2G”,

“1”>
<20, “Rack1”,“memory:2G”,“1”>
<20, “Rack2”,“memory:2G”,“1”>.
Second, data locality should be optimized in the

process of task execution. Hadoop monitors task
execution and judges whether data locality is satisfied
or not. If not, Hadoop continues to search whether there
exist one or more hosts which can meet the requirement
of data locality. Then, CN will migrate to the correct
one.

The real-time dynamics and uncertainty of cloud
resources make resource management and task
scheduling challenging[19]. Parallel computing entropy
is developed from Shannon information entropy, which
has the characteristics of symmetry, nonnegativity,
and scalability. Sun et al.[20] have proved that parallel
computing entropy can be maximized if and only if
the load is completely balanced in the homogeneous
cluster or the grid environment. In this study, we
extend the method of parallel computing entropy
into the heterogeneous cluster or cloud computing
environment. To accurately grasp the dynamic load
and available information of resources, we propose
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a parallel computing entropy based VM migration
solution. In particular, the load of the i -th physical host
can be represented as Li ,

Li D

nX
jD1

!ij sj (1)

where n denotes the total number of VMs on the
physical host i . For the physical host i , !ij denotes the
ratio of the number of VMs with the task type j to the
total number of VMs and sj denotes the computation of
VM with the task type j .

The relative load Ki of physical host i , which is the
ratio of the individual load to the total load of m physical
hosts, can be represented as follows:

Ki D Li=

mX
iD1

Li (2)

Considering the difference among performance
parameters (e.g., CPU, memory, and bandwidth) of
each physical host, we express the processing capacity
of the physical host as follows:

Pi D fPcpu; i ; Ploadaverage; ig (3)
where Pcpu; i and Ploadaverage; i respectively denotes the
CPU utility rate and the load average of the available
physical host i . We quantify the above equation as
follows:

Ptotal D ˛Pcpu; i C ˇPloadaverage; i (4)
where ˛ and ˇ are constant coefficients and satisfies ˛C
ˇ D 1.

Hence, the relative load Ki of the physical host i can
be expressed as follows:

Ki D
Li=Ptotal, i

mX
iD1

Li=Ptotal; i

(5)

Assume that there are m physical hosts in a cloud
computing environment. At time t , the relative load
of the physical host i is denoted as Ki (t ). Parallel
computing entropy of the whole physical cluster at time
t can be defined as follows:

H.t/ D

mX
iD1

Ki .t/ln
1

Ki .t/
(6)

During the migration process, the migration can
be selected by the maximum entropy increment at
each step, and thus make the execution time of
all the tasks the shortest. Therefore, the increase of
parallel computing entropy causes (1) the decrease in
calculation amount of physical host(s) with the biggest
load and (2) a more balanced load of other physical
host, and thus a decrease in the total execution time of

all the tasks. The goal of load balancing is to increase
the parallel computing entropy as far as possible to
reduce the total execution time of all the tasks.

The amount of computation for all the VMs on each
physical host can be calculated using the sampling
interval T , and the parallel computing entropy H (t )
can be calculated by Eq. (6). Once the value of H.t/
is less than the threshold of 
 , the load balancing of
the system is unsatisfactory to some extent, the VM
migration process is needed.

To achieve a completed CN migration, three major
issues (“2W1H”) should be solved.

3.2.1 Which CN needs to be migrated?
The physical host needs to be migrated as it is the
highest-loaded device. Similarly, the CN that needs
to be migrated is the CN experiencing the heaviest-
computation load. For a CN needs to satisfy the
need to be migrated, it must satisfy two conditions:
(1) it is the highest-computation CN, i.e., CN has the
greatest amount of calculations and (2) CN and its
corresponding SN are on a separate host or rack, as
shown in Algorithm 1.

3.2.2 Where should a CN be migrated?
The destination host to which a CN is migrated should
include its corresponding SNs store data replication. In
a virtual Hadoop cluster, each task can be partitioned
into several Map and Reduce tasks. Each Map task
runs map functions processing one data block (128 MB
by default in YARN). The data replication of each data
block is three by default, and can be stored in different

Algorithm 1 Determine CN to be migrated
Input: the load Li of m physical hosts.
Output: CN.
begin

1: Calculate the average load of the system Lavg DPm
iD1 Li=m;

2: Calculate the load difference4Li D Li � Lavg;
3: Sort 4Li from the largest to the smallest, and store q1, q2,

..., qm into the queue Qph ;
4: Select the first element q1 in the queue Qph, q1 denotes the

ID of physical host with the highest load;
5: Calculate the corresponding computation amount cj of CNj

on the physical host q1, where 1 6 j 6 s;
6: Sort cj from largest to smallest, and store CN1, CN2, ...,

CNs into queue QCN;
7: Select the first element CN1 in queueQCN, CN1 denotes the

ID of CN with the heaviest-computation amount;
8: return CN1

end
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hosts even racks. Here, we choose the least-loaded host
which satisfies the requirement of data locality as the
destination host with the lowest cost.

3.2.3 How should one migrate a CN?
The selected OpenStack cloud platform can support
VM migration very quickly. The whole migration
process involves three kinds of physical hosts: the
source, destination, and control hosts. We mainly utilize
the Python interface function in the Libvirt tool to
migrate the VM, and data transmission can be realized
in a tunneled way. As space is limited, the further
description will not be given.

4 Emulation and Analysis

In this emulation, we choose OpenStack as the cloud
platform and Hibench as the Hadoop performance
testing tool. Hibench can provide a series of typical
Hadoop benchmark test cases, which can be directly
used to conduct a performance test. Here, three classic
benchmark test cases, WordCount (counts the words
in the input files), TeraSort (sorts the data generated
by TeraGen), and Sort (sorts the data written by the
random writer), are adopted to evaluate the performance
of the proposed DHCI architecture. The hardware
configuration for the testing environment is listed in
Table 1.

4.1 Comparison of running time under the same
load

First, we compare the running times using three
classic schedulers (FIFO Scheduler, Fair Scheduler, and
Capacity Scheduler) for the traditional Hadoop cluster
and DHCI architecture. It should be noted that FIFO-
DHCI, Fair-DHCI, and Capacity-DHCI are defined as
the three schedulers used in the DHCI architecture. The
emulation results in Fig. 5 show that the running time in
the DHCI architecture is less than that in the traditional
Hadoop cluster with the same workload (data volume
is 2 GB). Using Fair Scheduler as an example, for
the WordCount, TeraSort, and Sort cases, the running

Table 1 Hardware configuration for the testing
environment.

Parameter Configuration
CPU type 4-core 2.4 GHz Intel(R) Xeon (R)
Memory 32 GB

Network card Three 2 Gbps LANs
OS Linux 14.04

VM images Virtual CPU, 2 GB RAM, and 30 GB HDD
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Fig. 5 Comparison of running time for the three schedulers
under the two architectures.

times in the DHCI architecture are decreased by 14%,
9%, and 8%, respectively. The proposed scheduling
approach can outperform other traditional approaches
mainly because in the DHCI architecture, the resource
allocation can be avoided on overburdened physical
hosts or the strong scalability of the virtual cluster can
be achieved by fluctuating the number of VMs.

Second, we evaluate the running time under two
architectures with different data volumes (from 256 MB
to 2048 MB), as illustrated in Fig. 6. As far as
WordCount is concerned, the emulation results show
that the performance of the DHCI architecture is
superior to the traditional Hadoop cluster. Obviously,
the more the data volume, the greater the benefits of the
DHCI architecture be apparent.

4.2 Comparison on running time under the load
pressure

Once the workload approaches the peak value or
valley value, the DHCI architecture will process tasks
by dynamically increasing or decreasing the number
of virtual machines. In this way, compared to the
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traditional Hadoop cluster, the DHCI architecture can
process the same workload with less running time by
optimizing resource utilization. To test the operational
condition of the Hadoop cluster under certain load
pressure in a private cloud environment, when the
workload on virtual cluster 1 reaches the maximum, a
new virtual cluster 2 will be added, as shown in Fig. 7.

Supposing that the original workload of the task
(WordCount, TeraSort, and Sort) run on virtual cluster
1 is 2 GB. The effect on the operational efficiency
of the task on the two architectures with different
scales of virtual clusters can be illustrated in Fig. 8.
There is no doubt that the dynamic increase of
virtual clusters allows for resource utilization as
well as load balancing, and thus results in less
running time. Under a specific workload, compared
to the running time for the traditional Hadoop cluster,
that for the traditional cluster under load pressure
decreases to 67%, 71%, and 55% for WordCount,
TeraSort, and Sort, respectively. This depicts that

OpenStack

Physical host 1 Physical host 2 Physical host n

Virtual cluster 1

 
Virtual cluster 2

Add a new 
virtual cluster

Fig. 7 Adding new virtual cluster(s) onto IaaS cloud
platform for relieving load pressure.
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Fig. 8 Comparison of running time under two architectures
with different scales of virtual clusters.

multiple tasks can be simultaneously operated on a
virtual Hadoop cluster with relatively low cost. In
the case of load pressure, compared with the running
time for the traditional Hadoop cluster, that for the
DHCI architecture decreases to 56%, 59%, and 52%,
respectively. Under a specific workload, we compare
the running time for the traditional Hadoop cluster
with that of the DHCI architecture under load pressure;
they are close to 2:1 (e.g., 913 vs. 507, 633 vs. 371,
and 2450 vs. 1266, respectively). The results clearly
show that with the same available computation resource
of the cloud platform, the DHCI architecture can
significantly reduce the running time and thus improve
the operational efficiency of tasks.

4.3 Comparison of CPU utility rate and load
average between the two architectures

In this section, we evaluate the performance parameters
of each physical host when the WordCount task is
executed in the DHCI architecture.

Figure 9 shows the CPU utility rates of four physical
hosts (Ph1, Ph2, Ph3, and Ph4) from the 1st minute to
the 14th minute. In this experiment, we set 50% as a
threshold. Once the CPU utility rate is greater than this
threshold, we regard the workload of the physical host
as excessive. In this case, the resource on this physical
host will not be allocated for task(s) any more. From the
curves in Fig. 9, we find that in the 3rd, 6th, 7th, 8th,
and 10th minutes, the CPU utility rates of part of the
physical hosts exceeded the preset threshold of 50%.
For example, in the 3rd minute, both the CPU utility
rates of Ph1 and Ph2 are 53%, which is greater than
50%. After 1 min, the CPU utility rates of Ph3 and
Ph4 increase gradually to accomplish workload sharing.
Correspondingly, their values of Ph1 and Ph2 decrease
to 43% and 49%, respectively.

Figure 10 shows the load average of four physical
hosts during a period of 14 min. This experiment sets
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Fig. 9 CPU utility rates of multiple physical hosts in the
DHCI architecture.
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Fig. 10 The load averages of multiple physical hosts in the
DHCI architecture.

70% as a threshold. Similarly, when the load average
exceeds this threshold, the workload of the physical
host is regarded as severe. This striking trend in Fig. 7
shows that when a physical host’s workload rises and
exceeds the preset threshold, other physical hosts in the
same virtual cluster will take part in workload balancing
and thus improve the efficiency.

Figures 9 and 10 give the performance parameters:
CPU utility rate (CPU for short) as well as the load
average (LA for short) of 4 physical hosts during a
period of 14 minutes for two different architectures. We
take their averages for each physical host respectively,
as illustrated in Figs. 11 and 12. Then, we calculate
their variances to reflect the fluctuations in workload
of multiple physical hosts. The variance of CPU
utility rate in the traditional Hadoop cluster and the
DHCI architecture are 0.196 and 0.1, respectively. The
efficiency of the cluster load balance in the DHCI
architecture is superior to that in the traditional Hadoop
cluster. From the perspective of load average, the
similar conclusion can be drawn.

4.4 Test on data locality optimization

To verify the effectiveness of the data locality
optimization strategy, we also use the benchmark
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Fig. 11 Average CPU utility rate of each physical host in the
two architectures.
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Fig. 12 Average load average of each physical host in the
two architectures.

test cases, namely WordCount, TeraSort, and Sort
with 2 GB data volume. The data in Fig. 13 shows
the difference in testing data from the DHCI
architecture with and without data locality optimization,
respectively. We can conclude that the time taken to
execute these tasks with data locality optimization is
less than that without data locality optimization while
under the same data volume condition.

5 Conclusion

In this study, we designed a novel dynamic
Hadoop cluster IaaS architecture by introducing
the following four modules: monitoring, scheduling,
VM management, and VM migration modules. In
particular, we proposed resource scheduling and
data locality solutions. We assessed the efficiency of
our solutions on the aforementioned virtual Hadoop
cluster. Convincing experimental results show that our
solutions can effectively balance the load and improve
system performance.
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