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A Survey on Multiview Video Synthesis and Editing

Shaoping Lu, Taijiang Mu�, and Songhai Zhang

Abstract: Multiview video can provide more immersive perception than traditional single 2-D video. It enables both

interactive free navigation applications as well as high-end autostereoscopic displays on which multiple users can

perceive genuine 3-D content without glasses. The multiview format also comprises much more visual information

than classical 2-D or stereo 3-D content, which makes it possible to perform various interesting editing operations

both on pixel-level and object-level. This survey provides a comprehensive review of existing multiview video

synthesis and editing algorithms and applications. For each topic, the related technologies in classical 2-D image

and video processing are reviewed. We then continue to the discussion of recent advanced techniques for multiview

video virtual view synthesis and various interactive editing applications. Due to the ongoing progress on multiview

video synthesis and editing, we can foresee more and more immersive 3-D video applications will appear in the

future.
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1 Introduction

The increasing availability and diminishing prices of

various video cameras, depth sensors, and multi-camera

systems have caused an enormous growth of 3-D-

oriented video applications. It also opens a variety of

new opportunities in 3-D Television (3-DTV)[1], Free-

view Television (FTV)[2], and many other domains.

Multiview videos, which are recorded from different

viewpoints by multiple synchronized cameras, can be

visualized on creative 3-D immersive displays. An

example is autostereoscopic display which enables

different viewers to perceive motion parallax and

experience free viewpoint video. Intuitively, arranging

denser cameras can capture more video streams from

different discrete viewpoints, and those abundant
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multiview videos could better support high-quality

realistic 3-D displays. However, this imposes

an enormous burden on the acquisition, storage,

compression, and transmission of multiview video data.

Efficiently displaying realistic 3-D scenes based

on multiview videos that are captured from limited

viewpoints at a high level of quality is still a

long way from reality. Accurate 3-D modeling-based

multiview techniques are still impractical, since the

quality of fully automatic 3-D reconstruction usually is

not sufficient and extremely tedious user interactions,

even for professionals, are required in the non- or

semi-automatic methods. With the advent of various

advanced technologies on image and video synthesis

and editing, multiview video based research and

applications have attracted increasing attention, and

gave rise to the well-studied Depth Image-Based

Rendering (DIBR) techniques[3, 4], which attempt to

synthesize many additional viewpoints based on a

limited set of given views.

A typical multiview video processing framework (see

Fig. 1) can be generally separated into the following

different phases: (1) data acquisition, (2) multiview

representation, (3) compression and transmission, (4)

rendering, and (5) display processing. In the multiview
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Fig. 1 A typical framework of the multiview video system. In this kind of system, video synthesis and editing can be performed
in data acquisition, multiview representation or rendering phases.

video acquisition step, it is crucial that all cameras

are accurately calibrated and synchronized. It also

needs to be ensured that all cameras have the same

color balance. To support free viewpoint navigation

and various creative editing applications, synthesizing

the scene content of desired views is of high

importance. Therefore, this survey mainly focuses

on color correction, view synthesis, and interactive
editing with multiview-plus-depth (MV+D) video as

the main representation format. Other potential 3-

D representation formats[5] include meshes, point

clouds, patch clouds, volumetric models or layered

models. However, the MV+D format is often the most

convenient as it is the most closely related to the way

the data was acquired.

Essentially, multiview video processing methods

analyze and model the visual data captured by multiple

cameras, and most of the relevant techniques originated

from single image/video processing research. Hence,

for each topic we also briefly review the related progress

of single image/video processing. Note that there are

many other challenges that are related to the synthesis

and editing problem but fall outside the scope of this

survey. Examples are accurate depth estimation[6],

efficient compression[7], and transmission[8] of the

massive multiview data.

The organization of this paper is as follows. Section 2

discusses the advances on multiview color correction.

Section 3 classifies existing multiview video synthesis

approaches. Section 4 discusses various applications

of multiview video editing. Finally, the conclusion

with discussions of the future research directions is

summarized in Section 5.

2 Multiview Color Correction

The color that is measured by visual sensors does not

only rely on the light source, but also on the geometric

surface and the appearance properties of the 3-D object.

Although in the literature variable illumination based

color transformation and evaluation models exist (e.g.,

Ref. [9]), for the sake of computational complexity,

most of the existing multiview color correction methods

focus on transforming all colors of the input image to

those as they appear in a reference view under the same

light source. Basically, this can be seen as a specific

recolorization processing. In this context, we will focus

on the techniques of colorization-based interaction and

multiview color correction processing.

2.1 Image color interaction

Color correction related image/video color processing

and interaction has attracted widespread interest in

many research domains, e.g., image recolorization,

multi-scale texture and exposure adjustment,

appearance editing propagation, correspondence

matching, style transfer, as well as content alignment

between images.

One of the pioneering works in color editing

was introduced by Reinhard et al.[10], where the

target color is automatically adapted according to a

reference image. This method efficiently scales the

high-frequency components of the input textures using

the respective color standard deviations of the target

and reference images; however, this may result in over-

saturated colors in the target images. In Ref. [11],

the colorization is firstly modeled as an optimization

problem, and the authors employed a multigrid solver

to perform the desired color for video. Lischinski et

al.[12] further observed that this sparse interpolation-

like colorization can be applied for exposure and other

tonal adjustment. A similar strategy is introduced for

multi-scale texture decomposition[13]. In this multi-

resolution framework, the texture can be easily

enhanced by increasing the high-frequency details when

reconstructing the image. Inspired by this idea,

Xiao and Ma[14] proposed to highlight the gradient
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information in the color transfer work. In order to

avoid color bleeding artifacts between areas of different

colors, the local gradient-saliency[15] was introduced

into an interactive colorization optimization framework,

with which the relatively important content in some

image areas can be better handled in various color

processing applications.

How to effectively and efficiently perform color

editing is an attractive research topic. In order to

efficiently propagate the user-assigned color (and the

appearance) to the entire image, in Ref. [16], a low-rank

stochastic approximation method is introduced to solve

a sparse linear system. Xu et al.[17] constructed a KD

tree in the high-dimensional feature space to perform

the acceleration before user interaction. However,

building the KD tree is still expensive in terms of both

runtime and memory. Thus, Li et al.[18] used Radial

Basis Functions (RBF) to interpolate the propagation

method, by which the user can instantly get the

feedback of color interaction (see Fig. 2). After that,

Chen et al.[19] employed Locally Linear Embedding

(LLE)[20] to accurately represent the geometric structure

and to propagate edit operations specified by a user.

Following this idea, in Ref. [21] an adaptive pixel

neighborhoods decision model is introduced to improve

the representation of each pixel’s manifold structure.

By jointly considering spatial distance, sample location,

and appearance, a sparse editing model[22] is proposed

to intelligently propagate the desired color on object

level, where a high-dimensional Gaussian filtering is

employed and thus much less color samples are needed

in comparison with other methods. Interestingly, due

to the excellent advantages of latest neural networks

on feature classification and learning, deep learning

based colorization is also being explored. For example,

to perform gray-to-color conversion in Ref. [23],

the target chrominance of a gray image is obtained

from a reference database with a neural network

where the connections between neurons are based on

extracted pixel-level feature descriptors. This work

heavily depends on high-quality segmentation of an

image, and the network would introduce noise around

low-texture areas. To remove such noise, the authors

further applied a joint bilateral filter to smooth the

learned color. In comparison, another method proposed

in Ref. [24] jointly learns global and local features for

an image, and it works in an end-to-end style from a

large dataset to generalize to various types of images.

Note that these methods are imperfect for semantic-

level colorization due to the limitation of robust scene

understanding.

Color correction is also well-studied in many

image composition-oriented applications. Taking image

stitching as an example, Afifi and Hussain[25] proposed

a modified poisson blending technique to reduce the

color bleeding artifacts by leveraging pixels from

both the source and the target images boundaries

in the blending process. Qian et al.[26] performed

manifold alignment not only to preserve the local

geometries of color distribution but also to match

corresponding pixels. Besides that, color correction

is applied to align the temporal appearance fluctuation

for photo collections[27, 28] and videos[29]. Similarly,

a color state smoothing processing is proposed with

a `1 optimization model for video tonal adjustment

in Ref. [30], where a color state is a representation

of the exposure and white balance of a frame. The

blind temporal consistency[31] is then introduced to

automatically change the video rendering style. This

method considers the temporal consistency and scene

dynamics using time-varying scene warping under a

general optimization model, so it is still sensitive

to the correspondence construction. Researchers also

considered aligning the color for video sequence

matching (see an example in Ref. [32]). Recently,

color retargeting[33] has been introduced for the user to

Fig. 2 Efficient color propagation for images and videos. Examples are from Refs. [17, 18].
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interactively edit the variable color. In such method, the

output image is efficiently generated by optimally re-

sampling the pixels from multiple time-lapse images.

In general, by benefiting from the ongoing advances

on various image color processing techniques, future

image/video color applications are being facilitated

towards real-time manipulation and more intelligent

interaction.

2.2 Multiview color correction

Because multiview video is recorded by different

cameras, apparent inter-view color variations would

be generated due to uncalibrated camera parameters,

global lighting conditions, etc. Misaligned colors

would result in visual fatigue, binocular rivalry, and

other negative 3-D viewing effects. Moreover, inter-

camera color inconsistencies may severely affect the

view synthesis quality and multiview compression

performance. Thus, multiview color correction is

usually applied with a color mapping, by which the

color of the input view is adjusted to become as

consistently as possible to that of the reference view. In

comparison with single image based color processing

techniques, multiview color correction further exploits

both temporal consistencies in the same viewpoint and

inherent coherency between multiple viewpoints.

In a typical multiview video processing pipeline (see

Fig. 1), color correction can be applied as a part of

the data acquisition unit[34]. However, most of existing

solutions are either (1) carried out as a prefilter before

compression or representation, (2) integrated inside the

video encoder, or (3) post-processed after the video

stream is decoded.

As a prefilter. Examples in this subclass include

Refs. [35–47]. To better support the 3-D reconstruction

performance, the system proposed in Ref. [36]

comprises camera calibration and software-based color

correction as a two-phase iteration, as frequent

calibration is usually time-consuming or even

impractical. In Refs. [37, 38] temporal histogram

matching based color correction is performed, and the

authors demonstrated that their work greatly improves

the compression efficiency. Similarly, many other

color prefilting methods are introduced with the goal

of lowering bit-rates for transmission. The methods

proposed in Refs. [39, 40] further consider to use

block-based matching, which is also a commonly

employed processing block in the encoder. In Ref. [43],

color correction is first applied on specific keyframes.

A temporal variations model, which is constructed to

detect time-invariant regions, is then used to adjust

correction coefficients for other non-keyframes. In

Ref. [45] the histogram matching is built on a Group

Of Pictures (GOP). A 3-D lookup table (corresponding

to 3 color channels) implemented on GPU is also

introduced in Ref. [42] for fast color correction. As

demonstrated in Refs. [37, 39–41, 43–46], when all

videos are well aligned using color correction by such

prefilters, the efficiency of both inter-view prediction

as well as motion-compensated prediction is increased,

which in turn results in improved multiview video

compression performance. On the other hand, some

prefilters would also introduce negative visual artifacts

or even generate over-smoothing results. Hence the

authors in Refs. [35, 47] suggested that multiview color

correction should pay more attention on preserving the

structure information of the original videos, since the

well preserved textures are critical for content-aware

rendering (e.g., virtual view synthesis) and further

applications of interactive editing.

Inside the encoder. Color correction integrated

into the video encoder aims at better reusing the

matching, motion vectors, and other information

provided by the video encoder. Hence, integrating the

color correction inside the encoder can avoid some

redundant computations such as block matching and

residual compensation. Additionally, if compression

performance is the goal, the encoder rules will be

able to select whether or not to accept the color

correction results or to simply encode the original

content for a particular block. For instance, in Ref. [48]

the DC coefficients at macroblock (MB) level are

refined by taking into account the corresponding MB

in the reference camera. Another example on DC

coefficient modification scheme is introduced by Lee et

al.[49], and it has been adopted in the standard MPEG

Joint Multiview Video Model (JMVM) reference

software. Also in order to improve the interview motion

prediction, Yamamoto et al.[50] built a correction lookup

table when encoding the video. Although the inside

encoder color correction processing can benefit from

some intermediary information (e.g., the motion vectors

and residual matching) generated by the encoder, poor

correction by block-level matching and compensation

would result in highly complex adjustment of the whole

pipelines in both the encoder and decoder sides.

Postprocessing after decoding. Several works

perform color correction as a postprocessing phase for
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the decoded video streams. For example, inspired from

image-based colorization[11], a color annotation strategy

is proposed in Ref. [51] for block-based color fusion

optimization. Nevertheless, in MB-based color fusion

it is still difficult to avoid blocking artifacts or over

blurring effects, due to the lack of an accurate fusion

criterion.

Color compensation strategies. A critical task

in multiview color correction is to compensate for

color differences between multiple views of the

same scene. Existing color compensation methods

in this domain include using a single scaling

factor[49], low-dimensional linear matrix or combined

linear matrices[36, 38, 43, 44], Pairwise basis function[50],

accumulative histogram matching[37, 45], or high-order

polynomials[39]. Those methods using a single scaling

factor can perfectly map the average color between the

target and reference images, but they easily suffer from

over-saturation. In order to better handle linear color

scaling, linear matrix transformation based solutions are

proposed in Refs. [40, 44, 46, 51] for different color

components. Such linear transform matrices, usually

optimally solved by an over-determined linear system,

support flexible scaling operations. On the other hand,

they usually operate on 4 � 4 blocks, yielding limited

degrees of freedom. Pairwise basis function based

methods are suitable to fit various discrete processing

units of image segmentation[52] or separated Gaussian

model[53], but accurate video segmentation is still

difficult. Moreover, even if with good segmentation

results, color compensation on segmented areas or

blocks would result in outliers and the subsequent

color compensation may introduce blocking artifacts or

obvious color gaps between different areas. To address

this problem, Lu et al.[35] recently proposed to maintain

the original local texture information for each pixel, and

the global color compensation is formulated and solved

using a sparse Laplacian matrix based optimization

(see the results in Fig. 3). However, robust color

compensation for large baseline camera views under

complex lighting conditions is still an open issue.

Correspondence construction. Correspondence

matching for different views is another key issue in

multiview color correction. Features in consecutive

frames in the same view as well as in synchronized

frames from different views are supposed to appear

similar. It is therefore important to be able to match

features between these different images. In the

literature, the involved matching methods can be

classified as sparse or dense matching. For the sparse

matching methods, Scale-Invariant Feature Transform

(SIFT) is employed in Refs. [41, 44–46, 54, 55], while

Speeded-Up Robust Features (SURF) has also been

used in Refs. [35, 47]. In Ref. [45], RANSAC is

further employed to remove the outliers of the feature

points. One of the disadvantages of sparse matching

lies in relatively few detected points, such that the color

mapping would not be well performed for all image

pixels. Thus, dense matching methods have also been

introduced so as to overcome this drawback. In this

class of methods, researchers attempt to use optical

flow[47], disparity estimation[43], block matching[40],

Fig. 3 Color correction for multiview video. Examples are from Ref. [35].
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and even pre-segmented local matching[44, 52]. In

Ref. [44], the detected sparse feature points are further

used to guide the matching by combining them with

their corresponding local regions. As mentioned early,

robust multiview video segmentation involved in dense

matching is still very challenging. Moreover, dense

matching based correction methods using blocks or

segmented areas would result in obvious overlapping

between matched areas (or blocks), making color

compensation strategies much more complex.

Evaluation. Most of existing color correction

methods take a given video as the reference and the

video captured by the central camera of the acquisition

system is usually chosen as the reference. This is under

the assumption that when the scene appears natural

and consistent, other views share the most parts of

content with the central view. But in some cases it

is unreasonable to follow it if the central view is

color distorted or even the cameras are arranged in

dome, circular, or other special camera arrangements.

Therefore, several other approaches attempt to find

better reference for all input cameras. For instance,

in Ref. [45], the optimal reference view is selected by

evaluating the histogram differences between different

views. In Ref. [44], the mean value of a small window

in all corresponding views is used to maintain the

color consistency. Similar strategies can also be seen

in Ref. [39, 46]; the former method directly computes

the average color of all views, while the latter takes

the mean color, obtained from those identified common

corresponding points on the computed temporal SIFT-

flow, as the reference color.

Objective or subjective evaluation of the color

correction is an interesting but also difficult issue.

Concerning objective evaluation, the researchers

usually employ the well-known Structural SIMilarity

(SSIM) metric to evaluate the reconstructed structure

information, and the Peak-Signal-to-Noise-Ratio

(PSNR) is employed to calculate the reconstructed

color images. For example, Xu and Mulligan[56]

used the PSNR to evaluate the overlapped area for

the reference image and the color corrected one, and

calculate the SSIM as the structure similarity metric

between the target image and its color correction

version. Nevertheless, in the first step the overlapped

area pairs may not be perfectly matching between

each other, and the second step lacks the color transfer

evaluation. Even worse, although various real or virtual

views have been chosen as the reference, because

multiview videos are always captured by different

cameras, and the real scene exhibits complex lighting

and reflection conditions, no ground truth is available

yet in this domain, and thus simply calculating the

PSNR or SSIM as employed in Ref. [56] is not the

most appropriate approach to investigate the color

correction effect. To address it, in Ref. [54], a distortion

function using the gamma curve and linear transfer was

proposed. However, it is difficult to fit the uncorrected

colors between different views by just using a linear

transfer model. Recently, a forward-reverse evaluation

model was presented in Ref. [35]. As shown in Fig. 4,

the input video is firstly color corrected to match a

particular reference. Then, this result is inversely

corrected by taking the original source video as a

reference color hereby attempting to undo the initial or

forward correction. After that, PSNR and SSIM metrics

can show the quality of the twice processed frame with

respect to the original, hereby quantifying any structural

distortions that could have been introduced.

Regarding subjective evaluation of color correction

results, we note that this area is still far from being

mature. Subjective viewing tests, e.g., by applying the

color discrepancy model[57] for stereoscopic content,

would be a potential solution.

3 Multiview Video Synthesis

3.1 Virtual view synthesis

In various multiview-oriented applications, it is

common to re-render an image as if it would have

been captured by another camera. Obvious examples

are advanced immersive 3-D systems that enable free

navigation or that want to visualize dense multiview 3-

D content from a sparse set of input views[58, 59]. In

these examples, the synthesized imagery is presented to

an end user, however, sometimes view synthesis can be

of use as a building block in some other computational

Fig. 4 Forward-reverse evaluation[35] for multiview color
correction.
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pipeline. In the coding of multiview video, for

example, view synthesis has already been introduced

to improve prediction strategies[60, 61] between different

views. This improved predictions enable the encoder

to compress the multiview content more efficiently

compared to an encoder that does not exploit the

inter-view correlation. Additionally, rectification and

removal of lens distortions can also be considered as

forms of view synthesis, even though the viewpoint

may not change as dramatically compared to the other

scenarios.

3.1.1 Warping
When the content is available in the form of a textured

mesh, any viewpoint can be rendered using a computer

graphics renderer like the ones used in computer

games. However, if the content is represented as a

set of images from a (sparse) set of viewpoints, the

problem is much more challenging. Algorithms that

tackle this are referred to as Image-Based Rendering

(IBR) algorithms. When in addition to color images,

depth maps are also available, there are the so-called

DIBR methods. We focus on the latter.

In order to synthesize a novel viewpoint, we

assume that a depth map is available and the camera

is calibrated. Originally, a point Œx; y; z; 1�T (in

homogeneous coordinates) is warped to the pixel

location Œu; v; 1�T by the projection equations:

Œu0; v0; zc�
T D K � ŒRjt � � Œx; y; z; 1�T (1)

Œu; v; 1�T D Œu0; v0; zc�
T=zc (2)

where ŒRjt � is the 3 � 4 extrinsic matrix which

transforms a point from world coordinates to camera

coordinates, and K is the camera’s 3�3 intrinsic matrix

which expressed how a point in camera coordinates is

transformed to pixel coordinates. zc is the z-coordinate

of the point with respect to the camera’s axes. The final

projection is performed by dividing by zc and we obtain

the image point Œu; v; 1�T. The projection is generally

only invertible up to a scaling factor, but this scaling

factor is exactly given by the depth map.

When re-projecting the multiview image pixels to 3-

D world coordinates, they essentially form a pointcloud

which can then be rendered from another viewpoint by

projecting them on the pixel grid of the desired camera

and maintaining a z-buffer to determine which pixels

should be visible. A naive implementation would thus

apply so-called forward warping and directly warp both

the color and depth information from the source image

to the target viewpoint. However, due to discretization

of the pixel coordinates and inaccuracies in the depth

maps, this may lead to missing pixels and rendering

artifacts (This can be seen in Fig. 5.). One potential

solution to splat projected points over multiple pixels

instead of simply rounding off to a single pixel. As this

can cause over-blurring, a better approach is to firstly

warp the depth map from reference to source (forward

warp) and then use this depth map in order to sample the

colors from the reference image (backward warp). The

advantage of this two-step warping is that the virtual

depth map can first be cleaned by applying various

filtering or denoising algorithms before sampling the

colors. This can significantly reduce the number of

artifacts in the synthesized image.

3.1.2 Disocclusion handling
When changing the viewpoint on a scene, areas that

were previously occluded by some foreground object

may become visible. This is referred to as disocclusion

and results in empty areas surrounding objects in the

Fig. 5 Warping-based novel viewpoint synthesis using multiview video plus depth maps.
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synthesized image (see Fig. 5). There are generally two

ways to fill in disoccluded pixels. Some researchers

make sure the virtual depth map contains no holes.

This means that for every virtual pixel, a color can

be found in one of the camera. Others have developed

specialized inpainting algorithms, usually inspired by

those in single image/video inpainting[62] but taking into

account depth information.

Avoiding holes. In Ref. [63], a regular grid is

imposed on the depth map. The warping procedure is

then implemented as a deformation of this grid in such

a way that no holes are created. This means that in the

backward warp of the two-step process, a color can be

found for every pixel in the virtual image. A similar idea

in order to prevent holes is by firstly trying to estimate

the full depth map of the desired virtual view and then

use this depth map as a guide to sample colors from

the reference views. In Ref. [64], this is implemented

by so called plane-sweeping. Every pixel in the virtual

view is assigned a tentative depth value. Based on this

value, the pixel can be warped on multiple reference

images and a cost is computed based on how much

the references agree or disagree about the color for a

particular pixel. Next, the depth value is increased

and a new cost is computed. In the end, each pixel

in the virtual view is assigned the depth and color on

which most of the references agreed. This method is

inherently massively parallel and therefore very suited

for real-time GPU implementation. The plane sweeping

method has been shown to deliver good results for free

navigation in soccer video[65]. However, when the scene

contains complicated textures or the displacement of the

virtual camera is too large or non-linear methods like

Refs. [63, 64] will result in blurry areas and ghost edges.

Inpainting. A more common approach for

disocclusion handling is to employ inpainting

algorithms. There exist a lot of methods to erase

content from a still 2-D image or even 2-D video.

In Ref. [66], object tracking and reconstructed

homography are further introduced to preserve

temporal coherence. However, directly applying these

methods to erase disocclusion areas will generally

not generate satisfactory results. Remember that most

patch-based inpainting methods follow a kind of onion

peeling approach where iteratively, a region of the

hole boundary is filled in by a patch that resembles

the overlap with the already known area. The filling

order is driven by the presence of structures in the

image. Disocclusion regions however have a clear

physical origin and it is known that they should be

filled in with only patches that are sampled from the

scene’s background. Therefore, various view synthesis

algorithms in the literature adapt a classical 2-D image

inpainting algorithm in order to make them depth aware

and avoid the bleeding artifacts that would otherwise

occur (see Fig. 6).

The first class of existing inpainting methods is

based on interpolation or diffusion. Smaller holes may

be filled in using either Gaussian filtering or median

filtering, while for larger holes an iterated diffusion

process makes sure that strong contours are extended

in the disocclusion hole[67]. These kinds of methods

are simple and efficient for smaller disocclusion and

content with simple textures.

For larger disocclusion holes, most researchers tend

to go for a patch-based method, usually based on

Criminisi et al.’s work[68]. In Ref. [68], the border

of the hole is referred to as the fill front @˝ (see

Fig. 7). In every iteration, the pixel p of the highest

priority P.p/ is selected and a patch  .p/ around it

is extracted. Since p 2 @˝,  .p/ overlaps with the

known region of the image. Based on this overlap,

a patch O .p/ is found such that the sum of squared

differences SSD. .p/; O .p//, computed only on the

known pixels of  .p/, is minimized. The priority

function P.p/ is constructed in such a way that patches

that extend edges are favored over others. Because of

their use of patches and the clever choice of P.p/, the

method of Ref. [68] is able to preserve both the texture

and structure of the image.

Daribo and Pesquet-Popescu[69] extended Ref. [68]’s

method to inpainting disocclusions by refining

calculation of P.p/ and the search for O .p/ by taking

the depth information into account. Similarly, Gautier

et al.[70] used a tensor-based structure propagation

approach to refine the priority of structural textures

Fig. 6 Bleeding of foreground object when classic 2-D image
inpainting is used to fill the disoccluded area after 3-D
warping.
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Fig. 7 Inpainting schema: the region ˝̋̋ needs to be filled by
copying and pasting patches from the known region I–˝̋̋ .

based on their local geometry-based inpainting

strategy[55]. In Ref. [71] a Hessian matrix structure

tensor is presented to construct a more robust match

priority of Ref. [68]. In these methods, depth-based

foreground and background analysis can be used

to guide the inpainting processing with reasonable

constraints[72, 73] (see an example in Fig. 8).

The main disadvantage of Ref. [68] and its extensions

is that it is a greedy method and cannot backtrack if

it at one point makes a wrong decision. In Ref. [74],

the inpainting problem was posed as an energy

minimization problem on a 2-D Markov Random Field

(MRF). Reference [74] proposes a new variant of the

classical Belief Propagation (BP) algorithm and names

it priority-BP. However, the original 2-D inpainting

method of Ref. [74] is still relatively slow even if

with clever implementations that use frequency domain

computations and multi-scale processing. Moreover,

like any regular 2-D inpainting method, it generates

artifacts by bleeding pixels from foreground objects

into the background when applied to fill disocclusioins.

In Ref. [75], the method is essentially extended by

disabling the edge of the MRF that lies on the boundary

of a foreground object and by incorporating depth

Fig. 8 Depth aware candidate search for patch-based
inpainting, with which reference patches of the disoccluded
areas (see the yellow rectangle) are preferred from the
background (see the purple area in the right sub-figure).

information in the cost function. While avoiding the

bleeding artifact, the method is not stated to have

gained a significant speedup. In Ref. [76], an additional

extension is proposed that limits the number of patches

that need to be evaluated per node in the MRF,

which greatly reduces computation time. The method

of Ref. [77] further builds these observations. This

proposed inpainting method pays more attention to the

camera movement and improves the optimal candidate

selection for the final optimization by also considering

the depth information around the disoccluded areas.

By constructing a simple but intuitive priority-function

that promotes the propagation of background pixels, the

priority-BP algorithm is accelerated.

Computational complexity. Most of the

computation time is spent on comparisons of image

patches. Patch-based methods usually have to look for

a fully known patch that would fit the already known

pixels around the disocclusion border. Exhaustive

search in high resolution video is too slow. Some

methods such as Refs. [69, 70, 77] use the depth

map in order to limit the region that needs to be

searched. Other works apply fast approximate nearest

neighbor algorithms such as PatchMatch[78], kd-

trees[79] or PatchTable[80]. Because of the efficiency

on approximate nearest-neighbor match, PatchMatch

has been applied in stereo matching[81], semantic

segmentation[82], and content completion of stereo

image pairs[83]. Moreover, a pixel-level multiview

video inpainting method[84, 85] is introduced based on

it (see Fig. 9). This technique worked multiscale and

calculates nearest neighbor fields to find the optimal

matching candidates for each pixel.

Temporal consistency. If inpainting is performed on

the same region in successive frames, it often creates

a flickering effect when playing the sequence as a

video. This can be due to the randomness in some

algorithms or due to noise in the depth maps. Ndjiki-

Nya et al.[86] proposed to build a sprite model of the

scene’s background. As foreground objects in the scene

move, occluded parts become visible and are added

to the sprite. Now, when a novel viewpoint needs

to be synthesized, the algorithm first checks whether

the sprite contains the required information and only

resorts inpainting when it does not. To compensate

for illumination changes that may occur over time,

Ref. [86] employs the seamless cloning method of

Ref. [87]. In Ref. [88], holes are classified as either

static or dynamic using optical flow. By only inpainting
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Fig. 9 Multi-scale texture inpainting for multiview video syntheisis[84].

static holes once, temporal consistency is maintained.

In Ref. [89], a background modeling based on Gaussian

Mixture Models (GMM) is proposed. They further

include motion estimation and homography estimation

based on sparse features to compensate for camera

movement.

3.1.3 Open problems
A lot of research has been done on view synthesis.

However, most of the resulting publications focus

on linear transitions between two cameras that

are relatively close together. To maintain temporal

consistency, it is often assumed that the scene

background is static. Future research will likely address

the difficulties of handling with (1) large baselines,

(2) non-linear camera paths, (3) non-horizontal camera

motion, and (4) background motion.

Furthermore, latest research focuses include deep

learning-based view synthesis, for example, combining

MRF and Convolutional Neural Networks[90], and 3-

D model assisted view synthesis[91–93]. Indeed, when

combining with image datasets or even Internet images

(see the faithful completion[94] in Fig. 10), such

advanced approaches greatly enrich existing research

directions on view synthesis of multiview video.

4 Multiview Editing and Interaction

The availability of multiple view of the same scene

makes it possible to recover the underlying 3-D

geometric structure of the scene. This information will

promote the use of object-level editing in multiview

video systems. In this section, we focus on methods

exploiting geometric information about the underlying

scene when two or more views are available. We also

review some object-level editing on single image/video

that could be generalized to multiview videos in the

future.

4.1 Single image/video editing

From the view of geometric structure understanding,

traditional editing methods can be grouped into

two categories, i.e., pixel-level editing and object-

level editing. Pixel-level editing performs pixel-wise

manipulations (color, position, etc.) as Photoshop does,

while object-level editing focuses on more semantic

operations (e.g., roll over the red car in the image) with

geometric analysis of the scene. In this section, we

focus on the progress in object-level editing for single

2-D images and videos.

Objects in a single image are usually modeled and

manipulated using 3-D model proxies. Common object-

level editing operations are then supported, such as 3-D

scaling, rotation, and translation of a particular object in

an image/video. This is contrast to classical operations

such as filtering, recoloring, inpainting and copy-and-

paste.

Hornung et al.[95] animated 2-D characters in a still 2-

D image. They proposed to match 3-D motion-captured

data of a human actor’s skeleton. They fit a skeleton

on the 2-D character and searched for initial pose of

the character in the motion sequence. After that, an

animation is generated using shape deformation in the

image space guided by the projected joint positions

of the skeleton in the motion sequence. Zheng et
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Fig. 10 Faithful image completion using Internet images. Examples are from Ref. [94].

al.[96] manipulated scene objects using cuboid proxies,

i.e., operating an object means operating their cuboid

proxy. With the objects of interest annotated by a

user, they divide the input image into a background

layer and textured 3-D cuboid proxies. The scene’s

geometry (occlusion, orientation, coplanarity, etc.) is

also analyzed, which in turn enables some smart

object-level manipulations, e.g., translation, rotate, and

deformation. Unlike the simple cube model used in

Ref. [95], Chen et al.[97] proposed to represent the 3-

D model of the objects of interest by a generalized

cylinder, cuboid or similar primitives, which covers

a larger range of man-made objects. The model is

extracted using just three strokes, called 3-sweep, which

generates a 2-D cross profile of the model using the first

two strokes and sweeps along a straight or curved axis

to fit the final 3-D model using the third stroke. With a

stock 3-D model database available, Kholgade et al.[98]

aligned a best 3-D model to the object in the 2-D image.

They completed the hidden parts of the image objects by

leveraging symmetries and the stock model appearance,

which supports more powerful 3-D operations, e.g., flip,

on objects of interest.

Instead of recovering the exact geometries of objects,

Hoiem et al.[99] learned a statistical model of geometric

labels, which decompose the outdoor scene image into

three parts, i.e., “ground”, “sky”, and “vertical”. Given

an input outdoor scene, the horizontal positions of

objects, i.e., “vertical”, can be estimated from the

geometric labels of the image predicted by the statistical

model.

Although some pixel-level editing operations can

be directly applied to videos, e.g., color edit

propagation[17], applying object-level editing to video is

usually more elaborate with spatiotemporal constraints.

Lu et al.[100] proposed to edit individual objects along

their time-lines in videos (see Fig. 11). An individual

object is kept at its original spatial location, however,

Fig. 11 Time-line editing for video objects. Spatio-temporal
trajectories of objects are extracted and rearranged to
produce outputs with different time effects. Examples are
from Ref. [100].

it may appear at a different time, thus resulting in

new temporal relationships between objects, which

enables object-level effects, such as slow motion, fast

motion, and even time reversal effects, as shown

in Fig. 11. Zhang et al.[101] proposed a method to

cutout videos, i.e., extracting moving objects from

videos, with less user interaction and fast feedback by

exploring spatiotemporal relationship of neighboring

patches from video frames and further optimizing the

object extraction using graph cut. In order to remove

the distraction objects during video stabilization, Zhang

et al.[102] proposed to plan the new camera path to

avoid distraction objects. A two-pass optimization is

exploited to achieve this goal. In the first pass, an

initial smooth camera path which avoids distractions

and keeps as much significant original content as

possible is obtained. Then the initial camera path is

further segmented to shorter paths with simple models,

e.g., zoom, rotation, and translation. These models

are linearly fitted, followed by a second optimization

aiming to eliminate undesired contents while smooth

the final path to the fitted models across all segments.

4.2 Multiview video editing

A special kind of multiview, so called stereoscopic 3-D
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vision or just stereo, contains only two slightly different

views, which produces horizontal displacements, called

retinal disparities, between corresponding points in the

retinal images of eyes. The corresponding difference in

a 2-D image pairs is called pixel disparity (referred to

as disparity afterwards) accordingly, resulting in depth

perception when stereoscopically viewed.

Compared to the single image/video, disparities

from stereo correspondences provide information

about the depth distribution of the scene. So,

processing the stereoscopic data requires careful

attention on disparities, which would result in wrong

depth perception if improperly manipulated. More

importantly, improper stereoscopic content may cause

visual fatigue and discomfort[103], reducing the

visual experience of 3-D. Some perception models

on disparity[104, 105] and motion of disparity[106–108]

have been proposed to guide the manipulation of

stereoscopic content to ensure the disparity lying in the

zone of comfort[109]. Thus, how to remap the original

disparities to a new range of disparity while keeping

the right stereopsis in stereoscopic images becomes the

fundamental part in all stereoscopic applications, such

as retargeting[110–114], warping[115–119], completion[120],

etc.

Lang et al.[110] adjusted the disparities to a new

rang according to user specified nonlinear maps. In

order to display original stereoscopic content on other

devices, seam carving[121] on single 2-D image has

been extended to stereo image pairs[111]. Lee et al.[112]

proposed to resize stereoscopic images according to

different layers of depth and colors. Chang et al.[113]

kept salient objects in the comfort zone of displays

while retargeting stereo content.

A typical processing pipeline of stereoscopic image

warping from Ref. [118] is presented in Fig. 12.

The authors aim to paste a 2-D source into a target

stereoscopic scene. Firstly, the underlying disparities

of source and target are estimated. Then the source

disparities are remapped to be consistent with their

surroundings in the source scene. The final composition

results are generated using traditional 2-D image

warping methods with the stereo correspondences

constraints guided by the underlying disparities. On

the other hand, Lo et al.[115] and Luo et al.[116] both

selected stereo content of interest somewhere else

and composited it into new positions with seamless

warping. Niu et al.[117] adapted 2-D image warping to

stereo images. Du et al.[119] generated images under

Fig. 12 Warping-based stereoscopic image editing.
Examples are from Ref. [118].

new viewpoint using feature correspondences and line

constraints between the stereo image pair. Disparity

information is also considered in optimizing stereo

patch-based synthesis[114, 120] to enable a wide variety of

stereoscopic image editing applications, such as texture

synthesis, content adaptation, and inpainting.

Some editing tools on 2-D images/videos have

also been extended to stereoscopic videos with

additional constraints on stereo consistency. Taking

the spatiotemporal stereo consistency into account,

Raimbault and Kokaram[122] reduced the amount of

candidate pixels to search for stereo video inpainting

when using exemplar-based techniques. Liu et al.[123]

found out that the low-rank subspace constraint for

monocular vidoes[124] holds for stereoscopic videos and

stereoscopic video stabilization can be achieved without

explicit 3-D reconstruction. Kopf et al.[125] retargeted

stereoscopic videos considering content saliency and

map warps from left view to right view to guarantee

the stereo consistency. The perceptual comfort zone

of disparity is also considered in Ref. [126]. Recently,

Wang et al.[127] provided a framework to automatically

adjust the depth of stereoscopic video to the zone of

comfort using perceptual models on disparity, motion

of disparity, stereo window violation, etc.

Compared to the only two views in stereoscopic 3-

D vision, more views of the same scene will help

to reconstruct a more accurate 3-D geometry of the

scene. Jiang et al.[128] estimated a 3-D pointcloud from

multiple views by structure-from-motion. These 3-D

points together with color and texture information of

each view are later used to identify multiple groups

of repetitive structures, e.g., windows and balconies.

Their method can detect repetitive structures on curved

surfaces and in turn consolidate the underlying point
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cloud. With the help of reconstructed sparse 3-D point

cloud of the scene, Laffont et al.[129] obtained a rich

intrinsic image decomposition for outdoor scenes with

reflectance, sum illumination, sky illumination, and

indirect illumination. Djelouah et al.[130] applied graph

cut to multi-view images/videos to segment out objects

of interest. Segmentation information is propagated

between viewpoints via the projections of a sparse 3-

D sampling to each view and temporally evolved along

both an optic flow and a SIFT flow.

Graph models have also been exploited in some

other multiview video editing. Fu et al.[131] presented

a method to summarize multiview videos. Original

multiple videos are divided into different shots, on

which a spatiotemporal shot graph considering temporal

consistency and content similarity is built. Then, the

summarization is generated by clustering similar shots

favoring interesting event via random walks and solving

a multi-objective optimization. Their method results

in different objective summarization, such as minimum

length, maximum informative coverage, and multi-

level summarization. Shamir et al.[132] focused on the

gaze center of attention, called 3-D joint attention, of

social cameras which are capturing a same activity and

provide a single coherent “cut” video of the activity.

A trellis graph takes the joint attention in frames of

each camera as nodes and connects edges between

the nodes, representing transition of cameras. A path

from start time to the end time in the graph defines

an output movie and the best “cut” considering the

cinematographic guidelines is optimized using dynamic

programming. Wang et al.[133] proposed to temporally

align two videos taken from the same scene at different

times by computing a minimum path in a graph defined

by content similarity of all pairs of frames from the

two videos. The globally optimal temporal alignment of

multiple videos is achieved via the minimum spanning

tree of the graph induced by the pairwise alignment

cost.

4.3 Open problems

Current multiview video editing methods are mainly

focused on the analysis of relationships among contents

from different views. These methods[130–133] usually use

a graph to model the relationships. However, explicit

3-D geometries of objects are not reconstructed in

these scenarios, thus, these methods are less capable of

supporting object-level editing as in 2-D images[96–98].

Although a precise 3-D reconstruction from single

image/view is still a challenge in computer vision,

multiview videos provide much rich spatiotemporal

structure information, which would facilitate geometric

reconstruction. With depth images available, it would be

more convenient to understand the geometric structure

of scene[134].

5 Discussion and Conclusion

DIBR-based multiview video synthesis and editing

aims to effectively support various potential solutions

and applications on the full chain of 3-D free viewpoint

TV displays. In this paper we have discussed the state-

of-the-art DIBR-based multiview video processing,

and particularly we focused on several key topics on

multiview video-based synthesis, and interaction, i.e.,

color correction, virtual view synthesis, and interactive

editing. Besides that, corresponding techniques of these

topics on single image/video-based processing are

reviewed.

The ongoing advances on image/video-based

processing, such as deep learning and 3-D dataset

analysis and modeling, are rapidly boosting almost all

of the relevant issues on multiview video processing.

As has been shown in the latest literature, when

such modern and powerful techniques combined

with multiview video resources, great potential could

be further exploited. The foreseeable future work

should consider synthesis and editing using semantic

understanding (e.g., Refs. [134, 135]), shape extraction

(e.g., the 3-Sweep interaction[97] in Fig. 13) and

Fig. 13 3-Sweep: Object-level editing in 2-D images
is enabled after 3-D models are extracted with user
interactions. Examples are from Ref. [97].
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efficient learning-based training models. Besides that,

the incorporation of view synthesis along with highly

intelligent compression and transmission strategies

(e.g., 2-D texture preservation[136] and 3-D distortion

minimization[137]) is one of the potential avenues for

future work. We believe that with the progress of

such novel techniques on multiview video processing,

more and more free viewpoint TV displays and 3-D

immersive interaction-oriented applications can reach

the consumer and prosumer markets in the near future.
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