
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll07/09llpp660-667
Volume 21, Number 6, December 2016

Virtual Machine-Based Task Scheduling Algorithm in a Cloud
Computing Environment

Zhifeng Zhong�, Kun Chen, Xiaojun Zhai, and Shuange Zhou

Abstract: Virtualization technology has been widely used to virtualize single server into multiple servers, which not

only creates an operating environment for a virtual machine-based cloud computing platform but also potentially

improves its efficiency. Currently, most task scheduling-based algorithms used in cloud computing environments

are slow to convergence or easily fall into a local optimum. This paper introduces a Greedy Particle Swarm

Optimization (G&PSO) based algorithm to solve the task scheduling problem. It uses a greedy algorithm to quickly

solve the initial particle value of a particle swarm optimization algorithm derived from a virtual machine-based

cloud platform. The archived experimental results show that the algorithm exhibits better performance such as

a faster convergence rate, stronger local and global search capabilities, and a more balanced workload on each

virtual machine. Therefore, the G&PSO algorithm demonstrates improved virtual machine efficiency and resource

utilization compared with the traditional particle swarm optimization algorithm.

Key words: cloud computing; virtual machine; G&PSO algorithm

1 Introduction

Along with the development of grid computing,

high-performance storage transmission technology,

the WEB2.0, and virtualization technology, cloud

computing has become a popular commercial

technology and uses virtualization technology to

provide users with an infrastructure, a platform, and

software services from the data center[1, 2].

The principle of virtualization technology is

to virtualize computer hardware to run multiple

independent operating systems in the same hardware

� Zhifeng Zhong, Kun Chen, and Shuange Zhou are with College

of Computer and Information Engineering, Hubei University,

Wuhan 430062, China. E-mail: fzhong@hubu.edu.cn;

ckjack2006@163.com; 1224242749@qq.com.

� Xiaojun Zhai is with Department of Electronics, Computing

and Mathematics, University of Derby, Derby DE22 1GB, UK.

E-mail: x.zhai@derby.ac.uk.

�To whom correspondence should be addressed.

Manuscript received: 2016-07-14; revised: 2016-08-18;

accepted: 2016-10-03

environment. Consequently, each operating system

can run multiple applications simultaneously in

independent physical spaces, which significantly

improves the efficiency of the cloud computing

platform[3]. Server virtualization technology is one of

the key technologies in the virtualization technology

family. In this technology, a single physical machine

can be instantiated into multiple virtual machines, and

the remaining computing resources of each physical

machine can be mapped and virtualized into a new

virtual machine for other users[4–6]. In general, the

actual utilization of the physical server is only 7%

to 12%. Therefore, running multiple virtual servers

on a single server would not only reduce the overall

business cost but also greatly improve the utilization

of the servers[7, 8]. In fact, the greatest potential of

virtualization is to integrate x86 servers into a single

private cloud with multiple independent virtual servers

to provide greater utilization efficiency of the available

resources[9, 10].

As cloud computing environments need to scale

to a large number of users and tasks, designing a

scheduling algorithm that can efficiently distribute the

Zhifeng Zhong et al.: Virtual Machine-Based Task Scheduling Algorithm in a Cloud Computing Environment 661

tasks and resources becomes a key point for research.

Current research uses probabilistic techniques, e.g.,

greedy algorithm, genetic algorithm, the Particle Swarm

Optimization algorithm (PSO), and the Ant Colony

(ACO) algorithm. In Ref. [11], a greedy algorithm was

used to schedule tasks to improve the overall quality

of the cloud computing service. Similarly, genetic

algorithm[12] and genetic ACO algorithm[13] have also

been used to schedule cloud computing tasks to reduce

completion time and cost. In Ref. [14], virtual machine-

based particle swarm and Tabu Search (TS) algorithms

were introduced to enhance population diversity in

order to avoid a particle being prematurely trapped

in local optimization and to eventually improve the

scheduling performance of the virtual machine tasks

in a cloud environment and reduce the task execution

time. However, there are still opportunities to improve

the existing algorithms. For example, although the

genetic algorithm has a fast random global search

ability, its implementation is complicated and easily

falls into local optimum. Despite its stronger global

search ability, the search direction of the PSO algorithm

is difficult to control and exhibits different convergence

rates during the initial and later stages, which means

that the result of the optimization is difficult to predict

and control[15]. However, compared with the genetic

algorithm, PSO has a fast convergence rate, better

optimization performance, and is easy to implement[16].

Conversely, the greedy algorithm has a better local

search ability. This algorithm attempts to access the

local optimal solution. However, it often just gives an

approximate solution. Therefore, the PSO algorithm

does not have strong global search capabilities[17].

Although the ACO algorithm has better optimization

ability, at the initial stage, it lacks information sources

and its convergence rate is slower compared with other

algorithms[18].

Existing task-scheduling algorithms aimed at the

cloud platform are achieved by large-scale server

clusters and virtual machine clusters. However, these

algorithms do not consider the requirements of

medium- and small-sized enterprises that use only a

single server to build their own cloud platform to

cope with growing business requirements. Therefore,

a highly-efficient virtual machine task-scheduling

algorithm is required to improve the overall efficiency

and operation cost of such a cloud platform. Based

on this problem, this paper introduces a Greedy

Particle Swarm Optimization (G&PSO) based task-

scheduling algorithm for virtual machine based on a

cloud computing platform. The major advantage of

the proposed algorithm is that it has strong local and

global search abilities, along with a fast convergence

rate. The archived experimental results show that

the proposed algorithm has a faster convergence rate

at earlier stage iterations and stronger local search

capability during later periods. This means that it

outperforms the traditional PSO algorithm with better

global optimization performance and overcomes its

shortcoming with greater randomness. Within a cloud

environment deployed by a single server, using the

proposed algorithm will not only reduce the total task

completion time but also will balance the system load

and improve the efficiency of task scheduling and

resource utilization of the cloud computing platform.

2 Cloud Computing Task Scheduling Problem

The essence of the resolution of the cloud computing

task-scheduling problem is to set up a scheduling policy.

Based on this, suitable mapping relationship can be

established between application tasks and computing

resources in order to achieve reasonable distribution and

efficient execution of application tasks using the limited

computing resources[19]. In this paper, the proposed

cloud computing task-scheduling algorithm virtualizes

a single server into multiple virtual machines, then

assigns T independent tasks to M heterogeneous virtual

machines for execution (i.e., one task can not be

run on two virtual machines, each virtual machine

can only handle one task at one time and each has

different properties), thus minimizing the time required

to complete all the tasks[20]. In order to simplify the

simulation process, this paper will ignore the memory

and other resource requirements of the tasks. Moreover,

the execution time of each task is only related to the

size of the task and the property of the virtual machine.

The task set is represented as TS D ft1; t2; : : : ; tng, and

the task size is expressed as MI (Million Instructions).

The performance of the virtual machines is represented

as Millions of Instructions Per Second (MIPS). The

expected execution time of task TSi run on virtual

machine VMSj can be expressed as an ETC matrix[21]:

ETC.i�j / D

2
66664

ETC.11/ ETC.12/ � � � ETC.1j /

ETC.21/ ETC.22/ � � � ETC.2j /
:::

:::
:::

:::

ETC.i1/ ETC.i2/ � � � ETC.ij /

3
77775

(1)

662 Tsinghua Science and Technology, December 2016, 21(6): 660–667

where ETC.ij / D MITSi
=MIPSVMSi

; i 2 f1; 2; : : : ; T g;
j 2 f1; 2; : : : ; M g , T is the number of tasks, M is the

number of virtual machines, and the load on the virtual

machine VMSj is the total execution time of tasks,

which is expressed as

LoadVMSj
D
X

ETC.ij / (2)

The function of the system load balancing degree is

defined as

Loadlevel D min1�j�M LoadVMSj

max1�j�M LoadVMSj

(3)

In this function, min1�j�M LoadVMSi
is the

minimum time for all the virtual machines to complete

all the tasks above, and max1�j�M LoadVMSj
is the

maximum time for all the virtual machines to complete

all the tasks above. So the function is the ratio of the

minimum load to the maximum load. The following

conclusions can be drawn from Formula (3):

(1) max1�j�M LoadVMSi
D 0 means the tasks do not

yet start to schedule.

(2) Loadlevel D 0 and max1�j�M LoadVMSj
DŠ0

mean there are idle virtual machines.

(3) Loadlevel D 1 means that the maximum load is

equal to the minimum load, and that the load balance

is the best, i.e., the closer to 1, the better.

3 Design of the Cloud Computing Task-
Scheduling Optimization Algorithm

3.1 G&PSO

The PSO algorithm was first proposed by Eberhart

and Kennedy in 1995, and its basic concept is based

on a study of birds foraging behavior[22]. Thus, PSO

algorithm was inspired by the behavioral traits of

biological group and subsequently has been used to

solve and optimize problems.

Important scheduling goals in a cloud computing

environment are the reduction of total completion

time[23] and balance of the system load[24]. The

proposed algorithm first uses a greedy algorithm to

quickly find the initial solution Gov and the expected

total completion time Gct, then initializes the global

optimal solution gbest of the PSO algorithm by Gov

and uses 1=Gct as the updating threshold for the best

position of particle swarm.

3.2 Encoding and decoding of particles

The direct encoding mode is also adopted in this

paper; each particle’s position represents a feasible task

allocation scheme and the length of the particle depends

on the number of tasks. Assume that T (the number

of tasks) is 10 and M (the number of available virtual

machines) is 5, then each particle from the set f5, 3,

2, 5, 2, 1, 3, 2, 4, 3g corresponds to a feasible task

allocation scheme, thus the particles can be encoded.

In this allocation scheme, tasks (1, 4) are allocated to

the fifth virtual machine, tasks (3, 5) are allocated to the

second virtual machine, tasks (2, 7, 10) are allocated to

the third virtual machine and task 6 is allocated to the

first virtual machine, thus the particles can be decoded.

3.3 Initialization of particles

S, T, and M denote the size of particle swarm, and

the number of tasks, the number of virtual machines,

respectively. The location of the i-th particle is thus

represented as

Pi D fPi1; Pi2; : : : ; Ping; 1 � n � T; 1 � i � S ,

where Pij represents the i -th task that is assigned to

run on the j -th virtual machine and 1 � Pij � M .

Speed Vi D fVi1; Vi2; : : : ; Ving .1 � n � T; 1 � i �
S/ and Vij must meet the condition of 1 � Vij � M .

The initial position of the particle is a random integer

selected from Œ1; M � and the speed of the particle is

a random integer selected from Œ�.M � 1/; .M � 1/�:

The best position that the entire group has experienced

(gbest) is initialized with Gov.

3.4 Fitness function

A fitness function[25] is used to evaluate the merits

of the particle positions. As the total task completion

time is the key parameter for task-scheduling in cloud

computing, the inverse of the total task completion time

is used to represent the fitness function. The fitness

function is defined as

fitness.i/ D 1

SFTi

; 1 � i � S (4)

SFT D max1�m�M

KX

nD1

VM.m; n/

!
(5)

In Formula (4), SFTi represents the time needed to

complete the task-scheduling for allocating the task

at the i -th particle. In Formula (5), SFT represents

the time needed to complete all the tasks; VM(m; n)

represents the time for the n-th task to run on the

m-th virtual machine, and K is the number of tasks

distributed to this virtual machine. Each iteration selects

the particle with a larger fitness value, and one of

these values is used as the globally optimal solution,

which means that adopting this particle’ task allocation

scheme results in the shortest completion time.

Zhifeng Zhong et al.: Virtual Machine-Based Task Scheduling Algorithm in a Cloud Computing Environment 663

3.5 Update of particles’ velocity and position

In the traditional PSO algorithm, only if the particle’s

current position has a better fitness value than

the best recorded position will the best position

be replaced by the current position. The best

position that the i -th particle has experienced is

denoted as pbest D .pbesti1; pbesti2; : : : ; pbestin/. In

the whole particle swarm, the best position that all

particles have experienced is recorded as gbesti D
.gbesti1; gbesti2; : : : ; gbestin/. In this formula, n

represents the best location of the particle experience, in

the range of the total number of tasks (1 � n � T). For

each iteration, the value of the particle’s fitness function

can be calculated using Formulas (4) and (5). The

value of particle’s current fitness function is denoted

as f .pi .t//, and during the next iteration, the value is

denoted as f .pi .t C 1//.

pbesti .tC1/D
(

pbesti .t/; iff .pi .tC1/�f .pbesti .t//I
pi .t C 1/; iff .pi .t C 1/ f .pbesti .t//

(6)

f .max(pbest.t// D getMax.f .pbest1.t//;

f .pbest2.t//; : : : ; f .pbests.t/// (7)

gbest.t/D
(

max(pbest.t//; iff .max(pbest.t//>f .gbest/I
gbest; else

(8)

In this paper’s algorithm, during the each iteration, if

the particle’s current position has a better fitness value

than the last position, the position will be updated.

In the particle swarm, the particle owning the best

fitness value, when its fitness value is better than 1/Gct

corresponding to the scheduling scheme Gov, which is

calculated by the greedy algorithm, its position will

be updated. When the above conditions are met, the

particle’s velocity and position will be updated.

vi .tC1/ D !�vi .t/Cc1�Rand./�.pbesti .t/�pi .t//C
c2 � Rand./ � .gbest.t/ � pi .t// (9)

pi .t C 1/ D pi .t/ C vi .t/ (10)

In the above formulas, t represents the number of

iterations; ! is the inertia weight; c1 and c2 are learning

factors, and generally c1= c2 =2. Rand./ is a random

value within [0, 1]. During the process of iteration, the

position of the particle is limited to a specific range

(1 � pi .t/ � M), at the same time, pbest and gbest

are also updated accordingly, and finally gbest is output

as the globally optimal solution.

3.6 Process of G&PSO

The specific steps of the proposed G&PSO algorithm

are as follows:

Step 1 Initialization of the particle swarm. The

position and velocity of the particles are first initialized,

and the greedy algorithm is used to quickly obtain

the initial solution Gov (i.e., a feasible task allocation

solution) and the expected total task completion time

Gct; then, the best position gbest that the particles

experience with Gov is initialized.

Greedy procedure: The procedure starts from index

row 0 of the ETC matrix; it tries to allocate tasks to

the virtual machine from the last column of each row in

the ETC matrix. If the choice made is better than the

others, then the assignment is finished; otherwise, the

task is assigned to the virtual machine that makes the

current result optimal. Moreover, if there are multiple

allocation plans available, then the task is assigned

to the virtual machine that has the least tasks, thus

achieving simple load balancing[26].

Step 2 Calculate each particle’s fitness function

value using Formulas (4) and (5).

Step 3 Update the optimal. Update the individual

and group optimal based on Formulas (6)–(8):

(1) Compare the value of the particle’s fitness

function to its individual optimal pbest, if the value of

the particle’s fitness function is better than pbest, then

replace the value of pbest with the current position of

the particle.

(2) Compare the particle’s fitness function value to

its group optimal gbest, if the fitness function value

of the particle is better than that of the initial solution

calculated by the greedy algorithm, then reset the value

of gbest with the particle’s current position.

Step 4 Update the speed and position of the particle

using Formulas (9) and (10) respectively.

Step 5 Stop conditions. The loop will return to Step

2 until the stop conditions are met.

The flowchart of the proposed G&PSO algorithm is

shown in Fig. 1. The flowchart of the Greedy algorithms

is shown in Fig. 2.

4 Simulation and Analysis

To validate the feasibility and performance of the

G&PSO algorithm in terms of scheduling ability in a

cloud, we used the cloud computing simulation platform

Cloudsim[27], and extended the DataCenterBroker class

of the platform by adding a method to implement

664 Tsinghua Science and Technology, December 2016, 21(6): 660–667

ov ovctG G G

1/Gct

 as global extremumset Gbest

Fig. 1 Proposed G&PSO algorithm.

greedy particle swarm algorithm class. Eclipse 4.3

IDE was used for the implementation. The computer

architecture and operating system of the cloud data

center were x86 and Linux, respectively, where each

virtual machine had a 1.2 GHz CPU, 2 GB RAM, and

100 GB hard drive, and all virtual machines were set

to Xen. The proposed experiments were performed at

four different scheduling scales: (1) 5 virtual machines

with 50 tasks; (2) 5 virtual machines with 500 tasks;

(3) 10 virtual machines with 50 tasks; and (4) 10

virtual machines with 500 tasks. The traditional PSO

algorithm and the proposed G&PSO algorithm were

applied to each scheduling scale. The main parameters

of both algorithms are shown in Table 1.

Figures 3 and 4 show the total completion times for

5 virtual machines with 50 and 500 tasks respectively.

As can be seen from Figs. 3 and 4, when using the

proposed G&PSO algorithm, the total completion time

for the assigned tasks was 10 s less than using the PSO

algorithm. In addition, the proposed G&PSO algorithm

had less iteration, a faster convergence speed, and less

randomness in the processes of optimization for small-

Input the number of tasks i and
virtual machines j. Initialization
ETC matrix (Row number R,

column number C)

Allocate the task of R = 0 to
the C’s largest virtual mach

directly

R=R+1

C=C 1

Try to assign to C’s
largest virtual machine

Try to allocate to column
number (C 1) virtual

machine

The current
task completion time are

equal?

Allocate to the virtual
machine which has
assigned less task

The current
task completion time is

relatively shorter?

Complete a task allocation
and record column number

Output the sequence of allocation and
the desired task total completion time

Fig. 2 Proposed greedy algorithm.

Table 1 Main parameters of the algorithm.

Name Value

Population size (s) 100

Number of virtual machines (VM) 5

Performance of virtual

machines (MIPS)
f500, 600, 700, 800, 900g

Number of tasks 50, 500

Length range of task (MI) [500, 2000]

Inertial factor (W) 0.9

Learning factor (c1) 2

Learning factor (c2) 2

Maximum number of iterations 200

or-large scale task scheduling. Figure 3 shows that

although the total task completion time of the proposed

G&PSO algorithm when scheduling a large-scale task

is longer than the PSO algorithm at the initial stage

of iteration, the proposed algorithm has a shorter total

task completion time. It also has a stronger ability for

local searching, which means that it has, to some extent,

Zhifeng Zhong et al.: Virtual Machine-Based Task Scheduling Algorithm in a Cloud Computing Environment 665

Fig. 3 Completion time vs. iteration with 50 tasks.

Fig. 4 Completion time vs. iteration with 500 tasks.

overcome the shortcoming of the PSO algorithm with

its insufficient local search ability. Compared with the

PSO algorithm, when scheduling a large-scale task, the

proposed algorithm shows a stronger ability within the

optimization process and has a better scheduling effect.

The number of tasks assigned to each virtual machine

is shown in Fig. 5 (50 tasks) and Fig. 6 (500 tasks). In

terms of utilization of the virtual machine resource, as

shown in Figs. 5 and 6, when performing large-or-small

scale task scheduling, the number of tasks assigned to

each virtual machine is closer to the mean value when

using the G&PSO algorithm. This results in improved

Fig. 5 5 virtual machines with 50 tasks.

Fig. 6 5 virtual machines with 500 tasks.

utilization of system resources and avoids a workload

overload on the virtual machines.

Figure 7 shows that G&PSO algorithm has better

load balancing performance compared with the PSO

algorithm. Generally, using more virtual machines does

not mean obtaining a better result, as configuring each

virtual machine often consumes more system resources

and eventually leads to a decrease in the overall system

performance. Due to the limitation of the physical

hardware in the general host and network bandwidth,

the number of virtual machines assigned to a single host

should be set to no more than 10 to achieve the best

system performance.

To further verify the performance of the proposed

G&PSO algorithm of load balancing in virtual

machines, the number of virtual machines was

increased from 5 to 10 and their processing capabilities

updated to f500, 600, 700, 800, 900, 1000, 550, 650,

750, 850g. The number of tasks remained unchanged,

and those tasks are assigned to each virtual machine

shown in Figs. 8 and 9.

In Figs. 8 and 9, the simulation results for both

large-scale and small-scale task schedulings are shown.

When using the proposed algorithm the number of tasks

Fig. 7 Systems load balancing degree.

666 Tsinghua Science and Technology, December 2016, 21(6): 660–667

Fig. 8 10 virtual machines with 500 tasks.

Fig. 9 10 virtual machines with 50 tasks.

assigned to each virtual machine is still closer to the

mean value and the system load is still balanced.

In conclusion, the proposed G&PSO algorithm

achieves the goals of shorter task completion time

and a more balanced virtual machine load; the

comprehensive efficiency of the cloud computing

platform has therefore been improved.

5 Conclusion

This paper aimed to solve the task-scheduling problems

of virtual machines on a cloud platform, and the

G&PSO algorithm was proposed to reduce the

overall completion time and balance the workload in

each virtual machine. Compared with the traditional

PSO algorithm, the G&PSO algorithm has a faster

convergence rate in the early stage of iteration, a

stronger local search capability during the later period

of iteration, better global optimization performance,

and overcomes the shortcoming of the traditional

algorithm with less randomness. On a cloud platform

simulated by Cloudsim (Data center disposes one

server), the proposed algorithm not only reduces the

total task completion time, but also balances the system

load and improves the comprehensive efficiency of

the entire cloud platform. Although only the size of

tasks and processing capacity of the virtual machines

were considered when estimating the task completion

time, there are more factors to be considered in real

applications, such as the effects of bandwidth and data

transmission.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,

et al., Above the clouds: A Berkeley view of cloud

computing, Technical Report No. UCB/EECS-2009-28,

University of California at Berkeley, USA, 2009.

[2] A. Matsunaga, M. Tsugawa, and J. Fortes, CloudBLAST:

Combining MapReduce and virtualization on distributed

resources for bioinformatics applications, in IEEE Fourth
International Conference on Escience, 2008, pp. 222–229.

[3] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C.

M. Martins, A. V. Anderson, S. M. Bennett, A. Kagi, F.

H. Leung, and L. Smith, Intel virtualization technology,

Computer, vol. 38, no. 5, pp. 48–56, 2005.

[4] J. E. Smith and R. Nair, The architecture of virtual

machines, Computer, vol. 38, no. 5, pp. 32–38, 2005.

[5] L. X. Shi, Utility maximization model of virtual machine

scheduling in cloud environment (in Chinese), Journal of
Computers, vol. 36, no. 2, pp. 252–262, 2013.

[6] J. Daniels, Server virtualization architecture and

implementation, Crossroads, vol. 16, pp. 8–12, 2009.

[7] H. Liu, A measurement study of server utilization in

public clouds, in IEEE Ninth International Conference on
Dependable, Autonomic and Secure Computing, 2011, pp.

435–442.

[8] H. González-Vélez and M. Kontagora, Performance

evaluation of MapReduce using full virtualisation on

a departmental cloud, International Journal of Applied
Mathematics & Computer Science, vol. 21, no. 2, pp. 275–

284, 2011.

[9] Y. Dong and Z. Zhou, X86-based system virtual machine

development and application, Computer Engineering, vol.

32, no. 13, pp. 71–73, 2006.

[10] B. Sotomayor, S. R. Montero, and I. Foster, Virtual

infrastructure management in private and hybrid clouds,

IEEE Internet Computing, vol. 13, no. 5, pp. 14–22, 2009.

[11] Q. Kang, H. He, and J. Wei. An effective iterated

greedy algorithm for reliability-oriented task allocation

in distributed computing systems, Journal of Parallel &
Distributed Computing, vol. 73, no. 8, pp. 1106–1115,

2013.

[12] S. Kaur and A. Verma, An efficient approach to genetic

algorithm for task scheduling in cloud computing

environment, International Journal of Information
Technology & Computer Science, vol. 4, no. 10, pp.

74–79, 2012.

[13] Y. Zhang, I. L. Fang, and T. Zhou, Task scheduling

algorithm based on genetic ant colony algorithm in cloud

computing environment, (in Chinese), Computer

Zhifeng Zhong et al.: Virtual Machine-Based Task Scheduling Algorithm in a Cloud Computing Environment 667

Engineering & Applications, vol. 50, no. 6, pp. 51–55,

2014.
[14] D. Hu, J. Hu, and X. Yu. Virtual machine task scheduling

algorithm based on pso in cloud computing environment

(in Chinese), Computer Measurement & Control, vol. 22,

no. 4, pp. 1189–1192, 2014.
[15] M. Jiang, Y. P. Luo, and S. Y. Yang, Stochastic

convergence analysis and parameter selection of

the standard particle swarm optimization algorithm,

Information Processing Letters, vol. 102, no. 1, pp. 8–16,

2007.
[16] D. Liu, K. C. Tan, C. K. Goh, and W. K. Ho, A multi-

objective memetic algorithm based on particle swarm

optimization, IEEE Transactions on Systems Man &
Cybernetics—Part B Cybernetics, vol. 37, no. 1, pp. 42–

50, 2007.
[17] C. Y. Liu, C. M. Zou, and P. Wu, A task scheduling

algorithm based on genetic algorithm and ant

colony optimization in cloud computing, in Proc.13th
Int.Distributed Computing and Applications to Business,
Engineering and Science (DCABES), International
Symposium on IEEE, 2014, pp. 68–72.

[18] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, Cloud

task scheduling based on load balancing ant colony

optimization, in 2011 6th Annual ChinaGrid Conference,

2011.
[19] P. Wang, Research on task scheduling strategy in cloud

computing environment, (in Chinese), Computer &
Modernization, no. 7, pp. 22–25, 2013.

[20] M. Stillwell, F. Vivien, and H. Casanova, Virtual machine

resource allocation for service hosting on heterogeneous

distributed platforms, IEEE International Parallel &
Distributed Processing Symposium, vol. 19, pp. 786–797,

2012.

[21] S. Ali, H. J. Siegel, M. Maheswarand, D. Hensgen, and

S. Ali, Representing task and machine heterogeneities for

heterogeneous computing systems, Tamkang Journal of
Science & Engineering, vol. 3, no. 3, pp. 19–25, 2003.

[22] I. C.Trelea, The particle swarm optimization algorithm:

Convergence analysis and parameter selection,

Information Processing Letters, vol. 85, no. 6, pp.

317–325, 2003.

[23] S. Yi, D. Kondo, and A. Andrzejak, Reducing costs of spot

instances via checkpointing in the amazon elastic compute

cloud, in IEEE Int. Cloud Computing Conf., 2010, pp.

236–243.

[24] N. J. Kansal and I. Chana, Cloud load balancing

techniques: A step towards green computing, International
Journal of Computer Science Issues, vol. 9, no. 1, pp. 238–

246, 2012.

[25] X. Li, Better spread and convergence: Particle swarm

multiobjective optimization using the maximin fitness

function, Lecture Notes in Computer Science, vol. 3102,

pp. 117–128, 2004.

[26] B. Hayes, Cloud computing, Communications of the ACM,

vol. 51, no. 1, pp. 47–68, 2008.
[27] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De

Rose, and R. Buyya, CloudSim: A toolkit for modeling

and simulation of cloud computing environments and

evaluation of resource provisioning algorithms, Software
Practice & Experience, vol. 41, no. 1, pp. 23–50, 2011.

Zhifeng Zhong received the PhD degree

in communication and information system

from Wuhan University in 2007. He is

currently an associate professor working

at the Department of Computer and

Communication Engineering, Hubei

University, China. His research interests

include radar system and signal processing,

photovoltaic power generation, and system integration.

Xiaojun Zhai received the PhD degree

from the University of Hertfordshire,

UK, in 2013. He is currently a lecturer

at the College of Engineering and

Technology, University of Derby. His

research interests mainly include the

design and implementation of the

digital image and signal processing

algorithms, custom computing using FPGAs, embedded systems

and hardware/software co-design. He is a member of British

Computer Society and Fellow of the Higher Education Academy.

Kun Chen is currently a master student

at the Department of Computer and

Communication Engineering, Hubei

University. He received the BS degree

from Hubei University, China, in 2012.

His research interests are signal processing

and system integration.

Shuange Zhou received the PhD degree

in communication and information system

from Harbin Engineering University

in 2003. She is currently a professor

working at the Department of Computer

and Communication Engineering, Hubei

University, China. Her research interests

include distributed computing, database

technology, and fault-tolerant.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

