
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll06/09llpp643-659
Volume 21, Number 6, December 2016

Robots Exclusion and Guidance Protocol

Dajie Ge and Zhijun Ding�

Abstract: With the rapid development of the Internet, general-purpose web crawlers have increasingly become

unable to meet people’s individual needs as they are no longer efficient enough to fetch deep web pages. The

presence of several deep web pages in the websites and the widespread use of Ajax make it difficult for general-

purpose web crawlers to fetch information quickly and efficiently. On the basis of the original Robots Exclusion

Protocol (REP), a Robots Exclusion and Guidance Protocol (REGP) is proposed in this paper, by integrating the

independent scattered expansions of the original Robots Protocol developed by major search engine companies.

Our protocol expands the file format and command set of the REP as well as two labels of the Sitemap Protocol.

Through our protocol, websites can express their aspects of requirements for restrictions and guidance to the

visiting crawlers, and provide a general-purpose fast access of deep web pages and Ajax pages for the crawlers,

and facilitates crawlers to easily obtain the open data on websites effectively with ease. Finally, this paper presents

a specific application scenario, in which both a website and a crawler work with support from our protocol. A series

of experiments are also conducted to demonstrate the efficiency of the proposed protocol.

Key words: deep web; Ajax; crawler; protocol

1 Introduction

Given the rapid growth of Internet applications in

recent years, the inefficiencies of general-purpose web

crawlers in fetching deep web pages and Ajax pages

have had a considerable impact on user satisfaction,

especially because such crawlers have become largely

unable to satisfy individual requirements of the users.

Though major data sites and, in practice, search engines

have various levels of adopted methods to address

this problem, the requirements of manual intervention

in such methods do not support the autonomous

functionalities of the general-purpose web crawlers.

Deep web pages are those pages that can no longer

� Dajie Ge and Zhijun Ding are with Department of

Computer Science and Technology, Tongji University,

Shanghai 201804, China. E-mail: 1xiaojdge@tongji.edu.cn;

zhijun ding@outlook.com.

�To whom correspondence should be addressed.

Manuscript received: 2016-07-11; revised: 2016-09-15;

accepted: 2016-10-03

be reached via pure links, and are often hidden behind

the search forms. Users are granted access to such

pages only after they input a series of keywords in the

form of queries. In recent years, studies have revealed

that a large portion of the web pages on the Internet

actually belong to deep web pages[1]. One of the major

requirements of an effective search engine is to extract

the hidden deeper resources, which has been proven to

be lacking in existing crawlers.

Nowadays, many websites interact with users by

dynamic scripts. Ajax is the most widely implemented

technology in such dynamic interaction applications.

However, the requirement of asynchronously updating

the web pages has resulted in traditional crawler

mechanisms loosing efficiency in search engines.

Specifically, web crawlers cannot directly fetch

the contents generated from Ajax dynamic script

technology—an inability that seriously affects the

search results of the search engines. The reason why

general-purpose web crawler cannot fetch Ajax pages

is that their source codes are not often composed with

the complete data content. In general, a complete Ajax



644 Tsinghua Science and Technology, December 2016, 21(6): 643–659

engine consists of HTML, CSS, and JavaScript codes,

and the complete content of a given web page must be

executed by multiple calls to an Ajax server constituted

by the response data. General-purpose web crawlers are

not efficient enough to fetch the Ajax pages, which is

another major challenge posed to web crawlers.

In addition, existing general-purpose web crawlers

suffer from chaotic page extraction strategies, with the

current Internet specifications for crawlers becoming

more obsolete and imperfect. The Robots Exclusion

Protocol (REP)[2], also known as the Robots Protocol, is

an Internet standard that allows websites to insist a list

of web pages (i.e., those that can or cannot be crawled)

to the visiting crawlers. The Robots Protocol requires

a website to create a text file named “robots.txt”

at the root directory of the server, with a series of

commands written to insist the list of resources that

cannot be fetched by a crawler. The original version

was invented in 1994, and the second edition[3] with

extended command functionalities was rolled out in

1997. At present, two versions of this protocol are

currently being practiced. However, the second version

of the Robot Protocol has yet to have any updates

after its only extension in 1997, and no authoritative

agency is maintaining the Protocol. Instead, some

major search engine companies extended the Robots

Protocol independently in a scattered fashion and in

accordance with their own requirements. The most

famous extension is the Sitemap Protocol[4], which

has been proposed by Google to enable webmasters

to indicate the availability of web pages to the

search engines. With no unified protocol version

being maintained, many scattered extensions look

unfamiliar to web users, and such versions are gradually

abandoned, such as the command “Visit-time”. In fact,

such command line features may allow websites to

raise their unique requests, which could be used as

good communication and interaction standard among

websites and search engines.

A healthy crawler pattern should avoid frequent

visits to the websites of the search engines, as this

causes a strong impact on the web servers. In this

context, search engines can have better user experiences

if websites reduce unnecessary visit restrictions on

crawlers. In recent years, the rapid development of the

Internet has given rise to a number of search engines—

a phenomenon that has resulted in great demands

for an effective crawler mechanism for enriched user

experiences in accessing websites. To this end, the

REP can still be improved and the Sitemap Protocol,

an important expansion of the Robots Protocol, can

be enhanced to achieve perfect agreements between

crawlers and websites. Moreover, an improved Robots

Protocol can enable the general-purpose crawlers to

fetch both the deep web pages and Ajax pages

effectively.

In this paper, a Robots Exclusion and Guidance

Protocol (REGP) is proposed based on the original REP.

The proposed protocol integrates various independent

expansions of the Robots Protocol developed by major

search engine companies as well as expands the file

format and command set of the REP and two labels of

the Sitemap Protocol. Through our proposed protocol,

websites can express their requirements for restrictions

and guidance to the visiting crawlers, thus facilitating a

general-purpose fast access to deep web pages and Ajax

pages for the crawlers. In this way, crawlers can easily

obtain the open data on websites effectively with ease.

The rest of the paper is organized as follows. Section

2 presents the related works. Section 3 describes the

REGP. Section 4 presents an application scenario,

and our experiments are presented and discussed in

Section 5. Section 6 concludes this paper and presents

directions for our future work.

2 Related Work

2.1 Deep web solutions

In recent years, three different solutions from different

search engines have been implemented to fetch deep

web pages. The first and the most direct way is to allow

crawlers to parse the search pages. In this approach,

crawlers first find the entrance to deep web pages,

generate a list of accessible pages, and submit these

to the websites. Then, crawlers can track the return

results to fetch those deep web pages. This approach

can be viewed as a simulation of artificial operations.

Xian et al.[5] proposed a quality-based data source

selection for web-scale deep web data integration. Noor

et al.[6] presented a latent dirichlet allocation based

semantic clustering of heterogeneous deep web sources,

whereas Raghavan and Garcia-Molina[7] and Cope et

al.[8] proposed two different strategies of finding query

interface of the forms, for the purposes of understanding

and modeling the query interface in web pages. Liu

et al.[9] presented a kind of deep web entry automatic

discovery method. In this method, the information of

specific field deep web is obtained to establish domain



Dajie Ge et al.: Robots Exclusion and Guidance Protocol 645

ontology, after which web forms can be judged through

the process of topic crawler crawling in the web, and

the appropriate pages can be downloaded. Saissi et

al.[10] proposed another vision of a deep web virtual

integration system using a mediated schema that is built

with a relational schema describing each deep web

source. To match the query interface via data mining,

Shao et al.[11] presented a whole pattern-matching

method for discovering complicated matches between

pluralities of modes. Zheng and Cui[12] proposed a

selection strategy for keywords in a single attribute

interface. Pusdekar and Chhaware[13] used the visual

clues concept for extracting the main data from deep

web pages. However, all these approaches that either

look for deep web pages or generate the return forms

require expertise in a particular industry. Hence, these

studies are more likely to be applied to vertical search

engines, instead of general-purpose crawlers.

The second method of deep web solution is the

Open Application Programming Interface (API), as

demonstrated by majority of today’s data websites.

Open API, also known as open platform, is a common

application in service-oriented websites. Websites

encapsulate their web services and data into a

series of APIs and avail such APIs for third-party

developers. Although this is an effective way of

obtaining data, APIs have their own limitations; for

instance, the query returns often contain Top-N data

each time. Accessing more resources with limited

APIs is the focus of several studies. Pei and Ye[14]

summarized the development status and trends of

global Open API, whereas Kim and Kim[15] presented

semantic annotation methods on acquired Open API

data from target websites based on the data mining

technology. Jung et al.[16] discussed key technologies

for the automatic generation of new mash-up service

using open APIs, in which the automatic service

mash-up method uses the ontology. Zhang and Cao[17]

designed and implemented a third-party developer

auditing system based on Open API, whereas Wang

et al.[18] proposed a secondary development method

of Open API. However, general-purpose web crawlers

cannot fetch deep web data for all websites in a limited

API mode, because the type and quantity of query

interfaces are obviously different with each website.

The third method is the Onebox strategy, first

proposed by Google[19], in which special query results

are typically listed separately on the uppermost portion

of the search pages for a given search in a search

engine. Some other similar concepts exist, such as

Aladdin Plan[20], box computing[21], and so on. Here we

collectively call them the Onebox strategy. To realize

this strategy, search engines should make their Onebox

interfaces on the web master open platform available

to the owners of deep web data, and present them with

the list of users who wish to place their data on search

engines, write codes, and then submit the configuration

information that meets the interface standards. As

a result, search engines directly show their related

applications or results instead of the traditional page

links in search pages after review. Such a strategy

ensures that the search engines can obtain deep web

data from the websites. However, website developers

should exert tremendous effort for every search engine,

because each search engine is unique with its own set of

requirements. Despite such approaches, there remains

a lack of a universal approach of crawler solutions for

data websites.

2.2 Ajax solutions

Generally, two types of methods are used for fetching

Ajax pages. The first method includes a manual

analysis. For a web page, crawler developers seek

those URLs containing useful data and then connect

these URL links to traditional web crawlers. Obviously,

such a process cannot be applied to general-purpose

web crawlers because of the high degree of human

intervention required.

The second approach is a browser-analog mode,

which is used to build the entire Ajax page. A

DOM tree initialized by an HTML source code is

completely built by multiple modifications based on

Ajax calls. In recent years, many Ajax page fetch

algorithms based on state conversion diagrams have

been proposed[22–24]. Shao and Li[25] put forward a

dynamic page information extraction algorithm based

on a tree model. Ma et al.[26] also proposed an

advanced Ajax crawler based on DOM. Xia et al.[27]

presented a complete crawler system that is enabled to

interpret and execute JavaScript codes. Meanwhile, Li

et al.[28] proposed a dual de-duplication strategy that

can effectively reduce the time cost of such algorithms.

However, such methods require complex control flow

and may suffer from extremely low efficiency levels.

Such a crawl rate is absolutely unacceptable for general-

purpose web crawlers.



646 Tsinghua Science and Technology, December 2016, 21(6): 643–659

3 Robots Exclusion and Guidance Protocol

3.1 Access method

The search engine of our proposed protocol follows the

access method of the original REP. All the commands

of this protocol must be listed in a text file named

“robots.txt”, and here, following the name “robots”

instead of “crawlers” or any other names to meet users’

habits is an important consideration. In fact, they have

the same meaning in the next content. This file must be

placed at the root of the web server and be accessible

via HTTP by every visitor. Some examples of URLs

for sites and URLs for corresponding “robots.txt” are

shown in Table 1.

Every crawler must try to visit the “robots.txt”

before visiting other URLs on this website. If this

visit succeeds (HTTP 2xx Status Code), the robot

must read the inner content, parse it, and follow all

the commands applicable to this robot. If this visiting

fails (HTTP Status Code 404) because no “robots.txt”

presents on the website, then the crawler can assume

that no restrictions and guidance are available, thus, it

can visit the site with complete freedom.

The current version of this protocol does not

provide a definition of other possible responses for a

server when visiting the “robots.txt”. Here are some

recommendations. The crawler should stop visiting

the website when encountering the HTTP Status Code

401 or 403. However, the site should try to make its

“robots.txt” accessible. The crawler should try to visit

the “robots.txt” later when meeting the HTTP Status

Code 5xx. When encountering HTTP Status Code 3xx,

the crawler should also follow the redirect instructions

until such a time that a resource that can be considered

as “robots.txt” is found.

3.2 Format

In our proposed protocol, “robots.txt” contains multiple

command lines. The composition of each line is listed

in Table 2.

In the proposed protocol, the specific command line

is divided into two portions: the restriction line and

the guidance line. Restriction command means that

the command must strictly be followed by the visiting

crawlers, and the guidance command is a command

suggested by the website for the visiting crawlers. All

<Field> for specific commands are listed in Table 3.

In the proposed protocol, the contents of “robots.txt”

consist of three different fields (the protocol header,

command sequence section, and a global command

section), each separated by a blank line. The protocol

header consists of two command lines: the “Robot-

version” line, which is used to describe the version

of the protocol, and the “Last-modified” line, which

is used to show its last modified time for the visiting

crawlers.

The command sequence section consists of several

command sequences separated by blank lines. Each

command sequence consists of a command target

segment and a command content segment. A command

target segment consists of “User-agent” command lines,

“Ip-allow” command lines, and “Ip-disallow” command

lines. This segment is used to inform the visiting

crawler whether the respective command sequence is

applicable to the crawler. Visiting crawlers should

check each command target segment in the command

sequences from top to bottom until it matches a

Table 1 Examples of URLs for “robots.txt”.

URLs for web site URLs for “robots.txt”

http://www.example.com/ http://www.example.com/robots.txt

http://www.example.com:8080/ http://www.example.com:8080/robots.txt

Table 2 Form of command lines.

Name Format Explanation

Specific command line <Field>“:”

<value>

<Field> is a command name. <value> is the command content.

Left brace line f The first non-blank character is a left brace.

Right brace line g The first non-blank character is a right brace.

Blank line The role of blank line is to divide two command section. There should be no

comments here.

Comment line “##”<value> Any text after a comment tag.



Dajie Ge et al.: Robots Exclusion and Guidance Protocol 647

Table 3 List of <Field> for specific commands.
<Field> Explanation Type

Robot-version Version of the protocol Restriction

Last-modified Last modified time of the ”robots.txt” Restriction

User-agent Name tokens of the visiting crawler Restriction

Ip-disallow IP addresses forbidden to access Restriction

Ip-allow IP addresses allowed to access Restriction

Disallow Resource path forbidden access Restriction

Allow Resource path allowed access Restriction

Crawl-delay Access interval of a crawler with same name token Restriction

Ip-delay Access interval of a crawler with same IP addresses Restriction

Request-rate Access rate of a crawler with same name token Restriction

Ip-rate Access rate of a crawler with same IP addresses Restriction

Visit-time Time period allowed to access Restriction

Time-forbidden Time period forbidden to access Restriction

Language Languages required to support Restriction

Encoding Encodings required to support Restriction

Charset Charsets required to support Restriction

Cookie Cookie required to set Restriction

Mirror-site The mirror site can be visited instead of this website Restriction

Sitemap Site map to guide crawlers Guidance

Host Master domain of the mirror site Guidance

Index-page Pages hoped to be indexed Guidance

Change-always Pages always updated Guidance

Change-hourly Pages updated each hour Guidance

Change-daily Pages updated each day Guidance

Change-weekly Pages updated each week Guidance

Change-monthly Pages updated each month Guidance

Change-yearly Pages updated each year Guidance

Change-never Pages that will never update Guidance

command target segment; then, it should parse the

command content segment of this command sequence

and follow the corresponding instructions to fetch the

site.

In the global command sequence, all command

contents are applicable to any visiting crawler. Left

brace lines and right brace lines should appear in pairs,

and all the contents between them are dependent on

the contents of the brace lines. The commands in brace

lines are used to describe the commands in detail.

Brace lines should be placed within a command content

segment. The contents of the inner brace lines consist

of a command target segment and a command content

segment, similar to the command sequence. In addition

to the three command lines of the commend sequence,

“Disallow” command lines and “Allow” command lines

are placed in command target segment and are used to

describe the commands for a different resource path.

Brace lines can be used in multiple, parallel, or nested

modes.

Comments begin with a “##” tag; thus, all contents

after the tag are considered as comments, which

are ignored by crawlers. Therefore, comments should

follow a command line or appear as single lines. As

used herein, “##” is the tag of a comment instead of

original “#”, because the “#” is often used as a character

in URLs with the popularity of JavaScript. The BNF-

like syntax to describe our proposed protocol appears in

Appendix. Below is a simple example of a “robots.txt”.
Robot-version: 3.0
Last-modified: 30 Oct 2014 04:31:17 UT

User-agent: WebCrawler
Disallow: /data
Allow: /data/open

User-agent: infoseeker
User-agent: wiseRobot
Allow: /info
Allow: /news
f
User-agent: infoseeker
Allow: /info/hot



648 Tsinghua Science and Technology, December 2016, 21(6): 643–659

Crawl-delay: 5
g
Sitemap: http://www.example.com/documents/example sitemap.xml

Visit-time: 1:00-16:00 UT ##8:00-17:00 Beijing Time is not

allowed

Language: zh-cn, zh

In this example, the first two lines are the protocol

header, which describes the version number and the

last modification time. The last three lines belong to

the global command section, and show the location

of the Sitemap, setting time, and allowed language,

respectively. The middle portion consists of the two

command sequences. The first sequence describes the

resource path that can be used by the “WebCrawler” to

access the websites. The second sequence first shows

that crawlers named “infoseeker” or “wiseRobot”,

which can access all the resources with path of “/info”

or “/news” path, and then uses a pair of brace lines to

inform “infoseeker” to visit resources using the path

“/info/hot” at a minimum interval of five seconds.

3.2.1 Robot-version
This command line represents the version number of

the “robots.txt” written in the first line in three different

values of “1.0”, “2.0”, and “3.0”, respectively. Here,

“1.0” means the original 1994 version, which only

supports “User-agent” and “Disallow”; “2.0” represents

the improved 1997 version, which supports “User-

agent”, “Disallow”, and “Allow”; and “3.0” represents

the latest version of the protocol. Each “robots.txt”

supporting our protocol should begin with “Robot-

version: 3.0”. Of course, a higher version number may

be used in the future.

This command line has been gradually abandoned,

precisely because some major search engine companies

have independently added scattered extensions in

accordance with their own needs, thus making it

difficult to identify the “robots.txt” with a simple

uniform version number. The proposed protocol has

been integrated with all the useful commands, so the

version number can be reused.
Command type: Restriction

Default value: 1.0

Example:

Robot-version: 3.0

3.2.2 Last-modified
This command line represents the last modified time

of the “robots.txt” written in the second line. After

extension, the “robots.txt” may be updated frequently.

The value of the last modified time is represented using

the conventions of RFC822. Note that the value of the

year can be presented either in two digits or in four

digits; for example, “15” and “2015” both express the

year 2015.

Crawlers should resolve the last modification time

and update the “robots.txt” it finds with a new time

value in the “robots.txt” file of this website that has been

previously saved. If no such command is found in the

“robots.txt”, crawlers should consider the last modified

attribute of the file provided by operating system.

Crawlers must fetch a website listed in the commands of

its latest “robots.txt”. The “Last-modified” command is

mainly presented for those websites adopting a dynamic

generation approach in response to the “robots.txt” file.

For other sites, this command can be ignored. When the

value of the last modified attribute of the file provided

by the operating system and the command line are

different, crawlers should consider the value presented

in the “Last-modified” command line.
Command type: Restriction

Default value: The last modified attribute of the file provided

by the operating system

Example 1:

Last-modified: 30 Oct 2014 04:31:17 UT
Example 2:

Last-modified: Thu, 30 Oct 2014 04:31 UT
Example 3:

Last-modified: 30 Oct 2014 12:31 +0800

These three examples insist the same time, 12:31 on

October 30th, 2014, Beijing Time. Example 1 insists an

extra second.

3.2.3 User-agent
This command line follows the definition of the original

REP. However, after the extension, this command is no

longer the only one mark to identify crawlers. Every

crawler should choose a name token for itself, and send

it as part of the HTTP User-agent header when visiting a

web page. Name tokens should be short and must meet

the requirements of the 26 case-insensitive letters, the

10-digit requirement, and case underscores. The name

token of commercial crawlers must be well documented

and maintained.

This command line is part of the command target

segments; it is used to identify to which specific

crawlers the command content segment applies. The

command is valid for a crawler when the crawler’s

name token contains the value of a “User-agent” line.

Then, the crawler must strictly follow all the commands

with the restriction type listed in the corresponding



Dajie Ge et al.: Robots Exclusion and Guidance Protocol 649

command content segment.

Multiple “User-agent” lines can exist in a command

target segment. If no “Ip-allow” line or if an “Ip-

disallow” line exists, then the command target segment

is matched only if a “User-agent” match is found.

Specially, if a “User-agent” line has a “*” value, any

crawler can be matched. Crawlers should also try to

match a command target segment from top to bottom

until they find a match. If no match is made, access to

the corresponding site is unlimited apart from possible

commands in the global command section.

We must note that the “robots.txt” will be visited only

by the crawlers, so the command “User-agent” with a

value of a browser name is ineffective.
Command type: Restriction

Default value: none

Example 1:

User-agent: infoseeker

For this value, matching and non-matching crawlers

are listed in Table 4.
Example 2:

User-agent: infoseeker

User-agent: wiseRobot

For this value, crawlers matching and non-matching

are listed in Table 5.
Example 3:

User-agent: *

Any crawler is matched.

3.2.4 Ip-allow and Ip-disallow
The “Ip-allow” and “Ip-disallow” command lines

are part of the command target segments. They are

used to identify to which crawlers the command

content segment applies, based on the IP address. At

present, these crawlers are often deployed as distributed

Table 4 List of crawlers’ name tokens with matching status
of the command in Example 1.

Crawlers name token Match

Infoseeker Yes

InfoSeeker Yes

BobbyInfoSeeker Yes

Info seeker No

InformtionSeeker No

Infoseek No

Table 5 List of crawlers’ name tokens with matching status
of the command in Example 2.

Crawlers name token Match

Infoseeker Yes

Wiserobot Yes

Inforobot No

systems. These two commands give websites another

method to identify crawlers with a smaller granularity.

The values of the IP address are presented with the

conventions of RFC791, using the format of four

decimal numbers between 0 and 255 separated by dot.

Each number can be replaced with the wildcard “*” to

match any number. In particular, “*” can be used to

indicate any IP address.

A command target segment may have multiple “Ip-

allow” command lines and “Ip-disallow” command

lines. All these commands can be assumed as an IP

token group. Crawlers must traverse all the commands

in an IP token group from top to bottom to learn whether

or not they can access the website. If more than one

lines are matched, the last one should be considered as

a perfect match. When the first command field of an IP

token group is “Ip-allow” but the value is not “*”, then

the crawlers can assume that another “Ip-disallow: *”

line exists before the current line. In contrast, when

the first command field of an IP token group is “Ip-

disallow” but the value is not “*”, crawlers can assume

that there exists another “Ip-allow: *” line before it.

IP token group commands should be used with

“User-agent” commands. If a command target segment

consists of IP token group commands but not the

“User-agent” commands, crawlers can assume that

a “User-agent: *” line exists in it. Crawlers should

parse the “User-agent” commands first. At this point,

a command target segment is matched if and only if

“User-agent” commands in the crawlers are matched.

If a crawler matches the “User-agent” commands, the

IP token group commands inform the crawler that

it is disallowed from accessing the websites. Hence,

the crawler can stop parsing next the contents in

“robots.txt” and stop accessing any resource in the

corresponding website simultaneously.
Command type: Restriction

Default value: none

Default commands of IP token group: Ip-allow: *

Example 1:

Ip-disallow: 222.69.212.*
Example 2:

Ip-disallow: 222.69.*.*
Ip-allow: 222.69.212.14
Ip-allow: 222.69.212.15
Example 3:

Ip-allow: *

3.2.5 Allow and disallow commands
These two commands follow the definition of the

original REP, and are described as follows. These two



650 Tsinghua Science and Technology, December 2016, 21(6): 643–659

commands are the most important commands in the

command content segments as they indicate whether

accessing a URL matching the corresponding path is

allowed or disallowed. Their values are case-insensitive,

and the corresponding paths normally begin with using

the conventions of RFC1808. Wildcards “*” and “$”

are allowed: “*” matches the zero or more repetitions

of any character, and “$” matches the character End of

Line. The addition of these wildcards can facilitate the

description of an address.

A command content segment may have multiple

“Allow” command lines and “Disallow” command

lines. All the consequent commands can be assumed as

a resource path command group. Crawlers must traverse

all the commands in the resource path command group

from top to bottom to learn which path they can

access. If more than one lines are matched, the last one

should be considered as a perfect match. When the first

command field of a resource path command group is

“Allow” but the value is not “*” or “/”, then the crawlers

can assume that there exists another “Disallow: /” line

before it. In contrast, when the first command field of a

resource path command group is “Disallow” but value is

not “*” or “/”, crawlers can assume that another “Allow:

/” line exists before it. Note that “/robots.txt” is always

allowed access and should not appear in the resource

path command groups.
Command type: Restriction

Default value: none

Default commands of resource path command group: Allow:/

Example 1:

Disallow: /tmp

For this command, paths being allowed or disallowed

access are listed in Table 6.
Example 2:

Allow: /tmp/

For this command, paths being allowed or disallowed

access are listed in Table 7.
Example 3:

Disallow: /news/
Disallow: /info

Allow: /info/open

Table 6 List of resource paths with the access status in
Example 1.

Resource path Allow

/tmp No

/temp Yes

/tmp1 No

/tmp.html No

/tmp/tmp0001.html No

Table 7 List of resource paths with the access status in
Example 2.

Resource path Allow

/tmp No

/temp No

/tmp1 No

/tmp.html No

/tmp/tmp0001.html Yes

For these commands, paths being allowed or

disallowed access are listed in Table 8.

3.2.6 Crawl-delay and Ip-delay
The “Crawl-delay” command, first proposed by

Yandex[29], is integrated into our proposed protocol.

These “Crawl-delay” and “Ip-delay” commands should

be used in the command content segments to indicate

the minimum interval between two consecutive visits

of crawlers with the same name tokens or with the

same IP addresses. Their values can be an integer

or a decimal, with time presented in seconds. For a

distributed crawler, if the command is “Ip-delay”, two

different crawler nodes can fetch the website separately.

These two commands can be used when a website wants

to restrict access frequency for crawlers.
Command type: Restriction

Default value: 0

Example:

Crawl-delay: 5

3.2.7 Request-rate and Ip-rate
These two commands are used in the command content

segments to indicate the minimum access frequency,

which is granted for the crawlers having the same

name tokens or the same IP addresses. Compared with

the “Crawl-delay” and “Ip-delay”, the “Request-rate”

and “Ip-rate” commands provide a more general crawl

frequency limit method. The format of the values is

an integer or a decimal, followed by “/” as well as

an optional integer and a letter. The first integer or

decimal indicates the number of access times, whereas

the second optional integer indicates the time, which

Table 8 List of resource paths with the access status in
Example 3.

Resource path Allow

/news/news0001.html No

/info/infoShow.html No

/info/latest/info0001.html No

/info0001.html No

/info/open/info0001.html Yes

/tmp/tmp0001.html Yes



Dajie Ge et al.: Robots Exclusion and Guidance Protocol 651

is defaulted to 1. The last letter can be “s”, “m”, or

“h”, indicating the units of time, second, minute, and

hour, respectively. The “Request-rate” and “Ip-rate”

commands can be used when a website wants to restrict

the access frequency for crawlers.
Command type: Restriction

Default value: No limit

Example:

Request-rate: 500/h

Note that when a website requires some degree of

technical limitations according to the commands, the

time period for counting the access times should begin

with the first visit of a crawler instead of a fixed period.

Hence, if a crawler first visits the site at 5:12, the site

should prove that the crawler can successfully access

for another 499 times before 6:12.

3.2.8 Visit-time and time-forbidden
These two commands should be used in the command

content segments to indicate whether access for the

crawlers at a given time is allowed or disallowed. The

format of values is a time expression, followed by “-”

and another time expression. Time expression uses the

conventions of RFC822 similar to those mentioned in

Section 3.2.2. The first field indicates the beginning

time of a period, and the second field indicates the

ending time. If only a single time expression contains

the time zone, crawlers can assume that another website

also adopts this time zone.

In general, “Visit-time” command is used for daily

restrictions, so the date is often not specified. In this

case, if the second time is earlier than the first one,

crawlers can assume that the second time is the next day

following the first time field. On the contrary, “Time-

forbidden” is often used for a specific period, such as

during a website activity. To reduce the temporary

higher loads on the web server, websites can add this

command into “robots.txt” to prohibit crawlers from

accessing the websites temporarily. In this case, the date

is specified generally.
Command type: Restriction

Default value: No limit

Example 1:

Time-forbidden: 30 Oct 2014 00:00:00 UT-2 Nov 2014
23:59:59 UT

Example 2:

Visit-time: 01:00 +0800-06:00 +0800

3.2.9 Language, encoding, and charset
These commands should be used in the command

content segments to indicate which language,

encoding, and charset crawlers should support when

accessing the websites. Their values are a series of

language, encoding, and charset using the conventions

of RFC2616. Generally, crawlers exchange such

information with websites via HTTP when visiting

one page. Here, these commands provide websites a

description method with a larger granularity.
Command type: Restriction

Default value: No limit

Example:

Language: en-us,en
Encoding: gzip,deflate

Charset: gb2312,utf-8

3.2.10 Cookie
This command should be used in the command content

segments to indicate which cookies crawlers should put

into the HTTP header during a resource request. The

value of this command consists of a series of key-

value pairs using the conventions of RFC6265. This

command is helpful when websites want to use cookies

to confirm crawlers.
Command type: Restriction

Default value: No limit

Example:

Cookie: visitor=crawler

3.2.11 Mirror-site
This command should be used in the command content

segments to indicate which mirror-site crawlers should

visit instead of this corresponding website. The value

of this command is a host using the conventions of

RFC1738. Websites with multiple mirror sites can use

this method to balance the crawler access pressure for

each mirror sites.
Command type: Restriction

Default value: No limit

Example:

Mirror-site: www.example.com

3.2.12 Sitemap
This command is first proposed by Google[4], and is

integrated into our proposed protocol. This command

should be used in the command content segments to

indicate where the Sitemap of the site is located. A

Sitemap file’s format can be XML, XML index, or TXT.

Among them, XML format and XML index format

follow the Sitemap Protocol. TXT format is used to

list all the data pages, and ignores all the description

tags of the data presented in the XML format. We

suggest the webmasters to compose the deep web pages

with those pages that cannot be accessed through links



652 Tsinghua Science and Technology, December 2016, 21(6): 643–659

by integrating traditional general-purpose web crawlers

into the Sitemap, rather than composing the static files

under the server or pages obtained by a crawler from

the own website. The reason is that the latter pages

listed in the Sitemap can be easily fetched by traditional

crawlers without a significant contribution from the

Sitemap. In fact, those deep web pages that are hidden

behind a search form should be listed in the Sitemap.

The following options are suggested for the webmasters

while listing the webpages in order to accumulate the

deep web pages.

(1) List one or more sets of Top-N proprietary data

pages according to the knowledge provided in the

professional field, and add them into the Sitemap. Every

once in a while, list Top-N pages again and put those

new pages into the Sitemap.

(2) List M proprietary data pages that users have

visited recently, and add them into the Sitemap. Every

once in a while, list and add new M pages into the

Sitemap.

(3) List all proprietary data pages visited in a time

period, and add them into the Sitemap. List and add

all new pages visited in another consequent time period

into the Sitemap.

(4) Whenever a proprietary data page is accessed, add

it to the Sitemap.

When webmasters think an entire page may not be

recognized by traditional crawlers, a corresponding

crawler page can be designed exclusively for the

crawlers. The content of this crawler page should be

consistent with the original page, and such a page

should not adopt any asynchronous access technology,

thus ensuring that crawlers can fetch complete contents

through a single request. By this way, fetching can be

more effective under the following scenarios.

(1) When pages contain many asynchronous

presentation methods, such as Ajax, for user

experience, webmasters can generate their static

snapshots as crawler pages.

(2) When pages contain many pictures, video, flash,

or other non-text contents designed for user experience,

webmasters can replace the links in such resources with

related description texts.

(3) When pages contain many CSS codes that

may not help crawlers, webmasters can remove those

contents in the crawler pages altogether.

In addition to the labels defined in the Sitemap

Protocol, the proposed protocol expands two labels

under label <url> as its child node. The first one

is <type> to insist how to fetch a page for crawlers

with optional values of “data”, “list”, and “other”.

Value “data” indicates that the respective page is a

proprietary data page, and crawlers just need to fetch

this page without following any links in that page.

This value indicates that the page is a list of a series

of proprietary data pages, such as a search result

page, and crawlers must follow all the links in this

page to fetch proprietary data pages. Value “other”

indicates that there exists no suggestion for fetching

this page, and crawlers can fetch them in a traditional

way. The other label is <srcloc>, which is used to

inform the URL of the original page to a crawler

page. For example, if the URL of the original page is

“http://www.example.com/news/hot.asp?date=1030&id

=8” and the URL of the crawler page for it is “http://

www.example.com/crawler/news/20141030008.html”,

then this item can be written in the Sitemap as follows:
<url>
<loc>http://www.example.com/crawler/news/20141030008.html</loc>

<srcloc>http://www.example.com/news/hot.asp?date=1030&id=8</srcloc>

<lastmod>2014-10-30</lastmod>

<changefreq>daily</changefreq>

<priority>0.8</priority>

<type>data</type>

</url>

Command type: Guidance

Default value: None

Example:

Sitemap: http://www.example.com/sitemap.xml

3.2.13 Host
This command, first proposed by Yandex[29], is

integrated into our proposed protocol. This command

should be used in the command content segments to

specify the preferred master domain whenever a website

owns multiple mirrors. This command can help search

engines organize the relationship between a website and

its master domain. The value of this command is a host

that uses the conventions of RFC1738 similar to the

format used in Section 3.2.14.
Command type: Guidance

Default value: None

Example:

Host: www.example.com

3.2.14 Index-page
This command, first proposed by 360[30], is integrated

into our proposed protocol. This command should be

used in the command content segments to indicate

which pages should be indexed. The value of this

command is a case-insensitive corresponding path

normally beginning with “/” and uses the conventions of

RFC1808. Similar to the format used in Section 3.2.5,



Dajie Ge et al.: Robots Exclusion and Guidance Protocol 653

wildcards “*” and “$” are allowed in this command.

The “Index-page” command can be used when web

pages often update their contents, hoping that crawlers

visit and fetch them frequently.
Command type: Guidance

Default value: None

Example 1:

Index-page: /news/newslist.html
Example 2:

Index-page: /news/
Example 3:

Index-page: /news/news*.html$

Index-page: /news/*/list.html

3.2.15 Change-always, change-hourly, change-
daily, change-weekly, change-monthly,
change-yearly, and change-never

These commands are extended by the Sitemap

Protocol[4] to provide a way with which to describe the

update frequency of the pages with a larger granularity.

This command should be used in the command content

segments. The value of this command is a case-

insensitive corresponding path normally beginning with

“/” and uses the conventions of RFC1808. Similar to the

format used in Section 3.2.5, wildcards “*” and “$” are

allowed in this command. These commands can be used

when websites hope crawlers visit and fetch some pages

with a specific frequency.
Command type: Guidance

Default value: None

Example 1:

Change-hourly: /news/newslist.html
Example 2:

Change-daily: /news/hot/*.html

4 Application

Given that both website and crawler must abide by

this protocol, we present in this section an application

scenario from both sides with an illustrated example.

4.1 For websites

Here we build a simple news website at http://

www.example.com/. The architecture of the site is

shown in Fig. 1.

The website includes

http://www.example.com/ — Homepage;

http://www.example.com/login.do — Login page;

http://www.example.com/reg.do — Registration page;

http://www.example.com/news.do — News search

page;

http://www.example.com/newsItem.do?id=9, etc. —

Specific news page;

http://www.example.com/html/news9.html, etc. —

Static snapshot of specific news page;

http://www.example.com/newsRelease.do — News

Release Page;

http://www.example.com/robots.txt—The only correct

path of robots.txt;

http://www.example.com/sitemap.xml—The website’s

sitemap.xml.

The homepage contains links to the login page,

registration page, news search page, and news release

page. The news search page contains links to the latest

specific news pages and a search form. All the search

results, including links to these eligible specific news

pages, are returned in the news search page. The news

release page can be visited after a user logs in as an

administrator. In specific news pages, users can see

the existing comments and post new comments after

logging in. The comments are loaded asynchronously

by Ajax technology after the news text is completely

loaded.

The website sets up a module to automatically

maintain sitemap.xml and generates snapshots for

Fig. 1 Website architecture.



654 Tsinghua Science and Technology, December 2016, 21(6): 643–659

specific news pages. Whenever a news piece is released,

a static web page snapshot is automatically generated

and maintained at http://www.example.com/html/, and

the sitemap.xml is also updated automatically. A new

metadata item corresponding to the news page is added

into the sitemap.xml, where the value of <loc> tag

is the path of the specific news page, the value of

<srcloc> tag is the path of the static snapshot, and the

value of <type> tag is the “data”. Whenever a new

comment is generated, the static snapshot of the news

page is regenerated, and the value of corresponding

<lastmod> tag is updated in the sitemap.xml. Here,

if a website has a larger size compared with others, it

can update the static snapshots at an interval instead

of generating them immediately after users post new

comments. The workflow processes are shown in Figs.

2 and 3.

4.2 For crawlers

The crawler system normally has a scheduling thread

and several crawler threads in either stand-alone or

distributed fashion. To crawl a website, each task is

assigned to a crawler thread via the scheduling thread.

The workflow of a crawler thread is shown in Fig. 4.

Whenever a crawler thread receives a new site task,

it first attempts to access its “robots.txt”. If this fails,

the crawler begins to crawl the whole site with the

traditional method, because the access failure means

that no restriction or guidance exists in this site.

Otherwise, the crawler analyzes the “robots.txt” and

records all the commands to its memory. All these

parsed commands can help subsequent crawling of

the same website. The main workflow to parse the

“robots.txt” is shown in Fig. 5.

The crawler threads of our particular case are divided

into two working status: normal and temporary. When

a normal-status thread completes a task, it attempts to

ask the scheduling thread for a new task. If there are no

tasks to schedule, the corresponding thread sleeps for a

while and then tries to ask again. The temporary-status

is usually opened by a normal-status thread to track the

status of the crawlers while crawling a website of low

frequency visits. To crawl a website of this kind, the

crawler thread should wait longer. As shown in Figs. 4

and 5, several considerations must be made. First,

when a crawler thread finds the time point that is not

available for visit after parsing the related commands,

a countdown timer is triggered. When time elapses,

a temporary-status crawler thread is initiated to fetch

the site. Second, a crawler thread obtains a minimum

period value for visiting the site by calculating related

commands. If the calculated value is greater than a

threshold value, the site is believed to be more time

consuming for crawlers to fetch this site. Thus, a

temporary-status crawler thread is initiated to take over

this task. Finally, a crawler thread sequentially parses

all the sitemap.xml file listed in “robots.txt” and saves

all the URLs found in the Sitemap files into a non-crawl

queue. If a URL has an <srcloc> tag, crawlers fetch

the static snapshot path instead of the origin path, after

which they record the corresponding relationships. The

workflow of the crawler thread to fetch the pages in a

website is shown in Fig. 6.

The workflow to fetch pages is similar to the

traditional way. However, before fetching a URL, the

crawler thread first checks all kinds of settings to ensure

compliance with the protocol.

5 Experiments

In the next sequential experiments, we use the crawler

described above to fetch our site and analyze the

benefits of the protocol through the results. To facilitate

the experiments, we made small modifications to the

abovementioned crawler. For instance, the crawler

thread will only be terminated after completing the

fetching task, rather than while waiting for another

task. In order to facilitate the observation of the

crawling results, we output some useful information,

such as URL and crawling time cost, during the fetching

process and then save all the HTML into the output files.

The fetching results from the crawler when the website

Fig. 2 Website workflow for news releases.

Fig. 3 Website workflow for new comments.



Dajie Ge et al.: Robots Exclusion and Guidance Protocol 655

Fig. 4 Workflow of a crawl thread.

Fig. 5 Workflow to parse robots.txt.

does not establish any “robots.txt” file are shown in

Table 9.

As shown in Table 9, although the crawler can fetch

some pages through the links, most specific news pages

are still missing. Given that the home page has three

links to the three latest news pages, respectively, the

crawler can fetch these three pages. Here, we can easily

guess that the fetching results of these three news pages

have no comment information, because the crawler

cannot obtain the paths of these snapshot pages through

Fig. 6 Workflow to fetch pages.

Table 9 Fetching results without robots.txt.

Resource Fetch Crawl delay (s)

Home page Yes 0

Useless pages (e.g., login page) Yes 0

Latest news pages Yes 0

Old news pages No 0

these links. Though the website has its sitemap.xml, the

crawler cannot obtain its path without “robots.txt”.

Now, the “robots.txt” is set as shown below.
Robot-version: 3.0
Last-modified: 19 Mar 2015 12:00:00 +0800

User-agent: *
Disallow: /login.do
Disallow: /reg.do



656 Tsinghua Science and Technology, December 2016, 21(6): 643–659

Disallow: /newsRelease.do
Request-rate: 120/m
f
Allow: /newsitem.do?
Crawl-delay: 5
g
f
Allow: /html/
Crawl-delay: 1
g

Sitemap: http://10.60.149.65:8089/test1/sitemap.xml
Cookie: user=robot
Language: zh-CN

Encoding: gzip, deflate

The contents of sitemap.xml are automatically

maintained by the website. A URL item is similar to
<url>
<loc>http://10.60.149.65:8089/test1/html/news1.html</loc>

<srcloc>http://10.60.149.65:8089/test1/newsItem.do?id=
1</srcloc>

<lastmod>2015-03-19</lastmod>

<changefreq>weekly</changefreq>

<priority>0.5</priority>

<type>data</type>

</url>

The fetching results from the crawler are shown in

Table 10.

First, owing to restrictions on visiting login page,

registration page, and news release page in “robots.txt”,

respectively, the crawler has filtered out these addresses

and no longer crawls these useless pages. Second, the

site gives a “sitemap.xml”. The crawler has fetched

all the news pages based on the metadata in the

“sitemap.xml”, and most of the fetched pages here are

unavailable to traditional crawlers. Furthermore, we

can see that the home page has been crawled within

0.5 s. That is because that “robots.txt” commanded the

crawler to set the visiting frequency at 0.5 s per URL

in general. We can also observe that all news pages

are crawled within 1 s. The crawler did not allow these

URLs to match the “/newsltem.do?” but allowed for the

matching of the “/html/” and sets their access gap to 1 s.

The reason is that the crawler found the <srcloc> tags

of these URLs in the “sitemap.xml” and tried to fetch

Table 10 Fetching results with robots.txt.

Resource Fetch Crawl delay (s)

Home page Yes 0.5

Useless pages (e.g., login page) No 0

Latest news pages Yes 1.0

Old news pages Yes 1.0

the static snapshots of the news pages provided by the

website, instead of the original addresses of these pages,

and the paths of those static snapshot pages actually

matched the “/html/”. In comparison, if we use the old

REP, we can only restrict whether resources are allowed

access to. The “robots.txt” will be something like
User-agent: *
Disallow: /login.do
Disallow: /reg.do

Disallow: /newsRelease.do

The fetching results from the crawler are shown in

Table 11.

Obviously, it can help prevent the crawler from

accessing those useless pages. However, it has limited

functionality. Crawlers cannot fetch deep web contents

or Ajax pages like those old news pages, and the

crawler cannot know the required access frequency

of the site; hence, the crawler will put a lot of

pressure to the site while working. As we expand the

commands, the REGP can apparently achieve more

tasks. Now we add a “Visit-time” command in the

global command paragraph to insist the crawlers to visit

the site after 21:00 every day as “Visit-time: 21:00:00

+0800-08:00:00 +0800”.

Suppose that the time to fetch the site is set to 21:00.

We could easily predict that the normal-status crawler

thread would find it, but that it should wait for a long

time to fetch the site after parsing the “robots.txt”. A

countdown timer would now be triggered by the thread.

When the timer expires, a new temporary-status crawler

thread is initiated to take over the task.

Finally, we change the language requirements to

French in the “robots.txt” into “Language: fr”. As the

crawler does not support French, it would have no

access to any pages of the site. It should be noted

here that this is just an example; all commands in the

“robots.txt” must be set according to the actual situation

under real circumstances.

6 Conclusion

The existence of numerous deep web pages in websites

and the widespread use of Ajax make it difficult

Table 11 Fetching result with the old REP.

Resource Fetch Crawl delay (s)

Home page Yes 0

Useless pages (e.g., login page) No 0

Latest news pages Yes 0

Old news pages No 0



Dajie Ge et al.: Robots Exclusion and Guidance Protocol 657

for general-purpose web crawlers to fetch information

quickly and efficiently. In this paper, an REGP is

proposed by using the original REP as basis and by

integrating the independent scattered expansions of the

protocols developed by major search engine companies.

Our proposed protocol expands the file format and

command set of the REP and the two labels of the

Sitemap Protocol. Through our protocol, websites can

express their aspects of requirements for restrictions

and guidance to the visiting crawlers as well as ensure

rapid access of general-purpose crawlers to deep web

pages and Ajax pages. Our proposed protocol also

enables the crawlers to easily and effectively obtain the

open data from various websites. Finally, this paper

describes a specific application scenario, in which both

a website and a crawler work together with support from
our protocol. We then conducted a series of experiments

to demonstrate the efficiency of our protocol.

However, similar to the original REP, our protocol

also encountered a problem when the crawlers do

not comply with the protocol and fetch websites

indiscriminately, thus making the protocol itself and

the objective website. This is because our protocol

is only used for websites to provide a description of

crawling requirements and guidance. This issue will be

addressed in our future work, along with the growing

maturity of different Internet-based applications.

Appendix

BNF-like Syntax
The BNF-like syntax used in our proposed protocol is similar

to the description of the original REP and is reproduced in

our protocol. The syntax used in our protocol is a BNF-like

description using the conventions of RFC 822, except that “j”
is used to designate alternatives in the original protocol. Briefly,

literals are quoted with “ ” and parentheses [(“ and ”)] are used

to group elements. In addition, optional elements are enclosed

in [brackets], and elements may be preceded with <n>* to

designate n or more repetitions of the following element, with

n defaults to 0. Moreover, “#” is used to describe the encoding,

language and charset, as defined in RFC 2616. The BNF-like

syntax is described below.

robotstxt = *blankcomment j *blankcomment head

1*commentblank record *( 1*commentblank 1*record )

1*commentblank globalrecord *blankcomment blankcomment

= 1*(blank j commentline)

Blank line or comment line, possibly used in beginning or end

of the file

commentblank = *commentline blank *(blankcomment)

Blank lines; one pure blank line is necessary, used to separate

two command part.

commentline = comment CRLF

comment = *space “##” anychar

blank = *space CRLF

space = 1*(SP j HT)

CRLF = CR LF

head = versionline *commentline lastmodline

record = robotrecord *commentline rule

globalrecord = *(commentline j ruleline)

versionline = *space “Robot-version:” *space version

[comment] CRLF

lastmodline = *space “Last-modified:” *space date-time

[comment] CRLF

robotrecord = (agentrecord j iprecord j agentrecord iprecord)

agentrecord = agentline *(commentline j agentline)

iprecord = ipline *(commentline j ipline)

agentline = *space “User-agent:” *space agent [comment]

CRLF

ipline = (ipdisallowline j ipallowline)

ipallowline = *space “Ip-allow:” *space ipaddress [comment]

CRLF

ipdisallowline = *space “Ip-disallow:” *space ipaddress

[comment] CRLF

rule = 1*ruleline *(commentline j ruleline) *innerrule

ruleline = (disallowline j allowline j sitemapline j
crawldelayline j ipdelayline j requestrateline j iprateline j
visittimeline j hostline j indexpageline j changealwaysline

j changehourlyline j changedailyline j changeweeklyline j
changemonthlyline j changeyearlyline j changeneverline j
languageline j encodingline j charsetline j mirrorsiteline j
timeforbiddenline j cookieline j extension)

innerrule = lparenthesisline [robotrecord] *commentline rule

*commentline

lparenthesisline = *space “f” [comment] CRLF

rparenthesisline = *space “g” [comment] CRLF

disallowline = *space “Disallow:” *space rpath [comment]

CRLF

allowline = *space “Allow:” *space rpath [comment] CRLF

sitemapline = *space “Sitemap:” *space httpurl [comment]

CRLF

crawldelayline = *space “Crawl-delay:” *space int [comment]

CRLF

ipdelayline = *space “Ip-delay:” *space int [comment] CRLF

requestrateline = *space “Request-rate:” *space rate

[comment] CRLF

iprateline = *space “Ip-rate:” *space rate [comment] CRLF

visittimeline = *space “Visit-time:” *space date-time

[comment] CRLF

hostline = *space “Host:” *space host [comment] CRLF

indexpageline = *space “Index-page:” *space httpurl

[comment] CRLF

changealwaysline = *space “Change-always:” *space rpath

[comment] CRLF



658 Tsinghua Science and Technology, December 2016, 21(6): 643–659

changehourlyline = *space “Change-hourly:” *space rpath

[comment] CRLF

changedailyline = *space “Change-daily:” *space rpath

[comment] CRLF

changeweeklyline = *space “Change-weekly:” *space rpath

[comment] CRLF

changemonthlyline = *space “Change-monthly:” *space rpath

[comment] CRLF

changeyearlyline = *space “Change-yearly:” *space rpath

[comment] CRLF

changeneverline = *space “Change-never:” *space rpath

[comment] CRLF

languageline = *space “Language:” *space language

[comment] CRLF

encodingline = *space “Encoding:” *space encoding

[comment] CRLF

charsetline = *space “Charset:” *space charsetval [comment]

CRLF

mirrorsiteline = *space “Mirror-site:” *space host [comment]

CRLF

timeforbiddenline = *space “Time-forbidden:” *space date-

time [comment] CRLF

cookieline = *space “Cookie:” *space set-cookie-string

[comment] CRLF

extension = *space token “:” *space value [comment] CRLF

version = 1*DIGIT “.” 1*DIGIT

agent = token

ipaddress = (IPv4address j IPv6address)

rpath = “/” path int = 1*DIGIT

rate = 1*DIGIT “/” *DIGIT (“s” j “m” j “h”)

encoding = 1#( codings [ “;” “q” “=” qvalue ] )

language = 1#( language-range [ “;” “q” “=” qvalue ] )

charsetval = 1#( ( charset j “*” )[ “;” “q” “=” qvalue ] )

value = <any CHAR except CR or LF or “##”>

anychar = <any CHAR except CR or LF>

CHAR = <any US-ASCII character (octets 0 - 127)>

CTL = <any US-ASCII control character (octets 0 - 31) and

DEL (127)>

CR = <US-ASCII CR, carriage return (13)>

LF = <US-ASCII LF, linefeed (10)>

SP = <US-ASCII SP, space (32)>

HT = <US-ASCII HT, horizontal-tab (9)>

Where, the syntax for “token” is defined in RFC 1945. The

syntaxes for “IPv6address” and “IPv4address” are defined in

RFC 2373. The syntax for “date-time” is defined in RFC 822.

The syntaxes for “httpurl” and “host” are defined in RFC 2373.

The syntaxes for “codings”, “qvalue”, “language-range”, and

“charset” are defined in RFC 2616. The syntax for “set-cookie-

string” is defined in RFC 822. The syntax for “path” is defined

in RFC 1808.

Acknowledgment

This work was partially supported by the National

Natural Science Foundation of China (Nos. 61672381 and

90818023).

References

[1] C. C. Chang, B. He, C. Li, M. Patel, and Z. Zhang,

Structured databases on the web: Observations and

implications, ACM SIGMOD Record, vol. 33, no. 3, pp.

61–70, 2004.
[2] M. Koster, A standard for robot exclusion. NEXOR,

http://www.robotstxt.org/rig.html, 1994.
[3] M. Koster, A method for web robots control, http://

www.robotstxt.org/orobots-rfc.txt, 1997.
[4] Google, Sitemaps XML format, http://www.sitemaps.org/

protocol.html, 2008.
[5] X. F. Xian, P. P. Zhao, W. Fang, and J. Xin, Quality-based

data source selection for web-scale data integration, in

Proc. 2009 International Conference on Machine Learning
and Cybernetics, Baoding, China, 2009, pp. 427–432.

[6] U. Noor, A. Daud, and A. Manzoor, Latent dirichlet

allocation based semantic clustering of heterogeneous

deep web sources, in Proc. 5th International Conference
on Intelligent Networking and Collaborative Systems,

Xi’an, China, 2013, pp. 132–138.
[7] S. Raghavan and H. Garcia-Molina, Crawling the hidden

web, in Proc. 27th International Conference on Very Large
Data Bases, Roma, Italy, 2001, pp. 129–138.

[8] J. Cope, N. Craswell, and D. Hawking, Automated

discovery of search interfaces on the web, in Proc. 14th
Australasian Database Conference, Adelaide, Australia,

2003, pp. 181–189.

[9] G. Liu, K. Liu, and Y. Dang, Research on discovering deep

web entries based on topic crawling and ontology, in Proc.
2011 International Conference on Electrical and Control
Engineering, Yichang, China, 2011, pp. 2488–2490.

[10] Y. Saissi, A. Zellou, and A. Idri, Extraction of relational

schema from deep web sources: A form driven approach,

in Proc. 2014 Second World Conference on Complex
Systems, Agadir, Morocco, 2014, pp. 178–182.

[11] X. Shao, Y. Liu, and L. Liu, Research on overall

pattern matching method in deep web, (in Chinese), Acta
Scientiarum Naturalium Universitatis Nankaiensis, vol.

45, no. 5, pp. 24–31, 2013.

[12] D. Zheng and Z. Cui, Research on strategy of crawling

deep web strategy, (in Chinese), Computer Engineering
and Design, vol. 27, no. 17, pp. 3154–3158, 2006.

[13] S. J. Pusdekar and S. P. Chhaware, Using visual clues

concept for extracting main data from deep web pages,

in Proc. 2014 International Conference on Electronic
Systems, Signal Processing and Computing Technologies,

Maharashtra, India, 2014, pp. 190–193.

[14] S. Pei and X. Ye, Development status and trend of open

API abroad, (in Chinese), Information Science, vol. 27, no.

12, pp. 1896–1900, 2009.

[15] S. Kim and H. Kim, Ontology modeling for provision

of semantic based open API information, in Proc. 15th
International Conference on Advanced Communication
Technology, Rajampet, India, 2013, pp. 664–667.



Dajie Ge et al.: Robots Exclusion and Guidance Protocol 659

[16] W. Jung, S. I. Kim, and H. S. Kim, Ontology modeling

for rest open apis and web service mash-up method,

in Proc. 2013 International Conference on Information
Networking, Bangkok, Thailand, 2013, pp. 523–528.

[17] J. Zhang and S. Cao, Design and implementation of a

third-party developers auditing system based on open API,

in Proc. 6th IEEE International Conference on Software
Engineering and Service Science, Beijing, China, 2015,

pp. 803–806.
[18] L. Wang, Z. Li, Y. Tan, and Z. Liu, Research on UG/Open

API for secondary development of UG, (in Chinese),

Development & Innovation of Machinery & Electrical
Products, vol. 19, no. 5, pp. 105–106, 2007.

[19] Google, Google Onebox, https://www.google.com/work/

gsa/onebox.html, 2015.
[20] T. Zhou, Baidu pushes Aladdin Plan for searching deep

web, (in Chinese), China Securities News, B3, Dec 19,

2008.
[21] Baidu, Box computing, http://boxcomputing.baidu.com/,

2009.
[22] H. Guo, Y. Lu, and J. Liu, Ajax crawling algorithm based

on a kind of state transition diagram, Application Research
of Computers, vol. 26, no. 11, pp. 4266–4269, 2009.

[23] G. Frey, Indexing ajax web applications, master degree

dissertation, Dept. Computer Science, Institute of

Computational Sciences, ETH, Zurich, Switzerland, 2007.
[24] A. Mesbah, E. Bozdag, and A. D. Van, Crawling Ajax

by inferring user interface state changes, in Proc. 8th
International Conference on Web Engineering, New York,

NY, USA, 2008, pp. 122–134.
[25] H. Shao and F. Li, Research and implement on information

extraction of dynamic pages based on tree model

algorithm, (in Chinese), Computer Applications and
Software, vol. 24, no. 10, pp. 99–100, 2007.

[26] W. Ma, X. Chen, and W. Shang, Advanced deep web

crawler based on Dom, in Proc. 5th International Joint
Conference on Computational Sciences and Optimization,

Harbin, China, 2012, pp. 605–609.
[27] B. Xia, J. Gao, T. Wang, and D. Yang, An efficient effective

pages fetching method for websites with dynamic script,

(in Chinese), Journal of Software, vol. 20, no. suppl., pp.

176–183, 2009.
[28] H. Li, L. Wu, H. Lai, C. Zheng, and K. Huang,

Effective web crawling algorithm for Ajax webpages, (in

Chinese), Journal of University of Electronic Science and
Technology of China, vol. 42, no. 1, pp. 115–121, 2013.

[29] Yandex, Using robots.txt, https://yandex.com/support/

webmaster/controlling-robot/robots-txt.xml, 2015.
[30] 360, Robots exclusion support, http://www.so.com/

help/help 3 2.html, 2015.

Zhijun Ding received the MS degree

from Shandong University of Science

and Technology, Taian, China, in

2001, and PhD degree from Tongji

University, Shanghai, China, in 2007. Now

he is a professor of Department of

Computer Science and Technology, Tongji

University. His research interests are in

mobile internet, services computing, formal engineering, and

Petri nets. He has published more than 80 papers in domestic

and international academic journals and conference proceedings.

Dajie Ge received the MS degree from

Tongji University, Shanghai, China, in

2016. Now he is a game developer at

Shanda Games, Inc. His research interest

is in crawler.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


