
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll01/09llpp581-597
Volume 21, Number 6, December 2016

Towards a Service-Oriented Architecture for a Mobile Assistive System
with Real-time Environmental Sensing

Darpan Triboan, Liming Chen, Feng Chen, and Zumin Wang�

Abstract: With the growing aging population, age-related diseases have increased considerably over the years.

In response to these, Ambient Assistive Living (AAL) systems are being developed and are continually evolving

to enrich and support independent living. While most researchers investigate robust Activity Recognition (AR)

techniques, this paper focuses on some of the architectural challenges of the AAL systems. This work proposes a

system architecture that fuses varying software design patterns and integrates readily available hardware devices

to create Wireless Sensor Networks (WSNs) for real-time applications. The system architecture brings together

the Service-Oriented Architecture (SOA), semantic web technologies, and other methods to address some of

the shortcomings of the preceding system implementations using off-the-shelf and open source components. In

order to validate the proposed architecture, a prototype is developed and tested positively to recognize basic user

activities in real time. The system provides a base that can be further extended in many areas of AAL systems,

including composite AR.

Key words: Activities of Daily Living (ADL); Service-Oriented Architecture (SOA); semantic web; ontology modeling;

Web Ontology Language (OWL); Activity Recognition (AR); Smart Homes (SH); Wireless Sensor

Networks (WSNs)

1 Introduction

The global aging population is estimated to reach 2

billion by 2050[1–3], and such an increase will inevitably

create a larger demand on the health care system that

is already facing a shortage in resources. The Smart

Homes (SH) environment is a technological solution for

this modern-day problem, and it works by monitoring

� Darpan Triboan, Liming Chen, and Feng Chen are

with the Context, Intelligence, and Interaction Research

Group (CIIRG), De Montfort University, Leicester, LE1

9BH, UK. E-mail: darpan.triboan@my365; fliming.chen,

fengcheng@dmu.ac.uk.

� Zumin Wang is with the Department of Information

Engineering, Dalian University, Dalian 116622, China. E-mail:

wangzumin@163.com.

�To whom correspondence should be addressed.

Manuscript received: 2016-07-01; revised: 2016-09-12;

accepted: 2016-10-03

and gathering contextual Activity Recognition (AR)

date from inhabitants to come up with solutions to

provide real-time assistance and care for the patient

or elderly person. However, many problems must be

resolved so that SH can fully simulate and take the role

of a care-provider or health care professional to certain

degree[4].

This paper is set within the context of current

problems related to the delivery of high-quality of care

for the aging population by health care professionals,

which focused on addressing the three levels of system

architecture challenges in building an assistive system.

These levels are (1) selecting appropriate style and

design pattern, (2) considering specific technological

and technical requirements for activity recognition,

and (3) building and integrating appropriate wireless

sensor technologies for providing real-time assistance

and monitoring. The sections below introduce these

three levels, identify the key challenges, and discuss

582 Tsinghua Science and Technology, December 2016, 21(6): 581–597

their potential opportunities.

1.1 Assistive system architecture style and pattern

One of the main system architectural challenges in

building an assistive system is to select appropriate

design styles and patterns, that, unfortunately, may

be easily misused[5–7]. Engaging with the wider

community by having open source components and

using popular programming languages can play a

key role in coming up with useful, adaptive, and

personalised solutions. Other factors influencing the

design decisions include: semantica data storage,

computation power requirement, low latency

communication protocols, and the ability to allow

simultaneous access to the users with a convenient

Human-Computer Interface (HCI). Some of the exiting

assistive systems (explored further in Section 2) are

built in a standalone application environment. However,

questions have been raised regarding its extensibility,

reusability, scalability, maintainability, and/or use

of proprietary components, which may have limited

community support. In addition, having a poor or an

unnatural HCI design poses practical limitations for the

key users.

Over the years, the Service-Orientated Architecture

(SOA) approach has become popular, because it

can address some of the aforementioned issues as

well as create a mechanism by which to delegate

resource-intensive tasks and storage to powerful sets

of computers over a network (cloud computing).

Moreover, using the SOA approach also allows low-

power devices such as mobile devices or any other

gadgets with network capabilities, to utilise the

available services. This has not only improved the

HCI of the system, but also made it scalable such that

it can serve cross-platform clients as well as integrate

and reuse third-party services in a creative manner. The

approach now drives the concepts of SH, Internet-of-

Things (IoT), and ubiquitous or pervasive computing.

This is the main approach by which everyday objects

can be seamlessly integrated into the interconnected

World Wide Web (WWW).

1.2 Activity Recognition (AR)

A key part of an assistive system is to achieve accurate

AR. However, AR capabilities within SH pose many

challenges. AR involves three main tasks in AR: activity

modeling, data collection and monitoring, and data

processing and pattern recognition[8]. The first task aims

to create computational activity models from which the

system infers and performs reasoning. These models

can be generated using two different approaches,

namely, data-driven and knowledge-driven. The data-

driven approach involves processing the predefined data

to create a training model by using various machine-

learning techniques. In contrast, the knowledge-driven

approach takes the conceptualization of the real world

axioms (i.e., established or accepted statements)[9, 10]

and, from these, formally defines the domain specific

knowledge explicitly. The second task aims to monitor

and capture the inhabitants’ behaviors along with

the changes in the environmental conditions. Here a

wide range of monitoring technologies and devices

can be used, such as vision-based and sensor-based

techniques, which depend on various factors, such

as the type of information required, granularity level,

privacy, and technical availability/feasibility of the

devices. The third task aims to process sensor data and

map the extracted patterns against the activity model

created in the initial stage to determine which activity

is performed and, from such information, provide

assistance accordingly.

In addition, within the first task of activity modeling,

the data-driven approach includes the generative and

discriminative methods that employ statistical and

probabilistic methods to analyze pre-existing datasets

and derive activity models. This approach can handle

modeling uncertainties and temporal information.

However, this technique suffers from the “cold start”

problem because of the need of pre-existing datasets

for model learning, which in turn leads to reusability

and scalability issues. In comparison, knowledge-based

modeling is performed using formal theories (mining-

and logical-based theories) and domain expertise to

create activity models[11]. In turn, this approach

eliminates the need of learning from a pre-existing

dataset, hence, no “cold start” problems. However, the

knowledge-driven approach also suffers from handling

uncertainties and temporal information as a result of the

manual pre-defined activity models. A previous study

proposed a hybrid approach in this work[12] to address

the shortcomings of both approaches by developing

an incremental model discovery and activity learning

method.

For each of the abovementioned AR tasks, various

interdependent underlying technologies also exist[8].

These technologies present further integration

challenges, which are mainly due to their differences in

programming languages, development environments,

Darpan Triboan et al.: Towards a Service-Oriented Architecture for a Mobile Assistive System with Real-time : : : 583

proprietary components, and communication protocols.

Therefore, interconnectivity of each stage into a single

technology poses challenges for researchers.

Another challenge that arises from this topic is

the problem of storing the activity modeling and

recognition data using the semantical structure in such a

way that the data can later be used in a meaningful way.

The storage options considered here also influence

the overall system architectural design decisions.

Recently, this has become a much wider issue with the

accumulation of large amounts of unstructured or semi-

structured data with no clear semantical relations. This

has created many problems, such as automating the

task of processing and retrieving data efficiently[13].

Currently, machine-learning techniques, such as genetic

algorithms, are used to extract and train computers on

how to process the data over time. This approach,

however, is lengthy and requires a high computation

rate. To make this process more efficient, the concept

of the semantic web was introduced. This concept

was originally envisioned by Tim Berners-Lee and his

colleagues to create the Web with linked data, which

have semantic meanings, formalisms, and a structure

that can be processed by a machine[9, 14]. This is

achieved by representing the data in the form of a triplet,

subject-predict-object. The most common vocabularies

are used and shared to create an expressivity in

the data (i.e., using Resource Description Framework

(RDF)[15, 16] and Web Ontology Language (OWL)[17]).

In addition, various reasoning engines (i.e., Pellet,

HermiT, and FaCT++) are used to perform inferencing

utilizing the user-specific rules and formal languages.

The triple datasets can be stored in the triple-store

(database) as a graph, which are specially optimized for

handling them. Moreover, just like the Structured Query

Language (SQL) in traditional relational databases,

the SPARQL protocol and RDF Query language

(SPARQL) is used to perform Create, Read, Update,

and Delete (CRUD) operations[15, 18]. These capabilities

and benefits enable the back end of any applications

to achieve greater flexibility within its specific system

architecture.

1.3 Wireless Sensor Networks (WSNs)

WSN technology has enabled a large variety of

applications to be developed; these have also been

applied across many domains, i.e., military[19],

healthcare, transport[20], and smart city infrastructure.

WSNs play an important role in emerging Network-of-

Things (NoT) or IoT paradigms[21]. The capabilities

of the WSNs within the assistive systems can be seen

as a supporting tool to allow humans or machines

to interact with their environment and react to real-

world events[22]. Therefore, the key responsibility

of WSNs is to acquire environmental data from

remote nodes and execute commands instructed by

a coordinator, also known as sink or base station.

Depending on the application requirements, various

communication protocols are available, through which

a remote node can send data to the coordinator.

These protocols have their own properties, benefits,

and limitations but they can be characterized by their

range and energy consumptions. Some of the popular

protocols are ZigBee[20], Z-Wave, WiFi, 6LoWPAn,

2G/3G/4G/5G, Blue-tooth (+BLE), Radio Frequency

Identification (RFID), Near Field Communication

(NFC), and infrared.

Owing of the diversity of communication protocols,

there exist a large number of vendors who create

application-specific off-the-shelf products that are not

always open-source. This can create a big challenge

as far as integrating them within WSNs of any given

size is concerned. However, to address this challenge,

many efforts have been exerted by the vendors in

recent years. One common practice is to provide

Application Program Interfaces (APIs) and Software

Development Kits (SDKs) to allow cross-platform

third-party service integrations. For instance, Securifi

Almond+ router, Amazon Echo[23], and Samsung

SmartThings[24] have the ability to interact with each

other’s devices. Although these services are growing,

limited intelligence can be added to the sensor nodes

as they are governed by rules, such as “if this,

then that” concepts (i.e., IFTTT[25]). Furthermore,

they still have limited types of sensors that can

support fine-grained sensing capabilities for AR, i.e.,

capacitive touch sensor on an object for dense sensing.

Therefore, bespoke Arduino-based wireless sensing

methods are still commonly used[26, 27]. The current

paper integrates some of these aforementioned off-

the-self and open-source WSN technologies within

the system architecture to achieve real time AR,

monitoring, and assistance.

The consecutive sections are organized as follows.

Section 2 discusses related works and existing systems

to find their shortcomings. Sections 3 and 4 present a

proposed system architecture and the implementation

details of an assistive system, respectively. Section 5

analyzes the experimental results and provides some

584 Tsinghua Science and Technology, December 2016, 21(6): 581–597

discussions. It must be noted here that the nature of

this paper is not to propose a new way of modeling or

recognizing activities, but rather to assess the feasibility

of the proposed system architecture and to prepare

for further works in these areas. Finally, Section 6

concludes the paper with recommendations for further

work.

2 Related Work

In the past, several assistive systems were implemented.

In particular, two prototype assistive systems were

implemented to provide activity recognition and

assistance features for the elderly or those who have

cognitive difficulties in carrying out Activities of Daily

Living (ADL), namely, the SMART system[28, 29]. In

its initial implementation, the SMART system was built

in a standalone environment with a direct interface to

the SH environment and featured a rich web-based

interface using dotNet programming language. As

shown in Fig. 1, the SMART system consists of six

main classes: speech core, reasoning core, preferences

core, communication core, simulation recording core,

and database tools core. The speech core class is

used to output pre-recorded audio messages to the

user when the assistance is triggered; personalization

of the pre-recorded message is also supported. The

reasoning and preferences core classes are the core

components of this system. The reasoning core class is

used to infer the users’ activities from their preferences.

The user preferences are administered via basic or

advance learning methods presented by the system

as well as the sensor activation data retrieved from

the communication core. The data from the sensor

activations (i.e., inferred activities from reasoning) can

Fig. 1 System architecture overview: Initial implementation
of the SMART system (2009).

be recorded using simulation recording core class. Such

data can then be exported to the users local disk or

stored in a repository database as a history log.

In the latter implementation, the SOA approach was

introduced (see Fig. 2) with open-source components.

The core system was written in one of the more popular

programming languages, Java. The main reasons were

to move away from a standalone environment as well as

to resolve limited community support and proprietary

components. This approach allows many users from

multiple devices to communicate simultaneously with

platform independency. The system further addresses

the monolithic code structure of the source code by

logically separating it into three web services. The

Enterprise Service Bus (ESB) supporting software is

used to bind these services together; thus enabling better

maintainability, reuse, and debugging. The system

still has a web-based interface that uses JavaScript,

Asynchronous JavaScript, and XML (AJAX) features

to request and load the data from the ESB. In addition,

the Simple Object Access Protocol (SOAP) and

Hypertext Transfer Protocol (HTTP) have been used for

exchanging data between different devices. Moreover,

this service has the potential to be deployed on to

the cloud servers that possess superior computational

capacity to perform very complex reasoning within a

short amount of time[30]. One of the disadvantages of

using this system, however, is that it has multiple web

services with an ESB, which requires it to be hosted on

the network. This can create unnecessary overhead and

delays in the system.

A previous study[31] presented a location-based

context-aware system architecture, in which a range

of stakeholders can work collaboratively. The users do

Fig. 2 System architecture overview: Service-oriented
implementation of the SMART system (2012).

Darpan Triboan et al.: Towards a Service-Oriented Architecture for a Mobile Assistive System with Real-time : : : 585

not require any prior knowledge of programming skills

to model, manage rules, infer, and specify actions.

The system adapts the SOA style architecture and has

a web browser-based interface similar to a SMART

SOA system. The results of the study indicate that the

system is easy to use; however, the performance of

the reasoning degrades with the increase in the number

of models and the complexity of the rules. Likewise,

Ref. [32] provides a pioneering OPEN framework.

The OPEN framework is based on ontology for rapid

prototyping, sharing, and personalization of the system

for the cooperative use of the developer, and non-expert

users.

A number of other related works exist in the

literature. For example, the assistive system[33] enables

remote assistance and monitoring between the hospital

and the clients’ SH environment. Another study[34]

proposed an SOA-style architecture involving a mobile

device and a web service to detect objects in

real-time by using image analysis techniques and

augmenting the assistance on the user’s tablet; here,

a data-driven approach is employed through which

images in the database are analyzed. Meanwhile,

the work in Ref. [35] adapts the knowledge-driven

approach to propose a multi-tier architecture for an

autonomic Ambient Intelligent system. The system

exploits ontology modeling techniques and logical

rules [Java Expert System Shell (Jess)] to formally

describe the environment as well as to infer and reason

the activity. In addition, Ref. [36] fused the data-

driven and knowledge-driven techniques to achieve

unusual behavior recognition with the help of Decision

Support Systems (DSS) and the ontology modeling

technique for activity inferencing. The system provides

a natural interaction (i.e., speech and gesture) within the

smart environment and everything is controlled by the

centralized server.

The current paper proposes a new system architecture

and presents the system prototype to enhance service-

oriented implementation. In addition, further assistive

features have been implemented, such as medicine

dose management[37], appointment management, and

notifications services. The implemented system extends

the previous web-based service to the more relevant

mobile assistive service. The usage of the mobile

phone’s sensor capabilities can also play a role in

supporting additional application scenarios for the

inhabitant and improving the system’s usability. Table

1 provides an overview of the two SMART system

implementations along with the proposed system.

3 Proposed System Architecture

The proposed system continues with the SOA approach,

but develops the web service using Representational

State Transfer (REST) protocol instead of the SOAP.

In addition, the HCI with the SMART system has been

improved by building an Android application instead

of a browser-based interface, see Fig. 3. By creating

the mobile application, it not only supports patients and

caregivers on the move, but potentially enable other

stakeholders of the system (e.g., a patient’s family

members and relatives) to be more connected when

the system is developed in the future. In addition,

new features that can further assist the inhabitant

Table 1 Comparison between predecessors and the proposed system.

System

details

System version

SMART Proposed

(2009) (2012) (2016)

Purpose
Activity recognition

using Smart Homes

Reengineered based on the

initial version

Reengineered with SOA

implementation.

Implementation

type

Standalone web

application

SOA; SOAP-based;

browser-based interface

SOA; REST-based;

SSE and mobile application

Language (s)
C#, ASP.NET,

dotNet/GWT based

Java, AJAX, JavaScript,

HTML/CSS, SQL
Java and SRARQL

Main

dependencies

Semantic Web

(SemWeb), AJAX,

Silverlight, Euler, and Pellet

PELLET (reasoning tool), Apache

Jena, Mule ESB, Glassfish,

JAX-WS, H2 RDBMS, AJAX

Apache Jena, Fuseki Server, JAX-RS 1.1,

Jersey 2, Jersey SSE, XBee Java lib, Tyrus

Web sockets, Apache

Tomcat Server and Android Studio.

Interface Browser-based Browser-based Mobile-based (Android application)

Portability Single computer One-to-many One-to-many

Licensing Proprietary Open-source Open-source

586 Tsinghua Science and Technology, December 2016, 21(6): 581–597

Fig. 3 The proposed mobile SMART system using SOA and semantic web technologies.

in living independently or in the care home have

been added. The features are derived from recent

inspection reports of various care homes as carried

out by Care Quality Commission[38]. Three different

web services have been combined into one web

service by using suitable software design patterns, such

as Facade, Repository, and MVC; hence removing

ESB to reduce the communications overhead. Other

creational, structural, and behavioral patterns are also

considered[7, 39]. Furthermore, the triple-store (Jena

Fuseki server[40]) is used to create a distributed system

that can be published, reused, and shared, thereby

contributing towards the vision of a semantic web and

linked data in the future. Overall, the proposed system

consists of three main components: REST-based web

service (including triple-store), the mobile application,

and the sensing network.

3.1 Web service

The REST-based web service has been identified to be

better suited for the following reasons. The REST-based

protocol is lightweight in nature, and is easy to use and

implement compared with the SOAP web service. The

SOAP-based protocol supports richer functionalities,

but incurs communication overhead[38, 41]. In addition,

it poses some restrictions in terms of flexibility, explicit

functional parameter requirements, and the data format

that it can produce and consume. In comparison, the

JAX-RS library[42] in the REST-based service does not

require function parameter definitions or publication

of their service, i.e., with Universal Description,

Discovery, and Integration (UDDI). Another main

feature of the REST-based service is that it enables

clients to consume and produce data in a variety

of data formats, such as XML, JSON, HTML, and

encoded text. This makes the system more interoperable

compared with others and gives it the ability to support

low-powered devices, thus reducing their limited

energy consumption resulting from its lightweight

nature.

One of the main requirements for the web service is

to capture and expose all the sensor data and activity

inferencing results to the client devices upon user

interactions with the environment. This is achieved by

broadcasting the real time sensor data to the clients

using the Server-Sent Events (SSE)[43] mechanism

instead of a bi-directional WebSockets or pooling

method. One of the main reasons for this is to reduce the

connection overhead. Although SEE is a bi-directional

protocol, other standard requests can still be made by

a client outside their SSE connection asynchronously.

Another requirement of a web service is to capture

and process sensor data that are communicated to the

server in various media formats depending on the device

vendor. In this proposal, the web service currently

supports Almond+ router WebSocket connection, XBee

Darpan Triboan et al.: Towards a Service-Oriented Architecture for a Mobile Assistive System with Real-time : : : 587

coordinator connected via comport, and other Arduino-

based sensor collection using standard comports (see

Sections 1.3 and 3.3 for more details).

The Jena Fuseki server has been used in order

to achieve a distributed collection of data for higher

scalability, reuse, and performance; however, other

triple-stores are also available. Furthermore, this

server supports the Java programming language and

works well together with the Apache Jena API[44], a

supporting library that can be used to perform SPARQL

queries and reasoning on the graph models stored on the

server. Furthermore, the Jena Fuseki server supports

various development tools, such as command line

execution of the data (ARQ), and user-friendly web-

based interface with which to write, perform queries,

and manage multiple datasets.

The web service uses a combination of design

patterns, such as facade and repository to layer.

In addition, the components are logically separate

from the three web services of the SOA SMART

implementation, in terms of the task level being

performed by the classes. This process created five

major layers: Smart Web Service API, Facade,

Repository, Domain, and Utility. The Smart Web

Service API exposes services as an API to enable

client devices to consume their features/data. The

Facade layer presents classes that perform high-level

commands for complex operations by utilizing multiple

repository classes. This layer also enables general

CRUD operations to take place, hence serving as the

Data Accessor component. The repository layer is

where the main logics are defined to perform querying

and updating tasks to the Fuseki server, accessing

sensor states, and creating the reasoner repository to

enable inferencing using rules and variances of reasoner

implementations. The domain layer contains classes

that enable data to be mapped when communicating

among the Fuseki server, Web service, and the Android

application. Finally, at the utility layer, low level

processes are performed, i.e., communicating with the

Fuseki server via HTTP and with sensor devices via

serial ports, as well as supporting ontology management

for inferring and reasoning.

3.2 Mobile applications

Smartphones have become more ubiquitous and have

been integrated to part of the modern lifestyle.

Smartphones are continuously becoming more

powerful with a diverse number of embedded sensors.

In the future these can be used for better contextual

data collection as well as better usability of the

system. In addition, delegating resource-intensive

tasks to cloud-based service approaches can not only

further increase the capabilities of smartphones but

also open up endless possibilities, such as Mobile

Cloud Computing (MCC)[45], Cloud-based Mobile

Augmentation (CMA)[46], and Image Recognition

processing (i.e., mobile landmark recognition

systems)[47]. The old browser-based applications

in previous system implementations make a system less

accessible to its users. For instance, the patients and

carergivers would need to carry a laptop, tablet, or other

browser-based devices to interact with the web service

in order to receive real-time assistance. Furthermore,

a browser-based application may not be able to utilize

all services available on the device, whereas built-in

hardware components, such as a heart rate sensor, can

be used to detect/monitor the users’ inactivity. Further

hardware devices can be attached to mobile devices

using wired or wireless communication protocols,

such as Bluetooth, NFC, and Infrared. This capability

allows limitless possibilities to collect diverse types of

contextual data about the user.

The mobile application in the proposed architecture

provides the main User Interface (UI) that makes an

asynchronous HTTP request to the REST web services.

It uses a simple Model-View-Controller (MVC) design

pattern to logically separate the classes. The model

package contains all of the domain models that are used

to map the data communicating with the web service.

The view package can be composed of all the classes

that are being used to display views on the screens, i.e.,

activity classes, fragment classes, and dialog classes.

Depending on the user type, the view package may have

further sub-packages to separate all the views. The

controller package may consist of all the classes that

trigger requests to the server with the help of the utility

classes, mainly view listeners and adapters. Finally,

the utility package holds all the support classes, such

as HTTP async requester classes, data parsing classes,

data dictionary classes, and date format utility.

The SOA approach essentially follows a client-server

pattern, in resolving some of the technical challenges

mentioned above in building an assistive system using

the SH environment. For instance, a Web Service as a

service provider and a Mobile application as a client,

can work well together to bridge the communication

gaps between the SH environments and mobile device

588 Tsinghua Science and Technology, December 2016, 21(6): 581–597

as well as to make the system more flexible in terms of

scalability, performance, and platform independency.

Furthermore, the web service can take advantage

of cloud computing technology to increase the ability

to perform complex reasoning or computation tasks

effortlessly. The main benefits of using the mobile

device can be numerous. For example, it would not

only allow the inhabitant to have a better HCI, but

also allow the utilization of embedded sensors within

the device or the attachment of external devices using

wireless connectivity (i.e., Bluetooth). Such devices,

such as Smartwatch and Shimmer[48] sensing devices

can be used to obtain additional contextual information

about the inhabitant to increase AR accuracy, which, in

turn, can lead to the provision of adequate assistance.

However, despite the advantages of using

smartphone-based application, providing every patient

in the care home with a smartphone may not be

financially feasible and getting the elderly to use it can

pose further challenges. Therefore, providing efficient

and natural HCI methods for an elderly can reduce

those problems to a degree. For instance, the recent

introduction of devices, such as Amazon Echo[23]

provides voice-based interaction to the system and the

ability to interconnect with smartphone and other smart

devices using SmartThings[24], can be advantageous.

3.3 Sensing network

As discussed in previous sections, a diverse number

of sensors and communication protocols are currently

available in the market. The proposed architecture

currently uses the Securifi Almond+ router to perform

ambient sensing, Arduino boards for dense sensing,

and Amazon Echo for voice interaction (see Section

4.1 for configuration details). The Securifi Almond+

router is used as a main “IOT” hub because of

its WiFi, ZigBee, and Z-Wave protocol capabilities.

Other hubs supporting similar protocols are also

available, such as Libelium Waspmote[49], SmartThing

Hub, and VeraLite. However, further investigation

may be required in order to obtain real-time data

from these hubs. The popular Ardunio boards and

shield-based approach provides greater capabilities and

flexibility with which to perform sensing; however,

additional steps are required to configure the individual

components. Meanwhile, the Amazon Echo currently

supports WiFi and Bluetooth communication protocols,

thus allowing voice interaction capabilities with third

party services.

In relation to overall system architecture, the “Utility”

library consists of packages and classes through which

to extract, store, and process the data from the sensing

hardware devices. In particular, the “Sensor Utils”

package contains sub-packages and classes that interact

with third-party APIs and hardware libraries (i.e.,

“*.almond” and “.ardunio”). Some of the key Java

libraries used are WebSocket API (for Almond+ router),

XBee, and comPort (both for Arduinio). Moreover,

these classes are used by the parallel thread classes

to log the events (“EventLogThread”), perform device

management (“DeviceManagementThread”), and store

the data in the triple-store (“TDBStorageThread”).

Figure 4 illustrates the abovementioned utility library

structure.

4 Implementation

The SMART system has been re-engineered to perform

ADL assistance within both simulated and real

environments. The inferencing is currently performed

by using the preference matching technique from

the users’ pre-defined preferences list. In addition,

the care homes inspection reports provided by the

Care Quality Commission[50] have been analyzed,

and several problems have been identified. Seven

application scenarios are considered important; hence,

these are partially implemented to support users. The

scenarios are as follows: to allow the user to manage

daily medication doses, appointments, and shopping

checklists, as well as to report issues, make requests for

bedwetting assistance, detect inactiveness (i.e., by using

the users heart rate values), and faciliate smart bedroom

Fig. 4 Software: Breakdown of the “Sensor Utils” package.

Darpan Triboan et al.: Towards a Service-Oriented Architecture for a Mobile Assistive System with Real-time : : : 589

cupboard interaction.

Currently, only the web service supports all of

the features described above, whereas the Android

Operating System (OS) based application is yet to be

fully resolved. The real-time ADL inferencing and

simulation environments as well as the preference

management and medicine dose management

interfaces have been implemented to demonstrate

this architecture. An Android OS based application

has been selected because of its availability, popularity,

large community support, and previous experiences of

working with Android applications. Other operating

systems were considered, however, due to a lack of

resources and essential skillsets, it was not considered

further.

Apart from the technologies already mentioned

in the previous sections, other supporting software

components that are used to build the system are Jersey

libraries[42] (i.e., Jackson library for JavaScript Object

Notation (JSON) strings to object mapping), Jena[16, 44]

Pellet (reasoner, see others[51]), Protege[52] (ontology

editing tool), and Google API Services[53] (i.e., for

Text-To-Speech APIs, and Maps API[53]). The Jersey

library plays a key role in developing the RESTful

web services for the function and parameter mappings

of the incoming requests from the clients, as well as

in producing and consuming data in various formats

dynamically. In general, Jersey library is used to bind

the web services with the Android application and

mapping data into various object classes.

4.1 Sensing hardware configuration

Ambient sensing is performed using preconfigured

sensors that are compatible with the IOT hub, i.e., door,

motion, and multi sensors. Dense sensing is performed

using bespoke configurations wherein Arduino Uno

boards with XBee shields and modules are used to

create a mesh network, see Refs. [54, 55] for more

details. The main coordinator that receives data from

the remote nodes is directly connected to the web

server using comport. However, other options are also

available to send the data from the coordinator to

server, such as by using WiFi shields or Bluetooth. The

remote nodes, which are connected with various multi-

modal sensors, send their statuses to the coordinator

when an event is triggered. In addition, Android mobile

phone, Amazon Echo, and WeMo Sockets are also

attached to the IOT router. The Android mobile phone is

directly connected to the Amazon Echo via Bluetooth to

output activity recognition results. In turn, the Amazon

Echo can interact with the Almond+ router and with

other popular sensing vendors. The WeMo Sockets

and Amazon Echo can be easily integrated within the

proposed mobile application using their APIs. Figure 5

presents the possible hardware configuration in order to

start collecting the raw data.

4.2 Dataflow among the Android application, web
service, and Apache fuseki server

The web service is central to the Android application

and Apache Fuseki server. The Android application

makes standard HTTP requests (i.e., GET, PUT,

POST, and DELETE) to the Web Service to perform

several tasks, such as CRUD operations, inferencing,

reasoning, and other complex application-based logics.

All the RDF data and ontologies are stored in the

Apache Fuseki server as a graph. Therefore, the data

are retrieved and manipulated by the web service using

SPARQL query language with the support of Apache

Jena library and the standard HTTP protocol. However,

the real-time sensing data are exposed to the clients

using a half-duplex, listener-subscription mechanism

(i.e., SSE[43]) in comparison to full-duplex WebSocket.

One of the key reasons for this decision is that the

process intensive tasks of inferencing and reasoning are

performed independently of the real-time event logging

process.

The web service broadcasts two SSE methods to the

clients: one for broadcasting real-time sensor events

and another with inferencing results for the clients with

a session token. This sequence of events between client

device and the key components in the web service

is illustrated in Fig. 6. As can be seen, the client

Android application can listen to the sensor events

in the background asynchronously by making an SSE

call to “EventBroadcaster” function in the SensorsCall

Fig. 5 Hardware: Connectivity diagram of sensing devices.

590 Tsinghua Science and Technology, December 2016, 21(6): 581–597

Fig. 6 SSE mechanism for real-time message flow of sensing
and inferencing results between client and web service.

class located in “SmartWebServiceAPI” (A). To receive

client-specific inferencing results, the client must obtain

the session identity from the “ReasonerCall” first (B).

The “ReasonerCall” is responsible for the task of

listening to the sensor events from the given time,

performing inferencing and then broadcasting the result

using “ResultsBroadcaster” function (B.1). Once the

client receives the session token, a request can be

made to “ResultsBroadcaster”, after which the task

of listening to the inferencing results associated to

their session identity is initiated. Meanwhile, the client

device is responsible for closing the session (C) and, if

required, storing the session data separately.

The web service performs a query and an update

request in three simple steps: (1) building SPQARL

query/update string, (2) using Jena classes/standard

HTTP post methods to execute the request, and (3)

parsing the responses. The pseudocode, shown in

Fig. 7, performs a simple SPARQL query on the

local Fuseki server end point and parses the result

using the ResultSet and QuerySolution method. The

standard HTTP post request can be made to perform

SPARQL update using the HttpPost, HttpClient, and

HttpResponse classes. However, the request content

type is set to “application/sparql-update”, and a static

variable already defined in the Jenas WebContent

class (“WebContent.contentTypeSPARQLUpdate”) can

be used.

Fig. 7 Pseudocode for executing a SPARQL query on the
server endpoint using Jena API.

Next, the Android application makes the requests

to the web service using the standard HTTP protocols

(HttpGet, HttpPost, and HttpPut, HttpDelete), only

in a JSON format; hence, the request headers must

be set appropriately. The Android application parses

the JSON data, and by using the “org.codehaus.
jackson.map.ObjectMapper” class, the data can be

automatically remapped into their respective class

instances.

4.3 Ontology modeling and data structuring

An ontology editing tool, such as Protege[52], can be

used to build a conceptual model at varying levels of

abstraction, leading to encapsulation of a particular

set of knowledge. Then, while structuring and adding

metadata to the raw data, these ontologies can be used

across various domains as a vocabulary. In this way, the

dataset is semantically enriched and the reusability of

the data is increased, along with the improved ability

to infer additional data, and perform reasoning using

real world axioms[10]. However, a problem that must be

solved at this point is the existence of multiple events or

activities associated with one single instance.

A few possible solutions are considered, one of which

is by simply linking the activity/event instances directly

to the main instance using object properties. This could

work, but it would create a large number of instances

that would still be unstructured in terms of instance

data grouping, ordering, and visualization. In turn,

this could increase the querying complexity and create

unnecessary computation overhead as the system data

grow.

Another approach is a bucket-based one, similar

to a table-like structure in any relational database,

in which all the data can be associated to the bucket

Darpan Triboan et al.: Towards a Service-Oriented Architecture for a Mobile Assistive System with Real-time : : : 591

instance using object properties at various inherent

levels (see Fig. 8). For instance, Patient1 individual

can have an object property of “hasAppointment” and a

value as an object instance of “Patient1 Appointments”

(bucket). This bucket, “Patient1 Appointments”, can

have N appointment object instances as a value, such as

“Patient1 Appointments 10 10 15”, which is defined

using the sub property of “hasAppointment” object

property called “hasAppointmentItem” (see Fig. 9(1)).

The individual, “Patient1 Appointments 10 10 15”,

will hold all the relevant data required for the

appointment, such as date and time of the appointment,

location, and notes. This process can be repeated

to represent other application scenarios, such as

medications lists, notifications, and other user-specific

preferences (see Fig. 9(2)).

Fig. 8 Layered object properties for bucket-based structure
data.

Fig. 9 Bucket-based approach for data structuring using
object properties.

4.4 SPARQL-based inferencing

In order to perform activity assistance in ADL, a simple

simulated environment is created to enable various

sensors and view the activity recognition results (see

Fig. 10b and Fig. 11); here, the Text-to-Speech feature

is also used for the resulting output. The activity

recognition algorithm is performed by the web service

using a data-driven approach. Currently, only pre-

defined user preferences (shown in Fig. 10a and Fig. 12

for the preference management interface) are used to

match against the activated sensors. The aim of the

matching process is to find the related user preference(s)

and other inactivated sensor object(s) from the matched

individual preference(s) to complete the activity. For

this to be carried out, the current implementation uses

SPARQL queries using the steps defined below. Some

examples illustrated in Fig. 13.

Step 1 Find a user preference that has all the

activated sensor objects and does not contain additional

Fig. 10 Managing user preferences and ADL simulation
mode interface.

Fig. 11 ADL simulation result of two possible preferences
with their missing sensors to complete the activity.

592 Tsinghua Science and Technology, December 2016, 21(6): 581–597

Fig. 12 User preference management interface in action.

Fig. 13 Illustrating the inferencing steps taken using
SPARQL query language.

sensors objects in the same preference.

Step 2 Otherwise, N user preferences are returned,

which have all or some activated devices listed

in a particular preference and other inactive sensor

objects.

(1) The number of activated sensor object(s) exist in

each user preference is taken and ordered in a

descending order.

(2) Using the results obtained, the search for

the missing sensor object(s) is carried out by

inspecting the individual user preferences. The

matched sensor object from the individual user

preference is excluded by using the key functions,

such as FILTER, Logical & Comparisons, or

Conditional SPARQL operators[18].

One of the advantages of this SPARQL query based

approach is that it does not require model loading

or reasoning libraries. However, this approach does

require explicit relationships to be defined in the

dataset. To bridge this gap, the notion of SPARQL

Inferencing Notation (SPIN) can be used to create

rules, constraints, and functions in SPARQL syntax,

which can be executed on the triplestore. SPIN is also

known as SPARQL rules; for more information, see

Refs. [56, 57].

4.5 Additional application scenarios

The Android application currently provides a simple

login mechanism that directs users to different

interfaces depending on their user types, i.e., Patient,

Carergiver, Administrator, and System Manager. The

user-specific interface allows the user to navigate

through different activities. Figure 14a shows the

patient’s UI and Fig. 14b shows one of the features

that allows patients to manage their medication and

dose timing records. The UI and other features for

other users will be further developed in the successive

prototypes.

5 Experiment and Discussion

5.1 Experiment details

The proposed system implementation is tested by

measuring the time between sensor activation and

generation of inferencing results on the client device.

The sensor activation time is only taken into

consideration once the data are received by the

web service. This is to reduce the effort for time

synchronization between the sensing devices.

Fig. 14 Patient’s main menu and UI of managing medicines
doses.

Darpan Triboan et al.: Towards a Service-Oriented Architecture for a Mobile Assistive System with Real-time : : : 593

A fixed time window length is defined for six User

Activity Preferences (UAPs) that are listed and tested

with three different scenarios, see Tables 2 and 3.

The first scenario (TP1) activates the exact number

of sensors defined in the user preferences, the second

scenario (TP2) shows the activation of additional

sensors objects, and the third scenario (TP3) shows

a simulation of faulty sensors by using some sensor

objects that are missing or not activated. The scenarios

for the first two activities are illustrated in Table 4.

Overall, each of the six activities are executed with three

different scenarios by two actors (Exp).

The web service was deployed on the HP Z440

workstation with Intel(R) Xeon(E) v3 3.50 GHz

processor with 16 GB RAM. The mobile application

was tested on a Samsung S6 edge smartphone running

Android 6.0.1 OS. The sensing data were collected

using several touch sensors and door contact sensors

using different protocols defined in Section 4.1.

5.2 Results

The results in Table 5 indicate that on average, it takes

4477 ms to receive the inferencing result on the mobile

phone for all six User Activity Preferences (UAPs) with

three different scenarios executed thrice. Overall, the

results show little to no correlation between the number

of sensors in the UAPs and the average time taken for

inferencing and then communicating the results to the

user.

5.3 Discussions

Although this paper does not focus on proposing

activity recognition approaches, further changes in the

system are still required to utilize the full capabilities

of OWL and DLs. One of the current limitations of

the defined SPARQL-based inferencing approach is that

assertions (ABox), or instances, are mainly used rather

than the terminology (TBox). The term TBox refers to

the concepts and roles that are defined as vocabulary,

whereas the ABox are named individually for those

instances of a concept[10]. This allows the vocabularies

to be generalized, shared, and applied across domains.

In addition, the AR process can be enriched by

investigating the process of dynamically separating

and segmenting using these shared vocabularies and

personalized rules/preferences. Another key difference

in the proposed system is that all the data are stored

in the triplestore and all open-source hardware and

software components are utilized.

The HCI with the system also plays a key role

gaining further benefits from the system’s capabilities.

The system implementation uses a mobile application;

however, our society is moving towards more natural

and ubiquitous HCI. Other systems[34, 36], discussed

in Section 2, have already adapted the notion of

augmented reality to overlay instructions on the

camera or use natural gesture-/voice-based HCI. In

comparison to the SMART system implementations

and other systems discussed in Section 2, mainly

having a web-browser based interface, this may limit

the client devices from further utilization, unlike with

mobile devices with embedded sensor capabilities to

collect meaningful and contextual data. In addition to

embedded sensors within the mobile device, instead

of configuring additional dense or ambient sensors in

the SH enviornment, more external sensors can be

directly attached to a mobile device using any standard

Table 2 User activity preferences with the associated total number of sensor objects.

Activity

number (#)
UAP Sensor objects sequence

Total number

of sensors

1
MakeIndian

Tea

KitchenDoor1, KitchenCupboard1, TeaBagJar, IndianTeaSpiceJar, SugarJar, Kettle1,

KitchenWaterTap1, Fridge1, MilkBottle1,
11

2
MakeCappuccino

Coffee

KitchenDoor1, KitchenCupboard1, CappuccinoBagJar, SugarJar, Kettle1,

KitchenWaterTap1, Fridge1, MilkBottle1, EatingSpoon1, Mug1
10

3
MakeStawberry

Juice

KitchenDoor1, KitchenCupboard1, JuicerMixerCup1, SugarJar, KitchenCupboard2,

ChoppingBoard1, Knife1, Fridge1, StawberryPacket1, MilkBottle1,

KitchenWaterTap1, GlassCup1, JuicerMixer1,

13

4
MakingChips

AndBeans

KitchenDoor1, FridgeFreezer1, ChipsBag1, KitehenCupboard2, OvenTray1,

HeinzBakedBeansCan1, KitchenWaterTap1, MicrowaveBowl1, OvenDoor1,

MicrowaveDoor1, CeramicPlate1

11

5 MakePasta
KitchenDoor1, KitchenCupboard1, PastaBag1, PastaPot1, KitchenWaterTap1,

WoodCookingSpoon, PastaSauce, SaltBottle1
8

6 TakingMedicine KitchenCupboard1, MedicineContainer1, GlassContainer1, KitchenWaterTar1 4

Note: Items in red color, Changes in object(s) from previous activity.

594 Tsinghua Science and Technology, December 2016, 21(6): 581–597

Table 3 AR test scenario types.
Scenario

types

Exact no.

of sensors

Extra sensors

activation

Faulty/

missing

TP1
p � �

TP2 � p �
TP3 � � p

Table 4 Two examples of AR test cases.
Activity

number (#)
Examples of tests specifications

1

TP1: #1,

TP2: #1, add KitchenCupboard2 and GlasCup1.

TP3: #1, swap TeaBagJar and OvenDoor1.

2

TP1: #2,

TP2: #2, add KitchenCupboard2 and GlasCup1.

TP3: #2, replace Mug1 with GlassCup1.

Table 5 Results showing average activity inferencing
duration from the last activities recorded.

Activity

number (#)

Test

type

Exp1

(ms)

Exp2

(ms)

Exp2

(ms)

Avg.

(ms)

Avg. per activity

number (ms)

TP1 3890 3988 5127 4335.00

1 TP2 5175 4176 4802 4717.67 4472.33

TP3 4172 4145 4776 4364.33

TP1 4013 3953 4439 4135.00

2 TP2 4131 4135 4725 4330.33 4287.67

TP3 4275 4288 4630 4397.67

TP1 3926 3923 4353 4067.33

3 TP2 4303 4316 4571 4396.67 4410.56

TP3 5310 4225 4768 4767.67

TP1 4116 4175 4452 4247.67

4 TP2 6330 4474 4695 5166.33 4636.33

TP3 4410 4461 4614 4495.00

TP1 4150 4265 4409 4274.67

5 TP2 4446 4414 5919 4926.33 4584.11

TP3 4497 4533 4624 4551.33

TP1 4166 4801 4271 4412.67

6 TP2 4532 4556 4563 4550.33 4473.56

TP3 4415 4460 4498 4457.67

4477.43

communication protocol[58].

The past system implementations with similar

architectural styles and patterns have shown positive

results in both functional and non-functional

requirements; not only for AAL systems[59, 60].

However, finding suitable design patterns for a

given application can be challenging and be easily

misused[5, 7]. Nevertheless, several benefits of using a

popular styles and pattern exist. One example is system

maintainability, which can improve code compensation

level and efficient debugging for the developer.

Furthermore, the decomposed SOA architecture can

enable any application to improve its scalability. In

the case of the proposed system, additional sensing

devices can be added within the SH so that the server

can collect, process, and disseminate data to multiple

clients more easily. Moreover, creating an opportunity

to interact with other third-party services can help

to extend the capabilities of the existing ubiquitous

system.

6 Conclusion

This paper investigates some of the system architectural

issues when building an AAL system. This was

achieved by investigating some of the latest required

components that can integrate and complement one

another. A generic system architecture is proposed,

which integrates and further extends the previous

system implementations by introducing a lightweight,

REST-based web service with an Android mobile

application interface. The web service plays a key

role in interacting with the triple-store (Apache Jena

Fuseki server) endpoint, SH sensors, and mobile

client applications. The web service provides activity

inferencing and reasoning capabilities using Jena

API; different reasoning engines can also be easily

integrated. Moreover, this generic architecture uses

simple design patterns (facade, repository, and domain

for the web service and MVC for the Android

application). The proposed system architecture also has

open-source components that can be deployed in a

distributed environment, making it scalable, as well as

easy to use, maintain, and develop further.

A real-time system was implemented to illustrate

the feasibility of the proposed architecture with some

additional use case scenarios. The system leverages on

the popular hardware components that are off-the-shelf

and open-source. The real time testing results show

that the average inferencing time taken to display the

results to the user is 4477 ms on average. Finally, the

implementation shows greater flexibility and potential

for further development in terms of usability, ability to

support additional application scenarios, and capacity to

provide a greater scope of collecting personalized and

contextual data (i.e., by paring wearable devices to the

mobile phone and integrating other third-party APIs),

thus increasing the accuracy of activity recognition.

The future implementations will focus on areas such

as improving data modeling techniques, semantically

Darpan Triboan et al.: Towards a Service-Oriented Architecture for a Mobile Assistive System with Real-time : : : 595

processing raw sensor data with an efficient timing

mechanism[61], inferencing and reasoning activities

with Jena API, as well as enhancing the SH sensing

capabilities, performance optimization, and HCI

methods (i.e., utilizing Amazon’s Alexa voice

services[62]). In addition, exploring rules (i.e.,

SPIN[57] and SWRL rules[63]), and Description

Logics (DLs) capabilities instead of current SPARQL-

based querying approach can be carried out. Finally,

the system currently solves the problem of single

sequential activity detection. The challenge of

recognizing multiple or interweaving activities

occurring concurrently in a non-sequential order

is still being investigated. In this light, future works

will focus on developing a framework or a mechanism

that can support the ability to disentangle complex

activities, i.e., recognizing that the user is making hot

chocolate, taking medicine, or speaking on the phone

simultaneously.

Acknowledgment

The authors gratefully acknowledge the contributions of
Simon Forest for the implementation, deployment, and
testing of the system. This project was partially supported
by EU H2020 Marie Sklodowska-Curie Actions, ITN-
ETN (ACROSSING Project ID: 676157) and Research
Investment Fund, DMU.

References

[1] X. Zhang, H. Wang, and Z. Yu, Toward a smart

home environment for elder people based on situation

analysis, in 2010 7th International Conference on
Ubiquitous Intelligence & Computing and 7th International
Conference on Autonomic & Trusted Computing, 2010, pp.

7–12.

[2] R. Sterritt and C. Nugent, Autonomic computing and

ambient assisted living - extended abstract, in Engineering
of Autonomic and Autonomous Systems (EASe), 2010
Seventh IEEE International Conference and Workshops on,

2010, pp. 149–151.

[3] D. Triboan, L. Chen, and F. Chen, Towards a mobile

assistive system using service-oriented architecture, in

2016 IEEE Symposium on Service-Oriented System
Engineering Towards, 2016, pp. 187–196.

[4] G. Bohme, Invasive Technification: Critical Essays in the
Philosophy of Technology. Bloomsbury Publishing, 2012.

[5] L. Pavlic, M. Hericko, and V. Podgorelec, Improving

design pattern adoption with ontology-based design pattern

repository, in Information Technology Interfaces, 2008. ITI
2008. 30th International Conference on, 2008, pp. 649–

654.

[6] M. Ali and M. O. Elish, A comparative literature survey of

design patterns impact on software quality, in Information

Science and Applications (ICISA), 2013 International
Conference on, 2013, pp. 1–7.

[7] C. Zhang, D. Budgen, and S. Drummond, Using a follow-

on survey to investigate why use of the visitor, singleton

& facade patterns is controversial, in Proceedings of
the ACM—IEEE International Symposium on Empirical
Software Engineering and Measurement—ESEM’12, 2012,

pp. 79–88.

[8] L. Chen, J. Hoey, C. D. Nugent, J. D. Cook, and Z. Yu,

Sensor-based activity recognition, IEEE Transactions on
Systems, Man and Cybernetics Part C: Applications and
Reviews, vol. 42, no. 6, pp. 790–808, 2012.

[9] A. Ameen, K. U. R. Khan, and B. P. Rani, Extracting

knowledge from ontology using Jena for semantic web,

in 2014 International Conference for Convergence of
Technology(I2CT), 2014.

[10] S. Staab and S. Rudi, Handbook on Ontologies, 2nd Ed.

Springer-Verlag, 2009.

[11] R. Culmone, M. Falcioni, R. Giuliodori, E. Merelli,

A. Orru, M. Quadrini, P. Ciampolini, F. Grossi, and

G. Matrella, AAL domain ontology for event-based

human activity recognition, in Mechatronic and Embedded
Systems and Applications (MESA), IEEE/ASME 10th Intl
Conf, 2014.

[12] L. Chen, C. Nugent, and G. Okeyo, An ontology-based

hybrid approach to activity modeling for smart homes,

IEEE Transactions on Human-Machine Systems, vol. 44,

no. 1, pp. 92–105, 2014.

[13] D. Gaaevic, D. Djuric, V. Devedzic, and B. Selic, Model
Driven Architecture and Ontology Development. Springer-

Verlag, 2006.

[14] J. Davies, F. Harmelen, and D. Fensel, eds. Towards the
Semantic Web: Ontology-driven Knowledge Management.
John Wiley & Sons, 2002.

[15] S. Powers, Practical RDF. O’Reilly & Associates, 2003.

[16] Apache, An introduction to RDF and the Jena RDF API,

http://jena.apache.org/ tutorials/rdf api.html, 2016.

[17] W3C, OWL 2 web ontology language document overview,

http://www.w3.org/TR/owl2-overview/, 2012.

[18] B. DuCharme, Learning SPARQL, 2nd Ed. O’Reilly Media,

2013.

[19] W. Pawgasame, A survey in adaptive hybrid wireless sensor

network for military operations, in 2016 Second Asian
Conference on Defence Technology (ACDT), 2016, pp. 78–

83.

[20] X. Hu, L. Yang, and W. Xiong, A novel wireless sensor

network frame for urban transportation, IEEE Internet of
Things Journal, vol. 2, no. 6, pp. 586–595, 2015.

[21] P. Gaikwad, J. P. Gabhane, and S. S. Golait, A survey

based on smart homes system using internet-of-things, in

2015 International Conference on Computation of Power,
Energy, Information and Communication (ICCPEIC),
2015, pp. 330–335.

[22] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow,

and P. Polakos, Wireless sensor network virtualization: A

survey, IEEE Communications Surveys & Tutorials, vol. 18,

no. 1, pp. 553–576, 2016.

[23] Amazon, Amazon echo, http://www.amazon.com/Amazon-

596 Tsinghua Science and Technology, December 2016, 21(6): 581–597

SK705DI-Echo/dp/B00X4WHP5E, 2016.

[24] Samsung, SmartThings, https://www.smartthings.com/

compatiblendiscretionaryf-gfgfgproducts, 2016.

[25] IFTTT, Recipes on IFTTT are the easy way to automate

your world, https://ifttt.com/, 2016.

[26] M. S. Perez and E. Carrera, Time synchronization in

Arduino-based wireless sensor networks, IEEE Latin
America Transactions, vol. 13, no. 2, pp. 455–461, 2015.

[27] Samsung SmartThings, SmartThings shield for Arduino,

https://shop.smartthings.com/#!/products/smartthings-shield-

arduino, 2016.

[28] L. Chen, C. Nugent, and A. Al-Bashrawi, Semantic data

management for situation-aware assistance in ambient

assisted living, in Proceedings of the 11th International
Conference on Information Integration and Web-based
Applications & Services- IIWAS ’09, 2009.

[29] L. Chen, C. Nugent, and J. Rafferty, Ontology-

based activity recognition framework and services, in

Proceedings of International Conference on Information
Integration and Web-based Applications & Services -
IIWAS ’13, 2013, pp. 463–469.

[30] X. Wang, J. Wang, X. Wang, and X. Chen, Energy

and delay tradeoff for application offloading in mobile

cloud computing, IEEE Systems Journal, 2015. doi:

10.1109/JSYST.2015.2466617.

[31] D. Martn, D. Lpez de Ipia, A. Alzua-Sorzabal, C. Lamsfus,

and E. Torres-Manzanera, A methodology and a web

platform for the collaborative development of context-

aware systems, Sensors, vol. 13, no. 5, p. 6032, 2013.

[32] B. Guo, D. Zhang, and M. Imai, Toward a cooperative

programming framework for context-aware applications,

Personal and Ubiquitous Computing, vol. 15, no. 3, pp.

221–233, 2011.

[33] P. N. Borza, M. Romanca, and V. Delgado-Gomes,

Embedding patient remote monitoring and assistive

facilities on home multimedia systems, in 2014
International Conference on Optimization of Electrical
and Electronic Equipment (OPTIM), 2014, pp. 873–879.

[34] T. Kistel, O. Wendlandt, and R. Vandenhouten, Using

distributed feature detection for an assistive work system,

in 2014 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), 2014, pp. 1801–1802.

[35] A. D. Paola, P. Ferraro, S. Gaglio, and G. Lo Re, Autonomic

behaviors in an ambient intelligence system, in 2014 IEEE
Symposium on Computational Intelligence for Human-like
Intelligence (IEEE SSCI 2014), 2014.

[36] A. Reichman and M. Zwiling, The architecture of ambient

assisted living system, in IEEE International Conference
on Microwaves, Communications, Antennas and Electronic
Systems, 2011.

[37] A. N. Khan, D. Rodrguez, R. Danielsson-Ojala, H.

Pirinen, L. Kauhanen, S. Salanter, J. Majors, S. Bjrklund,

K. Rautanen, T. Salakoski, et al., Smart dosing: A

mobile application for tracking the medication tray-

filling and dispensation processes in hospital wards, in

6th International Workshop on Intelligent Environments
Supporting Healthcare and Well-being (WISHWell’14),
2014.

[38] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S.

Bourne, and X. Xu, Web services composition: A decade’s

overview, Information Sciences, vol. 280, pp. 218–238,

2014.
[39] G. He, S. Wu, and J. Yao, Application of design pattern

in the JDBC programming, in the 8th International
Conference on Computer Science & Education (ICCSE),
2013, pp. 1037–1040.

[40] Apache Jena Fuseki, https://jena.apache.org/documentation/

fuseki2/index.html, 2016.
[41] X. Hu, T. Chu, V. Leung, E.C.-H. Ngai, P. Kruchten, and H.

Chan, A survey on mobile social networks: Applications,

platforms, system architectures, and future research

directions, IEEE Communications Surveys Tutorials, vol.

17, no. 3, pp. 1557–1581, 2014.
[42] Jersey, RESTful web services in Java, https://jersey.java.

net/, 2016.
[43] Jersey, Server-Sent Events (SSE) support, https://

jersey.java.net/documentation/latest/sse.html, 2016.
[44] Apache, Jena ontology API, https://jena.apache.org/

documentation/ontology/, 2016.
[45] M. Ayad, M. Taher, and A. Salem, Real-time mobile cloud

computing: A case study in face recognition, in 2014
28th International Conference on Advanced Information
Networking and Applications Workshops (WAINA), 2014,

pp. 73–78.
[46] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya,

Cloud-based augmentation for mobile devices: Motivation,

taxonomies, and open challenges, IEEE Communications
Surveys and Tutorials, vol. 16, no. 1, pp. 337–368, 2014.

[47] Z. Li and K. Yap, Context-aware discriminative vocabulary

tree learning for mobile landmark recognition, Digital
Signal Processing, vol. 24, pp. 124–134, 2014.

[48] Shimmer, Shimmer sensing, http://www.shimmersensing.

com/, 2015.
[49] Libelium, Waspmote plug & sense, http://www.libelium.

com/products/plug-sense/, 2013.
[50] Care Quality Commission, About us, http://www.cqc.org.

uk/content/about-us, 2016.
[51] K. Dentler, R. Cornet, A. ten Teije, and N. de Keizer,

Comparison of reasoners for large ontologies in the OWL 2

EL profile, Semantic Web, vol. 2, no. 2, pp. 71–87, 2011.
[52] Stanford University, A free, open-source ontology

editor and framework for building intelligent systems,

http://protege.stanford.edu/, 2016.
[53] Google, Products, https://developers.google.com/products/,

2016.
[54] R. Faludi, Building Wireless Sensor Networks, 1st Ed.

O’Reilly Media, 2010.
[55] T. Igoe, Making Things Talk, 2nd Ed. Maker Media, Inc,

2007.
[56] G. Meditskos, S. Dasiopoulou, E. Vasiliki, and I.

Kompatsiaris, Sp-act: A hybrid framework for complex

activity recognition combining owl and sparql rules,

in 2013 IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOM
Workshops), 2013, pp. 25–30.

[57] W3C, SPIN — Overview and motivation, http://www.

w3.org/Submission/spin-overview/, 2011.

Darpan Triboan et al.: Towards a Service-Oriented Architecture for a Mobile Assistive System with Real-time : : : 597

[58] R. K. Lomotey and R. Deters, Sensor data propagation

in mobile hosting networks, in 2015 IEEE Symposium on
Service-Oriented System Engineering (SOSE), 2015, pp.

98–106.

[59] W. Dai and V. Vyatkin, A component-based design pattern

for improving reusability of automation programs, in

IECON Proceedings (Industrial Electronics Conference),
2013, pp. 4328–4333.

[60] X. Xu, Y. Tao, X. Wang, and X. Ding, Research on

architecture of smart home networks and service platform,

in 2014 5th International Conference on Digital Home

(ICDH), 2014, pp. 232–236.

[61] L. Chen, C. D. Nugent, and H. Wang, A knowledge-driven

approach to activity recognition in smart homes, IEEE
Transactions on Knowledge and Data Engineering, vol. 24,

no. 6, pp. 961–974, 2012.

[62] Amazon Developer, Alexa — Build engaging voice

experiences for your services and devices. http://developer.

amazon.com/public/solutions/alexa, 2016.

[63] W3C, SWRL: A semantic web rule language combining

OWL and RuleML, https://www.w3.org/Submission/

SWRL/, 2004.

Darpan Triboan is currently a PhD

student at De Montfort University after

receiving the MSc degree in software

engineering in 2015 and BSc degree

in 2014 from the same university. His

current research interests include semantic

and knowledge representation, Wireless

Sensor Networks (WSNs), and pervasive

computing and Ambient Assisted Living (AAL).

Liming Chen is a professor of computer

science and the Head of the Context,

Intelligence, and Interaction Research

Group (CIIRG) of the School of Computer

Science and Informatics at De Montfort

University, UK. He received the BEng

and MEng degrees from Beijing Institute

of Technology (BIT), Beijing, China, in

1985 and 1988, respectively, and the PhD degree in artificial

intelligence from De Montfort University, UK, in 2003. He

worked as a senior research fellow at the School of Electronics

and Computer Science (ECS), University of Southampton, and

then a lecturer, a senior lecturer, and a reader at the School

of Computing and Mathematics, University of Ulster, before

he took the Professorship at De Montfort University. He has

extensive research expertise and a wide range of research

interests in areas such as artificial intelligence, semantic and

knowledge representation, pervasive computing, and Ambient

Assisted Living (AAL).

Feng Chen received the BSc, Mphil, and

PhD degrees from Nankai University,

Dalian University of Technology, and

De Montfort University in 1991, 1994,

and 2007, respectively. He is now a

senior lecturer at De Montfort University.

His research interests include software

engineering, distributed computing,

knowledge engineering, and image processing.

Zumin Wang is a professor of computer

science at Dalian University, China, and

the Head of Dalian Key Lab. of Smart

Medical and Healthcare. He received

the MEng degree from North China

Institute of Technology, Taiyuan, China,

in 2004, and the PhD degree from the

Institute of Electronics, Chinese Academy

of Science, China, in 2007. He has worked as a lecturer, an

associate professor, and a professor at the College of Information

Engineering, Dalian University. His current research areas

include internet-of-things, software engineering, and wireless

sensor networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

