
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll03/11llpp491-499
Volume 21, Number 5, October 2016

SED: An SDN-Based Explicit-Deadline-Aware TCP for Cloud Data
Center Networks

Yifei Lu�

Abstract: Cloud data centers now provide a plethora of rich online applications such as web search, social

networking, and cloud computing. A key challenge for such applications, however, is to meet soft real-time

constraints. Due to the deadline-agnostic congestion control in Transmission Control Protocol (TCP), many

deadline-sensitive flows cannot finish transmission before their deadlines. In this paper, we propose an SDN-

based Explicit-Deadline-aware TCP (SED) for cloud Data Center Networks (DCN). SED assigns a base rate for

non-deadline flows first and gives spare bandwidth to the deadline flows as much as possible. Subsequently,

a Retransmission-enhanced SED (RSED) is introduced to solve the packet-loss timeout problem. Through our

experiments, we show that SED can make flows meet deadlines effectively, and that it significantly outperforms

previous protocols in the cloud data center environment.

Key words: data center networks; SDN; TCP; congestion; deadline-aware

1 Introduction

In recent years, the global data center business has
expanded rapidly. Various data-center-hosted services,
including online services such as web search, social
networks, and offline applications such as data mining
based on Hadoop, have become pervasive. A user
request, like a web search or Hadoop MapReduce, may
cause hundreds of flows to be produced in Data Center
Networks (DCN). For better interactivity, these flows
are allocated diverse communication deadlines ranging
from 10 ms to 100 msŒ1�.

In these communication processes, if some flows
miss their deadlines, the data they carry is not
accepted by intermediate nodes (e.g., aggregators in
Hadoop) resulting in bad response quality and poor

�Yifei Lu is with School of Computer Science and Engineering,
Nanjing University of Science and Technology, Nanjing
210094, China. He is also with the Key Laboratory of
Computer Network and Information Integration (Southeast
University), Ministry of Education, Nanjing 210096, China. E-
mail: luyifei@njust.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2016-07-22; revised: 2016-08-04;
accepted: 2016-09-06

network performance. Ultimately, operator revenue is
affected. For instance, Amazon sales decline 1% for
every 100 ms increase in service latencyŒ2�. However,
legacy TCP, which makes up more than 95% of data
center trafficŒ1;3�, cannot provide efficient transmission
services.

There are several reasons for this performance
degradation. First, cloud data center services often
follow a Partition/Aggregate traffic pattern, which
allows the participation of, typically, thousands of
servers to achieve high performance. This causes
traffic bursts at aggregators. Second, Top-of-the-Rack
(ToR) switches, where the server is connected, are
shallow-buffered, normally having only a 3–4 MB
shared packet-buffer memory. Sometimes this shallow
buffer size is not enough to handle such traffic bursts,
resulting in buffer overflows, which are called “TCP
incast congestion”. A typical scenario is shown in Fig.
1. Third, the retransmission timeout to detect incast
congestion (i.e., packet losses) is too long, because
TCP is designed for wide-area networks. For example,
the minimum RTO of TCP is generally set to 200–
300 ms, but actual Round-Trip Times (RTTs) are only
hundreds of microseconds in DCN. The last reason is
that legacy TCP is deadline-agnostic, resulting in failing



492 Tsinghua Science and Technology, 2016, 21(5): 491–499

Fig. 1 Typical TCP incast scenario.

to complete transmissions in time. In summary, legacy
TCP suffers from incast congestion, low goodput, and
long completion times.

Currently prevailing transport protocols like TCP,
DCTCPŒ1�, RCPŒ4�, and ICTCPŒ5� are deadline-
agnostic. They strive to allocate bandwidth equally
among flows to approximate fair sharing. The lack of
awareness of flow deadlines causes a large number of
flows to miss their deadlines, and the underlying reason
is the tendency to treat flows equally to achieve fairness
when congestion occurs. As a result, a new objective
of meeting flow deadlines has inspired researchers to
reinvestigate the design of TCP in DCN. Some recent
works, such as D3Œ2� and D2TCPŒ6�, introduce deadline-
awareness in the TCP design. They make an effort to
allocate differentiated bandwidth based on flow size and
deadline. This leads to allow flows with deadlines to be
sent at higher rates, so that they can complete sooner
and meet their deadlines.

Software-Defined Networking (SDN)Œ7� is a
revolutionary network architecture that separates
network control functions from the underlying
equipments and deploys them centrally on the
controller, with OpenFlow as the standard interface.
The unique characteristics of SDN make it an
appropriate choice for DCN, in particular, for network
management.

Using an important characteristic of SDN, which
enables applications to be aware of network traffic
and congestion, we propose an SDN-based Explicit-
Deadline-aware TCP, called SED, for DCN. SED
assigns a base rate for non-deadline flows first, to
avoid “starving” non-deadline flows, and then allocates
bandwidth to deadline flows, as many as possible. If the
switch has spare capacity after these steps, it distributes
the spare capacity fairly among non-deadline flows.

The paper is organized as follows: In Section 2,
we introduce related works. In Section 3, we propose

a system model to address the TCP incast problem,
and describe the details of SED. A Retransmission-
enhanced SED (RSED) is addressed in Section 4. In
Section 5, we describe our experimental methodology
and present our results. We conclude in Section 6.

2 Related Work

Many approaches to TCP congestion control have been
proposed to date. In this section, we summarize the
most relevant works.

Traditional Additive Increase Multiplication
Decrease (AIMD) TCP achieves remarkable success
in the Internet, due to the simplicity and reliability of
using packet drop as congestion feedback. However,
TCP reacts to the presence of congestion, rather than
to its congestion level. This feature causes substantial
underutilization of network bandwidth over high-speed
long-distance networks. But it is important to recognize
that the communication environment of DCN is
significantly different from that of Wide Area Network
(WAN) in terms of high bandwidth and low latency.

In the context of DCN, both DCTCPŒ1� and D2TCPŒ6�

are proposed to maintain short queue length through the
sender-side back-off mechanism, to meet requirements
of delay-sensitive applications. DCTCP aims to ensure
low latency for short flows and good utilization for
long flows by reducing switch buffer occupation, while
minimizing buffer oscillation. In DCTCP, Explicit
Congestion with thresholds is used for congestion
notification, while both TCP sender and receiver are
modified for a novel fine-grained congestion window
adjustment. Reduced switch-buffer occupation can
effectively mitigate potential overflow caused by TCP
incast. D2TCP builds on DCTCP and adds deadline
awareness to it. It changes the congestion window
update function to incorporate deadline information
when congestion is detected: far-deadline flows back-
off more, and near-deadline flows back-off less. In
the far-deadline phase, D2TCP backs-off more than
DCTCP, and in the stable phase, D2TCP operates very
similarly to DCTCP, and gives up bandwidth if new
flows join the network. However, it still cannot satisfy
all of the deadline requirements. One reason is that
D2TCP uses deadline information for its back-off in
near-deadline phase, when it is already too late to react
to stringent deadlines.

Compared with D2TCP, where reactive congestion
control is distributed among senders, in D3 and PDQŒ8�,
switches become the critical controllers that proactively



Yifei Lu: SED: An SDN-Based Explicit Deadline-Aware TCP for Cloud Data Center Networks 493

allocate sending rates to flows.
D3 uses explicit rate control to apportion bandwidth

according to flow deadlines. Given a flow’s size and
deadline, source hosts request desired rates to switches.
The switches assign and reserve allocated rates for
the flows. Preemptive Distributed Quick (PDQ) is a
flow-scheduling algorithm designed to complete flows
quickly and meet flow deadlines. PDQ emulates a
Shortest Job First (SJF) algorithm to give a higher
priority to the short flows. PDQ provides a distributed
algorithm by allowing each switch to propagate flow
information to others via explicit feedback in packet
headers.

Unlike existing approaches that are either host-based
approaches or network-based, DIATCPŒ9� is proposed
under the Partition/Aggregate traffic pattern, where the
aggregator is aware of the bottleneck link capacity as
well as the traffic on the link. DIATCP controls the
peers’ sending rate directly to avoid incast congestion
and to meet cloud applications’ deadlines.

SDN has recently been proposed to build a “clean
slate” network architecture. In such an architecture,
we expect that hardware and compatibility would no
longer be design constraints. In addition, with a global
network view provided by SDN, control decisions can
be made by a centralized controller with more accuracy.
Facilitated by SDN, centralized network protocols
can be designed and implemented to optimize the
performance of applications with deadline requirements
with finer granularity.

3 SED Algorithm

3.1 System model

In DCN, each intermediate switch or router maintains
a virtual input queues at each input port and an output
queue at each output port; these queues share the switch
memoryŒ10�. In this paper, the network consists of n
nodes (sender), 1 node (receiver), and 1 bottleneck
switch, as shown in Fig. 1.

We consider there are N flows, sharing a link of
capacity C and a single switch, and we denote the
congestion windows of flow i as W i (t) at time t. Then
the queue size at time t, is given by

Q.t/ D
X
i2N

Wi .t/ � C � RTTavg (1)

where RTTavg is the average RTT of all N flows.

3.2 SED overview

We categorize the flows in DCN into non-deadline

flows that have no specific deadlines for flow
completion, and deadline flows that are supposed to
be completed by a specific deadline. Like D2TCP and
D3, we assume that applications expose their size and
deadline information when initiating a deadline flow,
and it is reasonable that applications in DCN can be
managed by network operators.

In the context of non-congestion network, TCP
follows the classical AIMD mechanism. However, the
deadline awareness of SED will take effect only until
congestion happens. The basic rationale of our SED is
to assign a base rate for non-deadline flows first at the
switch, which can avoid starving the non-deadline flows,
and then give bandwidth to as many of the deadline
flows as possible. If the switch has spare capacity after
the above steps, it distributes the spare capacity fairly
among all non-deadline flows. The deadline awareness
in SED is employed by the window allocation
algorithm, which we will explain in Section 3.6 in
detail. By doing these, we control the total amount of
traffic, in order not to overflow the bottleneck link.

The overall procedure of SED contains two parts:
queue congestion management on the switch side,
and congestion control on the SDN controller side. A
detailed description is shown in Fig. 2.

3.3 Queue congestion management

Packets that arrive at switches are served in First-
In-First-Out (FIFO) order. We consider that the
network enters congestion state (CNG) when predefined
threshold, K, satifies K 6 Q.t/ 6 Qmax; otherwise, the
network is in the normal state (NOM). When a switch
enters the CNG state, a congestion trigger message is
sent to the controller via the OpenFlow channel. In the
same way, a congestion recovery message is delivered
to the controller if the switch state returns to NOM. We
show these state changes in Fig. 3.

Fig. 2 The overall procedure of SED.



494 Tsinghua Science and Technology, 2016, 21(5): 491–499

Fig. 3 State changes of SED in queue congestion
management.

3.4 Congestion control at SDN controller

In an SDN controller, when receiving a congestion
trigger message, we use a window allocation algorithm
to meet the flow deadlines and push new flow-table
entries to the switch. We utilize the receive window
field in the TCP ACK header to allocate a specific
window size to each sender. On the other hand, upon
receiving a congestion recover message, the previous
flow-table entries are deleted. In addition, when a new
TCP connection is created or terminated, the window
allocation algorithm will be recalled to assign new
windows to each flow in the context of the congestion
state. The basic congestion control mechanism is
described in Algorithm 1.

3.5 Global Information Flow (GIF) table

In order to communicate between client and server, TCP
uses a three-way handshake to establish a connection,
and a four-way handshake for connection termination.
In the establishing connection, TCP options carried in

Algorithm 1 Congestion Control Mechanism
1: if receiving congestion trigger message then
2: state = CNG
3: call window allocation()
4: push new flow table entries
5: end if

6: if receiving congestion recover message then
7: state = NOR
8: call window release()
9: delete flow table entries

10: end if

11: if establish (or Delete) a TCP connection then
12: update GIF table
13: if state = CNG then
14: call window allocation()
15: push new flow table entries
16: end if
17: end if

the SYN and SYN-ACK packets are used to negotiate
optional functionality.

As shown in Fig. 4, a switch sends an SYN packet
to a controller via a Packet In message, when finding
no matching entry in the flow table. When receiving
this Packet In message, the controller generates a
routing table and pushes it to the switch. In the
same way, a receiver will return an SYN-ACK packet
when receiving an SYN packet. This SYN-ACK packet
follows the same procedure we discussed above. In
these processes, the controller records the information
of the flow to form a GIF table. Figure 5 shows the
detail of the GIF table.

In a GIF table, we record the time (Time) when
this flow is established, and the deadline (Deadline)
and flow size (Flow size), which we can gain
from applications. Subsequently, we can calculate
the remaining time (RTime) until the deadline and
remaining flow size (RSize) periodically, according to
the OpenFlow protocol. The priority order of the GIF is
sorted following EDF (Earliest Deadline First), which
is known to minimize the number of late tasks, to
minimize the number of missed deadline flows.

The TCP connection termination procedure is shown
in Fig. 6. When the controller receives an FIN packet,
it releases the resources, including deleting GIF entries
and routing tables, with respect to this flow.

3.6 Windows allocation

The sender sending rate should match the link capacity
from the switch to the receiver to avoid TCP incast

Fig. 4 GIF table generation with TCP three-way
handshake.

Fig. 5 Global information flow table.



Yifei Lu: SED: An SDN-Based Explicit Deadline-Aware TCP for Cloud Data Center Networks 495

Fig. 6 GIF table deletion with TCP termination procedure.

congestion and to maintain goodput. We define the
total window, referred to as Twin, as the sum of
the sending window sizes of all the TCP connections
passing through the switch. Therefore,

Twin D
X
i2N

Wi .t/ (2)

From Eq. (1), we have
Twin D K C C � RTTavg (3)

If a flow wants to meet its deadline, then it should
follow:

alloc window D
s

d
� RTTavg (4)

where s is the remaining transmit data size and d is the
remaining time until the deadline.

Algorithm 2 presents the window allocation
algorithm. The GIF table is ordered by giving priority to
the earliest deadline flows. The flows with the earliest
deadlines are allocated first. Assuming that a flow that
misses its deadline is meaningless, we drop the flow if
the deadline is missed (lines 2–4). Non-deadline flows
are allocated to a base rate, which is usually set to 1
MSS (lines 6–8). Lines 10–12 implement the initial
allocation, which corresponds to Eq. (4). Hence, the
window size is allocated so that it meets the deadline
of each flow. If the window requirement is larger than
Twin, we set the flow’s window to zero (lines 13–17). If
there are remaining windows after the initial allocation,
reallocation to non-deadline flows will be performed
later in a fair-share manner (lines 26–28).

4 RSED

As a TCP sender transmits approximately cwnd packets
within the time of RTT, the average throughput (Tavg)
can be given by

Tavg D
cwnd �MSS

RTTavg
(5)

Algorithm 2 Window Allocation Algorithm
Require:

flow.rtime: remaining time until deadline
flow.size: remaining data size
flow.win: allocated window
total alloc = 0, req alloc = 0;

1: for all each flow in GIF do
2: if flow expires then
3: Drop this flow
4: end if
5: // flow.rtime = 0 for non-deadline flows
6: if flow.rtime = 0 then
7: flow.win = base win //get a base window
8: total alloc = total alloc + base win
9: else

10: if total alloc < Twin then
11: req alloc = flow.size/flow.rtime * RTT
12: total alloc = total alloc + req alloc
13: if total alloc > Twin then
14: // there is not enough windows to allocate
15: total alloc = total alloc – req alloc
16: flow.win = zero
17: else
18: flow.win = req alloc
19: end if
20: else
21: // there is not enough windows to allocate
22: flow.win = zero
23: end if
24: end if
25: end for
26: if total alloc < Twin then
27: allocate the remaining window to non-deadline flows in a

fair-share manner
28: end if

where the default MSS is 1460 byte.
Hence, we know that the range of cwnd can be given

by 1 6 cwnd 6
Tavg � RTTavg

MSS
. For a typical DCN,

the bandwidth is 1 Gbps and the average RTT is about
200 �s. Then cwnd � 16:7, so cwnd 2 Œ1; 17�.

From the perspective of the switch, we can also get

Twin D
30 �MSSC 1 Gbps � 200 �s � 0:125

MSS
�

46:7 from Eq. (3) in the above typical DCN scenario,
where K = 30 packets and switch queue size is 100
packets. In the extreme case when cwnd of each flow
is 1, we know that the maximum number of concurrent
flows can reach about 46.

However, the number of concurrent flows in typical
DCN is far greater than 46. For example, Yahoo!’s M45
MapReduce clusterŒ11;12� reports that each job consists
of an average of 153 Maps and 19 Reduces. A Google



496 Tsinghua Science and Technology, 2016, 21(5): 491–499

web search cluster reports that every query operates
on data spanning thousands of servers, where a single
query reads hundreds of megabytes on averageŒ6;13�.
With this in mind, we argue that packet loss is inevitable
when the number of concurrent flows becomes large.
When packet loss happens, the sending server receives
triple duplicate ACKs, decreases its congestion window,
and goes into fast recovery mode. On the other
hand, the cwnd of each flow is no greater than 17,
and in many cases, cwnd = 1 when concurrent flows
are large, resulting in the terrible Full window Loss
Timeout (FLoss-TO) and Lack of ACKs Timeout
(LAck-TO)Œ14;15�. This phenomenon leads to TCP RTO
timeout and causes a significant throughput collapse.

As a result, in this section, we propose RSED to
retransmit lost packets quickly. The basic idea of RSED
is that when packet loss happens in a switch, a packet-
loss message to the controller will be triggered via an
OpenFlow channel, resulting in triple duplicate ACKs
being generated by the controller.

The queue congestion management can be extended
as shown in Fig. 7. Packets are dropped when the
switch queue size is greater than the switch buffer.
Moreover, a packet-loss message, which is encapsulated
in an OpenFlow Packet In message, is triggered
and transmitted to the controller. After obtaining the
dropped packet extracted from this Packet In message,
the controller sends triple duplicate ACKs to the source
of the dropped packet. Ultimately, the sender can
retransmit this packet without a TCP RTO timeout.

5 Experimental Results

5.1 Setup of experiments

In this section, we describe a series of experiments
in the Mininet v2.2.1Œ16�, using FloodlightŒ17� as the
controller and Open vSwitch v2.3.0 (OVS)Œ18� as the
OpenFlow switch. The experiments are simulated on
a server where the hardware profile includes 2.4 GHz
Intel CPUs with 8 cores, 16 GB RAM, and a 1 TB
hard disk, and the operating system is Ubuntu 14.04.2

Fig. 7 State change of RSED at switch.

(kernel 3.16.0-30-generic).
Our SDN controller is implemented on top of the

Floodlight platform that is deployed in a laptop with a
1.9 GHz Intel I5 Core, with 4 GB RAM, and a 500 TB
hard disk. The operating system is also Ubuntu 14.04.2.
For DCTCP implementation, we use public code from
Ref. [19] and add ECN capability to SYN packetsŒ20�.
Meanwhile, we use TCP New RenoŒ21� (named TCP for
short in the later experiments) as our congestion control
algorithm, and disable the delayed ACK.

For the key parameters of DCTCP, we set g, the
weighted averaging factor, to 1/16, and K, the buffer
occupancy threshold for marking CE-bits, to 20. For
D2TCP, we set d, the deadline imminence factor, to be
between 0.5 and 2.0, following Ref. [6]. The minimum
RTO for all TCP protocols is 30 ms. We set experiment
parameters as shown in Table 1.

5.2 Results

(1) Small-scale experiments In this experiment we have
six senders transmitting flows to a receiver; one has no
deadline, and the others have deadlines. We choose
flow sizes and deadlines to illustrate the impact of a
deadline-aware protocol. We set the five deadline flow
sizes to 8 MB, 12 MB, 30 MB, 50 MB, and 64 MB, with
respective deadlines of 300 ms, 800 ms, 1 s, 3 s, and 5 s.
The flow without a deadline has infinite data to send.
This topology is shown in Fig. 8.

Table 1 The experiment parameters.

Parameter Value
Capacity of links 1 Gbps
Buffer size of each switch port 150 KB
Minimum RTO of all TCPs 30 ms
Packet size 1500 KB
MSS 1460 KB
RTT 200 �s

Fig. 8 Small-scale experiments topology.



Yifei Lu: SED: An SDN-Based Explicit Deadline-Aware TCP for Cloud Data Center Networks 497

In Fig. 9 we show the throughput achieved by
the six flows over time, for TCP, DCTCP, D2TCP,
and SED. The difference between the various TCPs
is most noteworthy in the 0–3 s range. Figure 9a
shows that DCTCP grants all flows equal bandwidth,
and consequently flow 1 and flow 3 miss their
deadlines. Figure 9b shows that D2TCP’s deadline-
aware congestion avoidance allows the near-deadline
flows to take a larger share of the available bandwidth,
and the far-deadline flows commensurately relinquish
bandwidth. However, it also misses the deadline of
flow 3. DCTCP and D2TCP provide low latency with
very low buffer occupancies, while still achieving high
throughput. Hence, the completion time of all flows is
shorter than TCP and SED. Flows 1, 2, and 3 with TCP
miss their deadlines, as shown in Fig. 9c. TCP is the
worst of the four transmission protocols. SED meets
all the deadlines of the six flows, although it takes the
longest transmission time. It is because SED allocates
transmission rate according to dividing remaining time
by the remaining transmit data size, so transmission will
last until the deadline.

(2) Large-scale experiments We ran a set of
five deadline-sensitive applications on the network,
equally dividing the total number of hosts among the
applications. Each application consists of one receiver
and n senders, which have the same settings for size and
deadlines. This experiment topology is shown in Fig.
10. We varied n, the number of senders per application,
to explore varying degrees of fan-in-bursts.

In this experiment, we set the five applications’ flow
sizes to 20 KB, 60 KB, 100 KB, 140 KB, and 200 KB,
and deadlines to 200 ms, 300 ms, 350 ms, 400 ms, and
450 ms, respectively. All TCP, DCTCP, and D2TCP
parameters match those in Section 5.1.

Figure 11 shows the goodput of SED and RSED with
TCP, DCTCP, and D2TCP as we vary the number of
concurrent flows up to 100. As shown in the figure,
the goodput of TCP collapses when the number of
senders is larger than about 5. This phenomenon of
goodput collapsing in DCTCP and D2TCP happens
when concurrent numbers reach above 25 and 30
respectively. SED performs well as the number of
senders increases to 40. At that time, the link utilization
is about 90%. Subsequently, as the number of senders
continues to expand, the goodput of SED declines on
account of TCP RTO timeouts caused by packet loss
and missed deadlines of TCP flows. However, RSED
significantly outperforms SED, TCP, DCTCP, and

1000

800

600

400

200

0

1000

800

600

400

200

0

1000

800

600

400

200

0

1000

800

600

400

200

0

T
hr

ou
gh

pu
t 

(M
bp

s)
T

hr
ou

gh
pu

t 
(M

b
ps

)
T

hr
ou

gh
pu

t 
(M

bp
s)

T
hr

ou
gh

pu
t 

(M
bp

s)

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

5

5

6

6

Time (s)

Time (s)

Time (s)

Time (s)

(a) DCTCP

2
(b) D TCP

(c) TCP

(d) SED

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5
Flow 6

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5
Flow 6

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5
Flow 6

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5
Flow 6

Fig. 9 Throughput for TCP, DCTCP, D2TCP, and SED.



498 Tsinghua Science and Technology, 2016, 21(5): 491–499

Fig. 10 Large-scale experiments topology.

1000

800

600

400

200

G
oo

d
pu

t 
(M

b
ps

)

0 20 40 60 80 100
Number of senders

TCP
DCTCP

2
D TCP
SED
RSED

Fig. 11 Goodput for TCP, DCTCP, D2TCP, SED, and RSED
with concurrent senders.

D2TCP when the concurrent flows are greater
than 40. This is because that RSED exploits fast
retransmission of lost packets to avoid TCP RTO
timeout, which will decrease the goodput of TCP.

In our experiment, SED easily handled 40 concurrent
flows without any performance degradation. However,
RSED can significantly improve the performance of
TCP, DCTCP, and D2TCP over TCP incast and deadline
scenarios.

Figure 12 shows the fraction of flows that miss the
deadlines with increasing congestion levels. In this
figure, the Y axis shows the fraction of missed deadlines
for TCP, DCTCP, D2TCP, SED, and RSED as we vary
the degree of burstiness on the X axis by increasing the
number of concurrent flows from 5 to 100.

When the number of senders is small (e.g., 10 or
fewer), all variants meet the deadlines well, but the
missed deadlines of TCP and DCTCP increase rapidly
as the number of flows increases. D2TCP performs
much better than TCP and DCTCP as it gives more
bandwidth to near-deadline flows, but still misses about
30% of the deadlines when the number of senders is
large (e.g., 50). On the other hand, SED does not miss
any deadlines even in highly congested situations. We

100

80

60

40

20

M
is

se
d
 d

ea
d
li

ne
 (

%
)

0 10 20 30 40 50
Number of senders

TCP
DCTCP

2
D TCP
SED
RSED

Fig. 12 Fraction of flows that miss deadlines.

note that RSED also shows similar results; it missed
only 1 and 3 deadlines when the number of flows was 45
and 50, respectively. This implies that most deadlines
can be met.

Figure 13 shows how incast congestion affects
performance, and we measure the fraction of flows that
suffer at least one timeout. It is observed that more than
20% of flows that employ TCP or DCTCP experience
network congestion when the number of senders is
greater than 20. D2TCP shows better performance with
regard to congestion avoidance, but the fraction of
timeout flows increases up to around 50% as the number
of senders increases. Through comparing Fig. 12 with
Fig. 13, we can see that incast congestion directly
affects the missed deadlines as flow deadlines range
from 20 ms to 60 ms while minimum RTO is 30 ms in
our experiment. Due to fact that the basic idea of SED
is to avoid congestion by controlling the receive window
of each flow, SED and RSED control the total sending
window size to the extent of the bottleneck link capacity
and as a result, suffer some timeouts.

100

80

60

40

20

F
ra

ct
io

n 
of

 f
ow

s 
th

at
 s

uff
er

 t
im

eo
ut

 (
%

)

0 10 20 30 40 50
Number of senders

TCP
DCTCP

2
D TCP
SED
RSED

Fig. 13 Fraction of flows that suffer at least one timeout.



Yifei Lu: SED: An SDN-Based Explicit Deadline-Aware TCP for Cloud Data Center Networks 499

6 Conclusion

In this paper, we propose SED, a new SDN-based
explicit-deadline-aware TCP, designed for cloud data
center networks. Unlike existing approaches that are
either host-based or network-based, we develop and
design an SDN-based solution. Our insight is that in
the SDN environment, the SDN controller is aware of
the bottleneck link capacity as well as the traffic on the
link. Therefore, SED controls the peers’ sending rate
directly to avoid TCP incast congestion and to meet the
application deadline. Furthermore, a retransmission-
enhanced SED, which is termed RSED, is proposed to
deal with TCP RTO timeout problems caused by packet
loss. We evaluate SED via extensive simulations. Our
results confirm that SED can make flows meet deadlines
effectively without starving the non-deadline flows.

As future work, we plan to design an optimized
tuning algorithm for Twin based on mathematical
analysis and to calculate deadline flow precedence.

Acknowledgment

This research was partially supported by the National
Natural Science Foundation of China (Nos. 61370209
and 61402230). The author thanks Dr. Ling Tang for
the valuable comments and discussions.

References

[1] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P.
Patel, B. Prabhakar, S. Sengupta, and M. Sridharan,
Data center TCP (DCTCP), ACM SIGCOMM Computer
Communication Review, vol. 40, no. 4, pp. 63–74, 2010.

[2] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron,
Better never than late: Meeting deadlines in datacenter
networks, ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4, pp. 50–61, 2011.

[3] T. Benson, A. Anand, A. Akella, and M. Zhang,
Understanding data center traffic characteristics, ACM
SIGCOMM Computer Communication Review, vol. 40, no.
1, pp. 92–99, 2010.

[4] A. N. Dukkipati and N. McKeown, Why flow-completion
time is the right metric for congestion control, ACM
SIGCOMM Computer Communication Review, vol. 36, no.
1, pp. 59–62, 2006.

[5] H. Wu, Z. Feng, C. Guo, and Y. Zhang, ICTCP: Incast
congestion control for TCP in data center networks, in

Proc. the ACM CoNEXT 2010, Philadelphia, PA, USA,
2010, p. 13.

[6] B. Vamanan, J. Hasan, and T. N. Vijaykumar, Deadline-
aware datacenter tcp, ACM SIGCOMM Computer
Communication Review, vol. 42, no. 4, pp. 115–126, 2012.

[7] N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner,
OpenFlow: Enabling innovation in campus networks,
ACM SIGCOMM Computer Communication Review, vol.
38, no. 2, pp. 69–74, 2008.

[8] C. Hong, M. Caesar, and P. Godfrey, Finishing
flows quickly with preemptive scheduling, in Proc.
the ACM SIGCOMM 2012 Conf. on Applications,
Technologies, Architectures, and Protocols for Computer
Communication, Helsinki, Finland, 2012, pp. 127–138.

[9] J. Hwanga, J. Yoob, and N. Choi, Deadline and incast
aware TCP for cloud data center networks, Computer
Networks, vol. 68, no. 5, pp. 20–34, 2008.

[10] N. McKeown, A fast switched backplane for a gigabit
switched router, http://www.cs.cmu.edu/�srini/15-744/
papers/McK97.html, 1997.

[11] Yahoo! m45 supercomputing project, http://research.
yahoo.com/node/1884, 2007.

[12] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, An
analysis of traces from a production mapreduce cluster,
in Proc. the 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing, Washington DC,
USA, 2010, pp. 94–103.

[13] L. Barroso, J. Dean, and U. Holzle, Web search for a
planet: The google cluster architecture, IEEE Micro, vol.
23, no. 2, pp. 22–28, 2003.

[14] J. Zhang, F. Ren, and C. Lin, Modeling and understanding
TCP incast in data center networks, in Proc. IEEE
INFOCOM 2011, Shanghai, China, 2011, pp. 1377–1385.

[15] J. Zhang, F. Ren, L. Tang, and C. Lin, Taming tcp incast
throughput collapse in data center networks, in Proc.
21st IEEE International Conference on Network Protocols
(ICNP), Goettingen, Germany, 2013, pp. 1–10.

[16] Mininet, http://mininet.org/, 2016.
[17] Floodlight, http://www.projectfloodlight.org/floodlight/,

2016.
[18] Open vSwitch, http://openvswitch.org/, 2016.
[19] DCTCP Patch, http://simula.stanford.edu/�alizade/Site/

DCTCP.html, 2016.
[20] A. Kuzmanovic, A. Mondal, S. Floyd, and K.

Ramakrishnan, Adding Explicit Congestion Notification
(ECN) capability to TCP’s SYN/ACK packets,
https://tools.ietf.org/html/rfc5562, 2016.

[21] F. Sally and H. Tom, The NewReno modification to TCP’s
fast recovery algorithm, https://tools.ietf.org/html/rfc2582,
2009.

Yifei Lu received the PhD degree from
Southeast University in 2010. He is
now a lecturer in Nanjing University
of Science and Technology. His main
research interests include software-defined
networking and data center network.


