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Carbon Nanotube Transistor with Short-Term Memory

Changqing Yin�, Yuxing Li�, Jiabin Wang, Xuefeng Wang, Yi Yang, and Tian-Ling Ren�

Abstract: Short-Term Memory (STM) is a primary capability of the human brain. Humans use STM to remember

a small amount of information, like someone’s phone number, for a short period of time. Usually the duration of

STM is less than 1 minute. Synapses, the connections between neurons, are of vital importance to memory in

biological brains. For mimicking the memory function of synapses, Carbon Nanotube (CNT) networks based thin-

film transistors with Electric Double Layers (EDL) at the dielectric/channel interface were researched in this work.

A response characteristic of pre-synaptic potential pulses on the gate electrode of this CNT synaptic transistor was

shown remarkably similar to Excitatory Post-Synaptic Current (EPSC) of biological synapses. Also a multi-level

modulatable STM of CNT synaptic transistors was investigated. Post-synaptic current was shown with tunable

peak values, on-off ratio, and relaxation time.
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1 Introduction

The memory and computation of biological brains rely
on two basic elements: neurons and synapses. Neuron
cells are the basic unit of a brain. Synapses are the
fundamental structure for transferring electrical and
chemical signals between neuron cells. There are
approximately 100 billion neurons and 1015 synapses
in the human brain[1]. Synapses connect neurons
by releasing neurotransmitters and firing Excitatory
Post-Synaptic Currents (EPSC) as a result of pre-
synaptic potential spikes[2]. The connecting strength
of synapse, synaptic weight, determines how much
triggering spikes contribute to output. Synaptic weight
modification is known as synaptic plasticity and is
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considered a basic mechanism of human memory and
learning[3]. Induced by weak and short pre-synapse
excitation, EPSC are triggered post-synaptically and
hold for a short period of time, and represent Short-
Term Memory (STM)[4]. Generally, the duration of
STM is less than 1 minute.

Synapses connect neurons, and play a significant role
in realizing the memory function in biological brains.
Similarly, as the basic unit of brain-like computation,
synaptic transistors are the base of brain-like computers.
Researchers have been trying to mimic the behavior
of synapses by using memristors[5, 6], RRAM[7, 8], and
transistors[9–11]. And Carbon Nanotubes (CNT) have
also been used in place of silicon[12, 13] to fabricate
synaptic transistors[14–16]. Agnus et al.[14] developed
an optically gated carbon nanotube transistor that
can be controlled by light and potential pulses. Kim
et al.[15] reported on a CNT synapse with memory,
dynamic logic, and learning functionality. Chen et al.[16]

demonstrated a spiking neuron circuit based on a CNT
synaptic transistor.

In this paper, CNT-network-based thin-film
transistors gated by SiO2 with electric double layers are
demonstrated with a large hysteresis window, a high
on-off ratio, and low noise. For mimicking the behavior
of synapses, EPSC on a transistor channel are triggered
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by a potential spike on the pre-synaptic gate electrode.
The STM of this CNT synaptic transistor is realized
and investigated by modifying the amplitude of the pre-
synaptic potential spike. The response characteristic
shows high similarity to biological synapses in terms of
tunable peak value, on-off ratio, and relaxation time of
post-synaptic current.

2 Experimental Detail

Figure 1 illustrates the fabrication procedure of a
CNT network synaptic transistor. A 500 nm layer of
aluminum, working as the back gate, is deposited on
silicon substrate by sputtering. Then a layer of p-
doped nanogranular silicon oxide film is deposited as
the insulator layer by a Plasma-Enhanced Chemical
Vapor Deposition (PECVD) system, using SiH4 and
O2 as the reactive gasses, a technique introduced
by Zhu et al.[17] Drain (D) and source (S) electrode
patterns are defined by lithography. The chip is placed
into an oxygen plasma environment for 5 minutes
to remove the remaining polymer on the exposed
SiO2 surface. Then bilayer Pt/Ti (50 nm/10 nm) is
evaporated, followed by a lift-off process. Platinum is
chosen for ohmic contact between the CNT network and
the electrodes[18, 19]. Titanium, underneath platinum,
functions as an adhesion layer.

The CNT network film, functioning as a channel, is
transferred onto the substrate by a solution method. The
powder of semiconductor-enriched (99.99% content)
Single-Walled CNT (SWCNT) is first dispersed into
a solvent. N-methyl pyrrolidone (NMP) is used
as the solvent because of its high stability and
repeatability. Then 1 mg CNT is dispersed into 10 mL
NMP using an ultrasonic machine. After that, the
solution is diluted to 0.01 mg/mL and homogenized
again in an ultrasonic environment. The chip is then
immersed into the 0.01 mg/mL CNT dispersion solution
for one hour for transfer of the CNT network. Finally,
the channels are patterned by lithography and a Reactive
Ion Etching (RIE) process by using oxygen as the
reactive gas and photo-resist as the mask. The length
and width of the channel between the drain and source
electrodes are 16�m and 200�m, respectively.

3 Results and Discussion

3.1 Electrical performance of CNT synaptic
transistor

The electrical performance of the CNT synaptic
transistor was tested by using Keithely 4200. The
transfer curves on linear and semilog coordinates are
shown in Figs. 2a and 2b, respectively, at Vsd D 0:1V.
The voltage applied on the back gate electrode sweeps
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Fig. 1 Processing steps: (a) Sputter Al on silicon substrate; (b) PECVD nanogranular silicon oxide; (c) Lithography for
defining electrodes, then oxygen plasma to clean the surface; (d) Evaporate Ti/Pd; (e) Lift-off; (f) Transfer CNT networks;
(g) Lithography to define CNT network channel patterns; (h) Etch CNT network with oxygen plasma; (i) Remove photoresist.
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Fig. 2 (a) Transfer curve of CNT synaptic transistor; (b)
Semilog plot of the transfer curve.

forward and backward from 6 V to �6 V with a step
of 50 mV. The on-off ratio is �105, with 1.2�A as
the “on” current. A large hysteresis window can be
observed. The threshold voltage of the CNT synaptic
transistor in the forward and backward sweeps of Vgs

is estimated to be �0.77 V and 3.12 V, respectively,
by using extrapolation in the linear region method[20],
as shown in Fig. 2a with red lines. It is mainly due
to electric-double-layer effect and slow speed of the
protons in the SiO2 film[21]. The Subthreshold Slope
(SS) of the CNT synaptic transistor is calculated by
using the standard formula[22] SS D djVgsj=d.logjIdsj/

with a result of 925.5 mV per decade. The capacity of
the SiO2 film (Cox/ is around 0.02�F/cm2 measured by
using Agilent 4284A. The mobility of the CNT network
channel is �eff D 11:0 cm2 � V �1 � s�1 estimated by
�eff D .dIds/dVgs/=.CoxVdsW=L/

[23].
Figure 3 shows the output characteristic of the CNT

synaptic transistor. The Ids � Vds dependences when
Vgs sweeps from 0 V to �5 V with a step of �1 V show
that the CNT synaptic transistor is P-type. Also, the

0

-1

-2

-3

-4

-5

-6

I d
s
(1

0
A

)
-

5

-5 -3-4 -2 -1 0
Vds (V)

Vgs=0 V
Vgs=1 V
Vgs=2 V
Vgs=3 V
Vgs=4 V
Vgs=5 V

Fig. 3 Output characteristic of the CNT synaptic transistor.

transistor is closed with 0 V gate voltage, and open with
gate voltage greater than �1 V. This is in accordance
with the result that Vth D �0:77V. The leakage current
on the gate electrode was also detected during the
test, as shown in Fig. 4. While the gate voltage varies
between �6 V and 6 V, the current that leaks from the
gate electrode is less than 300 pA, which is relatively
low and negligible. The low leakage ensures the normal
function and low noise of the CNT synaptic transistor.

3.2 EPSC of the CNT synaptic transistor

A pre-synaptic potential spike is applied to the back gate
of the CNT synaptic transistor, as shown in Fig. 5. The
amplitude of the spike on the gate electrode is �6 V for
opening the P-type CNT network channel. The voltage
between the source and drain electrodes Vsd is 0.1 V for
detecting the transient changing of the CNT network
channel. The spike leads to an abrupt current increase
on the CNT network channel. This phenomenon is
similar to the EPSC of a biological synapse.

Figure 6a shows a schematic image of a biological
synapse. Figure 6b shows the structure of a CNT
synaptic transistor gated by nanogranular SiO2 with
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Fig. 4 Leakage current of the CNT synaptic transistor.
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Fig. 5 EPSC of CNT synaptic transistor.
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Fig. 6 (a) Schematic of biological synapse; (b) Structure of
CNT synaptic transistor.

EDL at the dielectric/channel interface layer. In a
biological synapse, an impulse at a pre-synapse
membrane induces the release of neurotransmitters
from synaptic vesicles, which will result in a transient
postsynaptic membrane depolarization and increasing
of synaptic weight[24]. Here, for the CNT synaptic
transistor, the back gate, CNT network channel, and
mobile proton in the EDL layer can be regarded
as pre-synapse, post-synapse, and neurotransmitters,
respectively. So the CNT transistor can be regarded as
an artificial synapse with the current or conductance of
CNT network channel taken as synaptic weight.

The response characteristic feature shown in Fig. 5

conforms perfectly to the EPSC of a biological synapse.
Before the pre-synaptic potential spike, the current on
the CNT network channel is around 65 nA. Then the
pre-synaptic potential spike is initiated, and lasts for 1 s.
Protons leave the interface between the CNT network
channel and the SiO2, but negative charges remain there
and induce electric-double-layer effect, as shown in
Fig. 6b. With pre-synapse excitation, the CNT network
channel, which can be regarded as post-synapse, is
stimulated, and the current dramatically rises to 700 nA.
After the spike, the current does not fall immediately
but holds for a short time. In this example, it takes the
current 26.8 s to gradually decrease to 100 nA.

3.3 STM behavior of CNT synaptic transistor

For the purpose of investigating the STM behavior
of the CNT synaptic transistor, distinguishable pre-
synaptic potential spikes are used to initiate the EPSC
phenomenon, as shown in Fig. 7a. All of the durations
of the pre-synaptic potential spikes are 0.8 s. However,
the pulse amplitudes of the pre-synaptic potential spike
vary from �1 V to �6 V with a step of �1 V. The
curves show that the stronger the pre-synaptic spike
is, the higher the post-synaptic current abruptly rises.
Meanwhile, the current decreases gradually instead
of shutting down immediately after the pre-synaptic
potential spike. And the stronger the pre-synaptic
spike is, the longer the post-synaptic current holds after
the spike. This phenomenon is similar to human STM
and shows modulatable strength as the pulse amplitude
sweeps.

As shown in Figs. 7b–7d, the STM characteristic of
the CNT synaptic transistor is adjustable to multiple
levels by controlling Vpulse. The peak of the post-
synaptic current and on-off ratio of the CNT network
channel vary from 140 nA to 700 nA and 1.8 to 10.8,
respectively, as the pulse amplitude rises from 1 V to
6 V. The relaxation time of the post-synaptic current
follows a similar trend, increasing from 0.8 s to 26.8 s
as amplitude rises, which is defined as starting from the
end of pre-synaptic spike and ending when the drain
current decreases below 100 nA.

4 Conclusion

In summary, a CNT-network-based thin-film transistor
gated by SiO2 with EDL at the dielectric/channel
interface was demonstrated as a CNT synaptic transistor
that can mimic the EPSC and STM features of
biological synapses. The elementary features of the
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post-synaptic current on Vg; (c) Dependence of on-off ratio current of CNT network channel on Vg; (d) Dependence of relaxation
time of post-synaptic current on Vg.

CNT synaptic transistor were shown with a large
hysteresis window that the threshold voltage can
be from �0.77 V to 3.12 V, a high on-off ratio of
� 105, and a negligible leakage current less than
300 pA. To mimic the behavior of synapses, EPSC
on the channel of the CNT synaptic transistor were
triggered by a potential spike on the pre-synaptic (gate)
electrode. With the excitation of the pre-synapse gate,
the current of the CNT network channel, which can
be regarded as a post-synaptic gate, dramatically rose.
After the spike, the current held for a short time and
gradually decreased. The multi-level STM of CNT
synaptic transistor was realized and investigated by
modifying the amplitude of the pre-synaptic potential
spike from �1 V to �6 V. The response characteristic
shows great similarity to biological synapses in terms
of tunable peak value, on-off ratio, and relaxation
time of post-synaptic current; these ranged from

140 nA to 700 nA, 1.8 to 10.8, and 0.8 s to 26.8 s,
respectively. This multi-level modulatable STM CNT
synaptic transistor has potential for use as an artificial
synapse in neural networks.
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