
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll06/11llpp415–425
Volume 21, Number 4, August 2016

Taiga: Performance Optimization of the C4.5 Decision Tree
Construction Algorithm

Yi Yang and Wenguang Chen�

Abstract: Classification is an important machine learning problem, and decision tree construction algorithms

are an important class of solutions to this problem. RainForest is a scalable way to implement decision tree

construction algorithms. It consists of several algorithms, of which the best one is a hybrid between a traditional

recursive implementation and an iterative implementation which uses more memory but involves less write

operations. We propose an optimized algorithm inspired by RainForest. By using a more sophisticated switching

criterion between the two algorithms, we are able to get a performance gain even when all statistical information

fits in memory. Evaluations show that our method can achieve a performance boost of 2.8 times in average than

the traditional recursive implementation.

Key words: C4.5; RainForest; decision trees; machine learning; performance optimization

1 Introduction

Decision tree learning is an important class of
supervised learning algorithms in the areas of applied
statistics, machine learning, and data mining[1, 2].

In the most typical scenario, a decision tree classifier
is used to deal with classification problems. Decision
tree learning algorithms are those which are used to
construct a decision tree classifier. The terminology in
this paper is defined as follows:
� The input is a given data set, called the training set.

The training set consists of many cases.
� Each of the cases has a number of attributes.

The attributes can be categorical (discrete) or
continuous. Each case belongs to one of a number
of classes.

�Yi Yang and Wenguang Chen are with Department of
Computer Science and Technology, Tsinghua University,
Beijing 100084, China. E-mail: ahyangyi@gmail.com.
�Wenguang Chen is also with Technology Innovation Center

at Yinzhou, Yangtze Delta Region Institute of Tsinghua
University, Yinzhou 315100, China. E-mail: cwg@
tsinghua.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2015-06-04; accepted: 2015-07-11

� The output is a classifier, which is able to predict
the class for any new case.

A decision tree is a rooted tree structure. Each of
the non-leaf nodes in a decision tree is a decision node,
which represents a criterion to divide the cases into two
or more subtrees. Each of the leaf nodes represents a
cluster of similar cases, which are assigned to a single
class. A decision tree classifier predicts the class for
any unseen case, by going down from the root node to
a leaf, using the criteria in the nodes to decide which
branch to go to.

Many decision tree algorithms were proposed and
widely adopted. Among them, the ID3 algorithm and its
generalizations[3-5], its successors C4.5[6] and C5.0[7],
all designed by Quinlan, and the CART[8] algorithm,
CHAID[9], FACT[10], and Sprint[11] are frequently
employed.

At first, most decision tree construction algorithms
are implemented in an recursive way. While this
approach is easy to implement, it does have some
performance concerns. Works are also done to propose
different frameworks, like RainForest[12], that does not
modify the tree-construction logic, but changes the
execution order to an iterative fashion. However, these
algorithms, even if they change execution order, rarely



416 Tsinghua Science and Technology, August 2016, 21(4): 415–425

take architectural elements like cache and prefetching
into consideration.

In this paper, we propose Taiga, a cooler variant of
RainForest. Building upon a hybrid of the recursive
and the iterative approaches, Taiga manages to obtain
higher performance while generating the same output
as vanilla C4.5.

The rest of this paper is organized in the following
way: Section 2 will list other works in optimizing the
performance of decision tree construction algorithms.
Section 3 will describe the implementation details
of the C4.5 algorithm. Section 4 will describe the
RainForest framework, which inspired the Taiga
algorithm described in Section 5. The performance of
Taiga is evaluated in Section 6. Finally, we conclude
this paper in Section 7, and discuss possible future
directions in Section 8.

2 Related Work

RainForest[12] is a framework designed to accelerate
decision tree construction algorithms, including
C4.5. RainForest introduces the important concept
of AVC-set, which stands for the set of numbers
of occurrences of Attribute-Value Class pairs.
By isolating the steps of counting AVC-sets and
constructing decision trees, RainForest allows one
to implement different strategies including recursive,
iterative, and hybrid approaches, with their own
trade-offs.

The same authors also proposed BOAT[13], a
technique that offers even better performance than
RainForest. BOAT achieves this performance by
speculatively constructing a decision tree from a
number of decision trees from subsets of training data,
that has a good chance of being similar to the “real”
decision tree.

SPIES[14] is a parallel extension of RainForest.
With the additional insight that calculating AVC-
sets is essentially reduction operations, SPIES allows
one to implement various decision tree construction
algorithms for parallel execution.

The EC4.5 algorithm[15] achieved a performance gain
of up to 5 times over C4.5. It does so by proposing three
different ways to handle continuous attributes, one of
them building upon the RainForest algorithm. Then it
discusses when to choose which algorithm to achieve
the optimal performance.

Various parallel algorithms have also been proposed.
ScalParC[16] proposed the parallel hashing paradigm to

help with the handling of continuous attributes in a
parallel way.

3 C4.5 Tree-Construction Algorithm

3.1 Definition

Designed by Quinlan in 1993, C4.5 is one of the
most popular decision tree algorithms. It supports
both discrete and continuous attributes, dealing with
unknown attribute values, and many other optional
features. For the following discussion, we define the
terminology as follows: For a case t in the training set,
its attributes are denoted as t1; t2; : : : ; tn. Further, each
case belongs to a class, denoted by t.class. The set of all
possible classes is Classes.

C4.5 constructs a decision tree with a divide-and-
conquer approach. To construct the root node of the
decision tree, C4.5 considers all possible tests. They
are:
� A test in the form ti D a, where ti is a discrete

attribute, with one outcome for each possible value
a.
� A test in the form ti 6 r for a continuous attribute

ti and a real number r , with two possible outcomes
true and false.

C4.5 enumerates all the possible tests and chooses the
“best” one. By default, C4.5 uses the information gain
ratio to determine how good a test is:

gainRatio.T / D
gain.T /

baseInfo.T /
;

where gain.T / is the information gain of the test, and
baseInfo.T / is the amount of information of the split
caused by the test. There is also an option to just use
the information gain instead.

For a discrete attribute, the information gain of the
corresponding test is:

gain D info.T / �

sX
iD1

jTi j

jT j
� info.Ti /;

where T1; : : : ; Ts are subsets of T corresponding to
cases with different known values, for that attribute, and

info.T / D �
X

c2Classes

jft jt 2 T ^ t:class D cgj

jT j
�

log2

�
jft jt 2 T ^ t:class D cgj

jT j

�
:

On the other hand, baseInfo.T / is calculated from the
following formula:

baseInfo.T / D �

sX
iD1

jTi j

jT j
� log2

�
jTi j

jT j

�
:



Yi Yang et al.: Taiga: Performance Optimization of the C4.5 Decision Tree Construction Algorithm 417

3.2 Algorithm

C4.5 employs a divide-and-conquer approach, as shown
in Algorithm 1.

3.3 Data structure

The vanilla C4.5 code stores the training set using a
continuous region of memory. Its layout can be seen
in Fig. 1a. To support the divide-and-conquer strategy,
C4.5 creates an array of pointers pointing to each of the
training set cases, as shown in Fig. 1b.

After C4.5 chooses a test for a certain node, and
before it moves on to one of its children nodes, it scans
through the pointer array and moves the cases relevant
to the new node together. This operation involves a
number of pointer swapping. After processing a few
nodes, the pointers might be in an apparently random
order, as seen in Fig. 1c.

4 RainForest Framework

RainForest[13] was proposed to make decision tree
construction more scalable.

C Attr C Attr C Attr C Attr C Attr ... (a)

... (b)

C Attr C Attr C Attr C Attr C Attr ...

...
(c)

(a) The class and attributes for each case.
(b) A pointer array pointing to all available cases.
(c) After a divide-and-conquer iteration.

Fig. 1 The C4.5 memory layout.

4.1 AVC-set

AVC-sets are a core concept proposed in RainForest.
The AVC-set of an attribute a of a specific node n is
defined as the counts of cases with distinct attribute
values of a and distinct classes. The AVC-group of a
node n is the set of all AVC-sets of it.

By defining the AVC-sets, RainForest manages to
separate scalability issues from decision tree quality
issues. This is because of an important observation:
with only the AVC-group of a certain node, there is
enough information for most decision tree building
algorithms to decide whether that node should be a leaf
or a non-leaf decision node, and if the latter, which test
should be used at that node.

RainForest proposed a number of algorithms,
differing in how many AVC-groups one is able to fit in
the memory.

4.2 Algorithms

The first algorithm proposed by RainForest is the RF-
Write algorithm. It is essentially the generalized form
of Algorithm 1. However, since RainForest assumes the
data is stored in disks, the step 9 will incur quite some
time cost.

The second algorithm proposed by RainForest is
the RF-Read algorithm. Instead of constructing the
decision tree with a top-down recursive approach, RF-
Read constructs the tree iteratively by calculating the
AVC-groups of all nodes in the same level of the
decision tree simultaneously, as shown in Algorithm 2.

However, there is the possibility that AVC-groups of
all nodes in the same level of the decision tree won’t
fit in memory. This could be solved by using multiple



418 Tsinghua Science and Technology, August 2016, 21(4): 415–425

passes to construct one level of nodes, each pass
calculating a subset of the AVC-groups. Since RF-Read
does not rearrange the training cases, one has to read
a case before determining if this case corresponds to a
node whose AVC-group is currently being calculated.
Therefore, in the case AVC-groups don’t fit in memory,
RF-Read will perform poorly in term of its running
time.

Based on the above observations, a third algorithm is
proposed. This algorithm is called RF-Hybrid, which is
a mixed strategy that combines RF-Read and RF-Write.
Basically, RF-Hybrid is RF-Read as long as the AVC-
Groups of all nodes in the current level fit in memory.
When this no longer holds, RF-Hybrid switches to RF-
Write. Evaluations show that RF-Hybrid is generally
the best algorithm among those proposed in RainForest,
which is intuitive since it combines the best part of the
other two algorithms.

Finally, a fourth algorithm, RF-Vertical, is proposed.
However, it is designed for situations that even one
AVC-group cannot be fitted in memory. We won’t go
on details of this algorithm, since it is irrelevant to our
assumption.

5 Taiga Algorithm

Focusing on the different assumption that the database
is stored in memory, however, our version of problem
is slightly different from RainForest’s. On one hand,
RF-Read is often runnable from start to end, due to
the much larger memory size of modern systems. On
the other hand, the high running time overhead caused
by more disk writing associated with RF-Write is
alleviated, because now we are only writing to memory.
Therefore, there is a need to reevaluate the strategies in
this new context.

5.1 Taiga-Recursive

We include a recursive strategy Taiga-Recursive as a
baseline algorithm. It is essentially what the vanilla
C4.5 algorithm does, with extra timing code added.
However, this algorithm will become the basis of
modifications that Taiga-Hybrid and Taiga-Transposed
apply on. Therefore we had better give it its own name.

5.2 Taiga-Iterative

Taiga-Iterative is a modified version of C4.5 inspired by
RF-Read. Since the most significant difference between
Taiga and RainForest is the assumption regarding the
memory size, the most important difference between

Taiga-Iterative and RF-Read is naturally the data
structure.

A new data structure f is introduced in Taiga.
Logically, f is a four-dimensional array where

fijkl D
ˇ̌
ft jt 2 Ti ^ tj D k ^ t:class D lg

ˇ̌
;

where Ti is the i -th node in the current level of the
decision tree.

However, since the number of possible values
of different attributes may differ greatly, in the
implementation we have to pack all the values of fijkl

into a continuous memory region with the help of some
smaller auxiliary data structure. Thus, the size of f is

4 � Number of Classes � Number of Branches�X
i

.Number of possible values for attribute i/:

5.3 Taiga-Hybrid

The Taiga-Iterative algorithm performs much better
than the original algorithm when the number of nodes
in each level is small. For many applications, this
is desirable since small trees are often preferable.
For example, the decision trees used in bagging and
boosting are generally small[17].

However, if, for some reason, the user decides she
wants to generate a decision tree with large depth,
Taiga-Iterative could get into trouble when dealing with
deep levels. Figure 2 shows how the performance of
Taiga-Iterative degrades as the tree grows deeper.

The solution to this problem is a hybrid approach,
similar to RF-hybrid. Taiga-Iterative is run until a
certain criterion is satisfied, then Taiga-Recursive is
used. The discussion about which criterion works best
is deterred to Section 5.6.

Intuitively, this hybrid algorithm combines the best
part of both strategies. However, as shown in Fig. 2,
the hybrid algorithm itself introduces some runtime
overhead. This overhead is partly due to the time
spent to reshuffle the pointer array, and partly due
to the colder cache after switching to the vanilla
algorithm. The overhead is generally small though.

5.4 Transposing source data

The algorithm Taiga-Iterative works best if all AVC-
groups of the current level of the decision tree could
be fit into the cache. Therefore, we want to reduce the
working set to improve performance. The idea is to
rearrange the training data so that we only read the data
about one certain attribute per time. Thus we propose a
new data structure shown in Fig. 3.



Yi Yang et al.: Taiga: Performance Optimization of the C4.5 Decision Tree Construction Algorithm 419

Plain C4.5 (1.37 s)

T-I (1.54 s)
T-H (0.6 s)

.0

Different versions of C4.5 running the training set poker-hand-test on

Machine A.

Fig. 2 Per-iteration performance comparison.

C C C C C ... (a)
Attr0 Attr0 Attr0 Attr0 Attr0 ...
Attr1 Attr1 Attr1 Attr1 Attr1 ...
Attr2 Attr2 Attr2 Attr2 Attr2 ...

(b)

0 0 6 0 1 ... (c)
(a) Classes are stored separately in an array;
(b) Attribute values are stored continuously for each attribute;
(c) We use the same method to store which sample belongs to which node.

Fig. 3 Transposed data structure.

However, this change would also increase the total
number of read operations, since the array storing which
sample belongs to which node has to be read multiple
times during processing one level.

Applying this change to Taiga-Recursive, Taiga-
Iterative, and Taiga-Hybrid yields Taiga-Recursive-
Transposed, Taiga-Iterative-Transposed, and Taiga-
Hybrid-Transposed, respectively.

5.5 Choosing switching criterion

From Fig. 2, we can clearly see that the performance
of Taiga-Iterative may suffer even if all the AVC-sets
fit in memory. Therefore, whether the AVC-sets fit in
memory is not an adequate switching criterion for us.

To figure out a good switching criterion, we use
the running time data obtained from the experiments
described in Section 6.

We enumerate all combinations as the left part of
the switching criterion, where the parameters shown in
Table 1 are either absent, multiplied to the numerator or
multiplied to the denominator. Limiting the formulas
enumerated in this manner has a few advantages.
First, it ensures the resulting formulas are at least
somewhat explainable. Second, it ensures the simplicity
of resulting formulas, reducing the probability of
“overfitting” it. Finally, it ensures the enumeration
could be done in a reasonable time budget.

For each combination, we find the best value of k

for each machine separately. A score is calculated as
the sum of logarithm of expected speedups over vanilla
C4.5 in all test cases (as described in Section 6.2).

The top formulas are shown in Table 2 and Table 3.

5.6 Interpreting switching criterion

One can find that neighboring formulas in Table 2 and
Table 3 often differ only by how they handle Class.
It can be seen that Class does not affect the results
significantly. This might be due to the small variation in
Class in our test cases. Many training sets have only two
classes. Others have only up to 23 classes, which offers
little variation when compared to other parameters that
varies more greatly.

There are two main factors that affect the time usage
of Taiga-Iterative and Taiga-Recursive. The first factor
is the size of an AVG-group. When the size of an
AVG-group becomes too large, the cache miss rate will
be huge, and the time consumed in zeroing all the
AVC-groups and postprocessing the AVC-groups will
be taken more compared to processing the training set.
The second factor is the proportion of active samples.
If most samples belong to branches that are already
finished, that is, branches that do not grow to the current
level, Taiga-Iterative would be less effective because it
still needs to read the whole training set.

Consider the formula of the size of an AVC-group,
AttrSum � Class;

that of AVC-groups of all nodes in one level,

Table 1 Parameters in consideration.

Name Formula Depend on level?
Attr .jAttributesj C 1/ No

Class .jClassesj C 1/ No
AttrSum

P
i2fAttributesg.ji j C 1/ No

Sample .jSamplesj/ No
ActiveSample jfsjs 2 fSamplesg and s belongs to some node in the current levelgj Yes

Branch Number of nodes in the current level Yes



420 Tsinghua Science and Technology, August 2016, 21(4): 415–425

Table 2 Best switching criteria for Taiga-Hybrid.

Rank Formula k (For three machines respectively) Score

1 Attr�Sample�ActiveSample
AttrSum�Branch < k 5832, 5832, 5832 13:4

2 Attr�Sample�ActiveSample
AttrSum�Class�Branch < k 715:5, 715:5, 1510 13:0

3 Sample�ActiveSample
AttrSum�Branch < k 507:9, 507:9, 507:9 12:6

4 Attr�Class�Sample�ActiveSample
AttrSum�Branch < k 61301, 61301, 61301 12:5

5 Sample�ActiveSample
AttrSum�Class�Branch < k 116:2, 116:2, 72:87 12:2

Note: The three machines are described in Section 6.1. Changing machine seldom affects the k value.

Table 3 Best switching criteria for Taiga-Transposed-Hybrid.
Rank Formula k (For three machines respectively) Score

1 Attr�Class�Sample�ActiveSample
Branch < k 4:78 � 108, 4:78 � 108, 4:78 � 108 16:2

2 Attr�Sample�ActiveSample
Branch < k 1:22 � 108, 1:22 � 108, 1:22 � 108 16:1

3 Attr�ActiveSample
Class�Branch < k 4:31 � 107, 4:31 � 107, 4:31 � 107 15:4

4 Attr�Sample�ActiveSample
AttrSum�Branch < k 6603, 6603, 6603 15:3

5 Attr�Class�Sample
Branch < k 1:79 � 104, 1:79 � 104, 1:79 � 104 15:2

AttrSum � Class � Branch;

and the proportion of the active samples,
ActiveSample

Sample
:

By observation, we can find that most of the top
formulas point out that when Branch grows too large,
the total size of AVC-groups will also grow and
this makes Taiga-Recursive more competitive. On the
other hand, when ActiveSample is large, Taiga-Iterative
becomes more attractive.

A probable explanation about why Attr and Sample
correlate with the relative performance of Taiga-
Iterative is that they correlate the training set size, and a
large training set wants Taiga-Iterative more, because it
reads the training set in fewer times, and does not need
to rewrite the data back after rearranging it.

For the sake of simplicity, further evaluation in
Section 6 will only use the first formula in both
situations.

5.7 Handling unknown attribute values

C4.5 has built-in support for unknown attribute values
in the training set. When choosing a test for a specific
node, an unknown attribute value is considered to
conform to the same probabilistic distribution as the
training cases belonging to that node. If an attribute
with unknown values in the training cases is chosen,

those training cases will be considered to belong to all
children nodes simultaneously. However, these training
cases are considered to be “split” to the children nodes,
according to the distribution of known values for the
same attribute in that node.

The concept of weight is introduced to help handling
this. In the beginning all cases have weight 1. As
cases are split for unknown attribute values, they get
fractional weights. When calculating values such as
information and case count, a weight sum is used
instead of plain summation.

Conceptually, C4.5 splits one training case with
an unknown attribute into many, each with the same
attribute assigned to some fixed value and having a
fractional weight. This splitting is implicit during the
recursive implementation.

However, in Taiga, we have to explicitly do the
splitting: whenever we choose a test that tests an
attribute some cases do not have, we split all these
cases into multiple copies with fractional weights.
This means the number of training cases stored in
memory may grow during Taiga in case of unknown
attributes. The time complexity of Taiga in this situation
remains the same as vanilla C4.5. However, the space
complexity of Taiga can be exponentially larger than
vanilla in the worst case. Fortunately, the hybrid
algorithm with the proposed switching criterion is



Yi Yang et al.: Taiga: Performance Optimization of the C4.5 Decision Tree Construction Algorithm 421

adequate in avoiding the worst case, by switching to the
old algorithm when the space complexity seems to grow
unreasonably.

This approach is different from RainForest as well.
RainForest simply avoids this problem by not recording
which training case belongs to which node. Instead,
RainForest utilizes the finished part of the decision tree
to locate the node. Therefore, in case of an unknown
value, RainForest will simply allow the same implicit
splitting to happen.

6 Evaluation

We implemented Taiga on top of the official C4.5
Release 8 source code.

6.1 Training sets

At C4.5’s time, training data were tiny compared to
our current standards. For certain considerations such
as the ability to measure performance on continuously
controllable variables, RainForest relied on the data
generator introduced in Ref. [18], which was also
used in many previous works such as Refs. [19, 20].
However, the data generator has the following problem:

(1) What it generates is not real data. Therefore, it is
hard to argue that it is representative of real life
situations.

(2) Its AVC-set sizes are dependent on the training
set size. Therefore, no matter how one switches
the f -functions and data sizes, the generated
training sets still cannot cover many practical
situations.

Since the considerations that mandated the usage
of only generated data no longer hold, we can use
real training data in our research work. Also,
since our assumption is that the training set can be
fitted in memory, we do not really need the largest
training set possible. Instead, we just pick those
training data set that’s adequately large enough. We use
training sets available from the UCI Machine Learning
Repository website (http:// archive.ics.uci.edu/ml/). We
pick training sets on the following criteria:
� The training set constitutes a classification

problem.
� The training set should be able to fit in memory.
� The training set should be large enough so that its

running time can be reliably measured.
� The training set should be reasonable for a

decision tree approach. A training set with ten
million attributes is probably better solved in other

methods than a decision tree, so we exclude such
data sets.

Furthermore, we also use the data generator
introduced in Ref. [18]. To avoid overweighting the
data generator’s data in our analysis however, we
only include one instance of generated data. In our
experiments, test cases generated by the ten algorithms
exhibit similar performances.

The description and characteristics of the training sets
are shown in Table 4.

We measure the number of branches and the number
of active cases in each level of the decision tree. They
are shown in Fig. 4.

6.2 Hardware

We run both vanilla C4.5 and Taiga on a few different
machines. Their specifications are shown in Table 5.

6.3 Speedup

We measure the running time of the tree building
process.

The time spent for loading the data from the disk,
pruning the tree, and outputting are excluded. The
pruning stage is generally accepted to be orthogonal to
other stages. It is also less time-consuming than the tree
building stage[12, 21]. Therefore, to improve the quality
and accuracy of our reports, we exclude these stages
from our performance measurement.

To reduce the effect of system performance
fluctuation, we report the minimal time across twenty
runs. The results are shown in Fig. 5. More detailed
per-level running time is shown in Fig. 6.

From the results we can see that Taiga-Hybrid is
generally a safe choice in that it always offers a

Table 4 The training sets.

Name Attibutes Classes Samples
adult� 14 2 32 561
census 41 2 3651
connect-4 42 2 67 557
covtype 12 7 15 972
donation 9 2 5 749 131
ijcnn1 13 2 49 990
kddcup 41 23 4 898 431
mnist 270 10 60 000
poker-hand 10 10 25 010
poker-hand-test� 10 10 1 000 000
skin 3 2 245 057

Notes: � , Attribute fnlwgt is ignored because C4.5 does not support setting weight by
default.

� , The “test” data set of poker-hand.



422 Tsinghua Science and Technology, August 2016, 21(4): 415–425

Fig. 4 The shapes of decision trees. The x-axis for each training set corresponds to the number of branches and active samples
in each level of the decision trees. As the number of branches and active samples varies greatly from training set to training
set, each graph is scaled individually. The number of active samples occasionally increases as the level goes deeper due to how
unknown values are handled.

Table 5 The hardware specification.
Name CPU Microarchitecture Cache

A Xeon E7-4870 Westmere EX 35 MiB
B Xeon E5-2697 Haswell 30 MiB
C A10-7850K Steamroller 20 MiB

near-optimal performance, and avoids possible out-of-
memory issues.

Transposed versions of Taiga generally perform
worse due to the increased amount of memory reads.
However they bring benefit to mnist by reducing the
size of the working set greatly, and they optimize poker-
hand and poker-hand-test by switching with better
timing.

7 Conclusion

The hardwares are ever progressing and changing. It is
often worthy to revisit old ideas to see their application
in new assumptions.

This work is different from RainForest in the
following aspects:

(1) The assumptions are different. The two works
made different basic assumptions.

(2) The data structures are different. To reduce
the amount of calculation, Taiga introduces an

extra array to record which sample belongs to
which node. Taiga-Transposed further modifies
the memory layout of training data.

(3) The algorithm switching criteria are different.
RF-Hybrid switches to RF-Write as soon as the
AVC-groups can’t be fit in the memory. In
contrast, Taiga-Hybrid uses a more sophisticated
criterion to switch between Taiga-Recursive and
Taiga-Iterative.

8 Future Work

Taiga handles continuous attribute values with the
same nave algorithm as used by RainForest, that is,
when calculating the AVC-sets, one has to count the
occurrences of all pairs of distinct attribute values
and class labels. This means even if we do not alter
the other parts of the algorithm at all, Taiga will
run slower than plain C4.5 when both the number of
distinct attribute values and the number of class labels
are large. However, there are certainly better ways to
handle continuous attribute values, such as using the
partial AVC Group proposed in SPIES[15], or using the
optimization to RainForest proposed in EC4.5[16]. It
should be straightforward to integrate this work into
Taiga.



Yi Yang et al.: Taiga: Performance Optimization of the C4.5 Decision Tree Construction Algorithm 423

Plain C4.5

Taiga-Iterative

Taiga-Hybrid

Taiga-Iterative-Transposed

Taiga_Hybrid-Transposed

Fig. 5 Comparison of running time of different algorithms on three machines (shown in Table 5).

One of the other important ideas for optimizing
decision tree algorithms is parallelization. While
Taiga removes the opportunities to exploit the inherit
parallelism in the divide-and-conquer paradigm, it
allows more straightforward and balanced parallel
implementation by simply dividing all the relevant
cases evenly. Therefore, we expect good speedup when
combining this technique with parallel algorithms.

References

[1] J. Han and M. Kamber, Data Mining: Concepts and
Techniques. San Francisco, CA, USA: Morgan Kaufmann,
2001.

[2] S. R. Safavian and D. Landgrebe, A survey of decision tree
classifier methodology, IEEE Transactions on Systems,
Man and Cybernetics, vol. 21, no. 3, pp. 660–674, 1991.

[3] J. Cheng, U. M. Fayyad, K. B. Irani, and Z. Qian, Improved
decision trees: A generalized version of ID3, in Proc. Fifth



424 Tsinghua Science and Technology, August 2016, 21(4): 415–425

X-axis: the level of decision trees; Y-axis: the running time spent in seconds.

Fig. 6 Comparison of running time on machine A. The dotted lines and dasdhed lines show the left and right sides of the
switching criterion respectively.

Int. Conf. Machine Learning, 1988, pp. 100–107
[4] J. R. Quinlan, Learning efficient classification procedures

and their application to chess end games, in Machine
Learning. Springer, 1983, pp. 463–482

[5] J. R. Quinlan, Induction of decision trees, Machine
Learning, vol. 1, no. 1, pp. 81–106, 1986.

[6] J. R. Quinlan, C4.5: Programs for Machine Learning, vol.
1. Morgan Kaufmann, 1993.

[7] J. R. Quinlan, Data mining tools see5 and C5.0,
http://www.rulequest.com/see5-info.html, 2004.

[8] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen,
Classification and Regression Trees. CRC Press, 1984.

[9] G. V. Kass, An exploratory technique for investigating
large quantities of categorical data, Applied Statistics, vol.
29, no. 2, pp. 119–127, 1980.

[10] W.-Y. Loh and N. Vanichsetakul, Tree-structured
classification via generalized discriminant analysis,
Journal of the American Statistical Association, vol. 83,
no. 403, pp. 715–725, 1988.

[11] M. Mehta, J. Rissanen, and R. Agrawal, Mdl-based
decision tree pruning, KDD, vol. 21, pp. 216–221, 1995.

[12] J. Gehrke, R. Ramakrishnan, and V. Ganti, Rainforest-
a framework for fast decision tree construction of large
datasets, VLDB, vol. 98, pp. 416–427, 1998.

[13] J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y. Loh,
Boat–optimistic decision tree construction, ACM SIGMOD
Record, vol. 28, pp. 169–180, 1999.

[14] R. Jin and G. Agrawal, Communication and memory
efficient parallel decision tree construction, SDM, pp. 119–
129, 2003.



Yi Yang et al.: Taiga: Performance Optimization of the C4.5 Decision Tree Construction Algorithm 425

[15] S. Ruggieri, Efficient C4.5, Knowledge and Data
Engineering, IEEE Transactions on, vol. 14, no. 2, pp.
438–444, 2002.

[16] M. V. Joshi, G. Karypis, and V. Kumar, Scalparc:
A new scalable and efficient parallel classification
algorithm for mining large datasets, in Parallel Processing
Symposium, 1998. IPPS/SPDP 1998. Proceedings of the
First Merged International Parallel Processing Symposium
and Symposium on Parallel and Distributed Processing
1998, 1998, pp. 573–579

[17] J. R. Quinlan, Bagging, boosting, and C4.5, AAAI/IAAI,
vol. 1, pp. 725–730, 1996.

[18] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and

A. Swami, An interval classifier for database mining
applications, in Proc. of the VLDB Conference, 1992, pp.
560–573.

[19] R. Agrawal, T. Imielinski, and A. Swami, Database
mining: A performance perspective, Knowledge and Data
Engineering, IEEE Transactions on, vol. 5, no. 6, pp. 914–
925, 1993.

[20] J. Shafer, R. Agrawal, and M. Mehta, Sprint: A scalable
parallel classifier for data mining, in Proc. 1996 Int. Conf.
Very Large Data Bases, 1996, pp. 544–555.

[21] M. Mehta, R. Agrawal, and J. Rissanen, Sliq: A
fast scalable classifier for data mining, in Advances in
Database Technology EDBT’96, 1996, pp. 18–32

Wenguang Chen received the BS
and PhD degrees in computer science
from Tsinghua University in 1995 and
2000, respectively. He was the CTO
of Opportunity International Inc. from
2000-2002. Since January 2003, he joined
Tsinghua Univeristy. He is now a professor
in Department of Computer Science and

Technology, Tsinghua University. His research interest is in
parallel and distributed computing, programming model, and
mobile cloud computing.

Yi Yang received the BS degree from
Tsinghua University in 2012, and is now
a master student. His research interests
include program optimization and program
analysis.


