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Comparing Set Reconciliation Methods Based on Bloom Filters
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Abstract: Set reconciliation between two nodes is widely used in network applications. The basic idea is that each

member of a node pair has an object set and seeks to deliver its unique objects to the other member. The Standard

Bloom Filter (SBF) and its variants, such as the Invertible Bloom Filter (IBF), are effective approaches to solving the

set reconciliation problem. The SBF-based method requires each node to represent its objects using an SBF, which

is exchanged with the other node. A receiving node queries the received SBF against its local objects to identify the

unique objects. Finally, each node exchanges its unique objects with the other node in the node pair. For the IBF-

based method, each node represents its objects using an IBF, which is then exchanged. A receiving node subtracts

the received IBF from its local IBF so as to decode the different objects between the two sets. Intuitively, it would

seem that the IBF-based method, with only one round of communication, entails less communication overhead

than the SBF-based method, which incurs two rounds of communication. Our research results, however, indicate

that neither of these two methods has an absolute advantages over the others. In this paper, we aim to provide an

in-depth understanding of the two methods, by evaluating and comparing their communication overhead. We find

that the best method depends on parameter settings. We demonstrate that the SBF-based method outperforms

the IBF-based method in most cases. But when the number of different objects in the two sets is below a certain

threshold, the IBF-based method outperforms the SBF-based method.
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1 Introduction

Set reconciliation is a fundamental task in most
distributed applications, where two or more nodes
wish to compute the union of the sets, such as file
systems[1, 2], mobile databases[3, 4], gossip protocols[5],
and resource location systems[6–9]. It is realized
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by synchronizing the unique objects of the two
sets. The Standard Bloom Filter (SBF)[10] and its
variant, the Invertible Bloom Filter (IBF)[11], are
two mainstream methods for set reconciliation in
distributed applications. The two methods, however,
vary in the communication overhead they entail. This
usually depends on set cardinality, the number of
different objects in the two sets, and the storage space
occupied by each object. To date, the communication
overheads of such set reconciliation methods have not
been explored. Consequently, users lack knowledge
about which set reconciliation method will cause
less communication overhead in given application
scenarios.

This problem becomes particularly challenging in
practice due to the uncertainty of the set cardinality
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and the number of different objects in two sets. For
example, for two sets SA and SB, the set cardinality
is nA and nB, respectively. We assume that nA and
nB equal 10 000 and 50 000, respectively, while the
number of different objects in sets SA and SB is
2000. In this setting, it is difficult to decide which
method results in less communication overhead. Less
communication overhead is very important for many
distributed applications, especially when many nodes
synchronize with each other.

In this paper, we propose communication overhead
models for two representative set reconciliation
methods, SBF-based and IBF-based. In these settings,
communication overhead depends on set cardinality,
the number of different objects in the two sets, and
the storage space occupied by each object. In many
applications, all objects are generated via a single
hash function; hence, they occupy the same amount
of storage. Such hash functions, including MD5 with
128 bit, SHA-1 with 160 bit, SHA-256 with 256 bit,
SHA-512 with 512 bit, etc., generate fixed length output
for any input. By varying the settings of any pair
of sets, the proposed communication overhead models
demonstrate that the SBF-based method outperforms
the IBF-based method in most cases. The reverse
conclusion appears only when the number of different
objects in two sets is below a certain threshold. We find
that the IBF-based set reconciliation method is most
suitable to the scenario where a pair of sets have few
different objects, while the SBF-based set reconciliation
method performs better with two sets with many
different objects. Using our models, applications can
adaptively select the best method to solve the set
reconciliation problem.

The remainder of this paper is organized as follows.
We briefly describe the preliminaries in Section 2. We
model and analyze the communication overhead of
SBF-based and IBF-based set reconciliation methods
in Section 3. We comprehensively evaluate the
performance of the two methods in Section 4, and
conclude this work in Section 5.

2 Preliminaries

Given two nodes, A and B, let each node maintain a
set, i.e., SA and SB, respectively. Let nA and nB be
the cardinality of SA and SB, respectively. The goal of
set reconciliation is for A and B to compute SA [ SB

with minimal communication overhead. The classical

approach to set reconciliation is wholesale transfer, in
which one party sends all its elements to the other. The
methods described herein are attempts to reduce this
overhead.

2.1 SBF-based set reconciliation method

An SBF consists of m cells and utilizes a binary vector
to represent a set S=fs1; s2; : : : ; sng with n objects.
Each cell is a bit with an initial value of 0. A number
of k hash functions, denoted as hh1; h2; : : : ; hki, are
employed to map each object in the set to k random
positions in the vector. In this way, we can answer
a membership query for any object si , and a user can
check whether all bits hj .si / are set to 1 for 16j6k. If
not, SBF returns “false”, i.e., si is not a member of S .
Otherwise, we assume that si is a member of S . Due
to hash collisions, an SBF may yield a false positive
if it wrongly identifies an object si as belonging to S .
The cause is that all bits at SBFŒhj .si /� for 16j6k
have been set to one by other objects in S [12]. The
false positive probability can be theoretically derived as
follows[13, 14]:

f =.1 � .1 �
1

m
/kn/k�.1 � e�k�n=m/k (1)

The SBF-based set reconciliation method includes
two interactions, as shown in Fig. 1a. In the first
step, the resulting binary vector of SA, represented as
SBF.SA/, is sent to node B. By querying the objects
in SBF.SA/, node B can identify the objects, denoted
as D.SB � SA/, which do not exist in SA. Similarly,
node A identifies objects ofD.SA �SB/ after receiving
SBF.SB/ from node B. In the second step, the two
nodes exchange their unique objects and solve the set
reconciliation problem. A challenging issue is that the
SBF-based approach may yield a false positive and thus
an object may be misidentified as common to both sets.
The false positive rate depends on the number of bits
used for each object and the number of hash functions.
Therefore, for a fixed false positive rate, the space used

(a) SBF-based method (b) IBF-based method

Fig. 1 Two types of set reconciliation.
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by an SBF is proportional to the set cardinality, not the
set difference.

2.2 IBF-based set reconciliation method

An IBF[11] employs an array of cells, SŒ1�; : : : ; SŒm�. A
cell consists of three fields, called idSum, hashSum, and
count, which denoted by SŒi �:idSum, SŒi �:hashSum,
and SŒi �:count.
� The idSum field records the XOR results of all

objects that are hashed into that cell.
� The hashSum field stores the sum of hash values

of all objects.
� The count field records the number of objects

mapped into the cell.
The IBF allows the following operations:
� The operation Insert (x; y) adds a key-value to the

IBF, i.e., SŒhi .x/�:idSum D SŒhi .x/�:idSum˚ x,
SŒhi .x/�:hashSum D SŒhi .x/�:hashSum˚ y, and
SŒhi .x/�:count D SŒhi .x/�:count+1.
� The operation Delete(x, y) removes a key-value

pair (x, y) from the IBF. It subtracts x and y from
the idSum and hashSum fields and decrements the
count field.
� The operation Get(x) retrieves the value associated

with a key x from the IBF. If SŒhi .x/�:count D 1,
then it returns SŒhi .x/�:hashSum. Otherwise, it
returns “not found”.
� The operation ListEntries() recovers all the objects

stored in the IBF by sequentially removing the
objects whose counter value equals one. It faces
the listing failure issue in this process. See Ref.
[15] for more details.

Each object in any set is mapped to at most k
cells in the IBF via a set of hash functions. It is
the idSum field in each cell that encodes all objects
in it via the XOR operation. After representing two
sets with the IBF and exchanging the two IBFs, the
proposed subtract operation between IBFs can eliminate
common elements of sets SA and SB. Furthermore,
the different objects can be recovered by using the
extraction operation iteratively with a given probability.

As shown in Fig. 1b, nodes A and B generate
IBF.SA/ and IBF.SB/. The two nodes then exchange
their local IBFs with each other, and subtract the
received remote IBF from each local IBF. Then the
two nodes try to recover the objects that are different
between the two related sets.

2.3 CBF-based set reconciliation method

Recall that in the SBF-based set reconciliation method,

the deletion of any object enables all cells in
SBFŒhj .si /� for 1 6 j 6 k to be reset to 0. Other
objects in S that hash to one or more cells at
SBFŒhj .si /� for 1 6 j 6 k will no longer be correctly
identified. To address this problem, Fan et al.[16]

proposed the Counting Bloom Filter (CBF). A CBF
provides a way to implement a delete operation on an
SBF without regenerating the filter. In a CBF, each
item of its bit vector is extended from being a single
bit to being an m � l-bit counter, and l D 4 usually
suffices[17, 18].

The CBF-based set reconciliation method requires
each node to represent its objects using a CBF, which
is exchanged with the other node. A receiving node
subtracts the received CBF from its local CBF so as to
query the objects not common to the two sets. However,
in this paper, we focus on two mainstream methods
for set reconciliation, i.e., SBF-based and IBF-based
methods, to understand the set reconciliation problem.

In this paper, a single capital letter like S denotes a
set with cardinality n. Other notations and symbols are
summarized in Table 1.

3 Modeling and Analysis

A metric is derived to evaluate the communication
overhead of the SBF-based and the IBF-based set
reconciliation methods. For the SBF-based method, due
to false positives, some objects that only appear in one
set may not be identified. The IBF-based method avoids

Table 1 Symbols and notations.

Term Definition
n Set cardinality
d Total size of the set differences
u Universe set

ck C � Coefficient of d in IBF
f False positive probability of an SBF
� Ratio of d to n
M Storage space size of an object in the set
R Number of cells in each IBF partition
L Number of strata tried in difference estimation

C.ES/ Communication overhead of exchanging SBFs

C.ED/
Communication overhead of exchanging
unique objects from another node for SBF

C.EP/
Communication overhead of
estimating the number of different objects for IBF

C.EI/
Communication overhead of exchanging IBFs
between the two nodes

C.SBF/ Communication overhead of the SBF-based method
C.IBF/ Communication overhead of the IBF-based method
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this problem, but faces the vital risk that some objects
of the two sets cannot be recovered successfully (i.e.,
listing failure probability). If any of the different objects
cannot be decoded, each node has to allocate more cells
to its IBF. In the worst case, all of the different objects
are not decoded by the IBF-based method. In order to
fairly compare the performance of the two methods, the
missed different objects at both nodes should be less
than or equal a threshold, e.g., at most 1% of the set
differences for both methods.

3.1 Communication overhead of the SBF-based
method

The communication overhead of the SBF-based method
is determined in two phases. The first phase is
determining the cardinality of each set as a result of
the SBF exchange process. The second phase involves
determining the number of different objects and the
storage requirements of each object.
3.1.1 Communication overhead of exchanging

SBFs
In the process of exchanging SBFs, the communication
overhead depends on the length of the SBF vector (i.e.,
m). Broder and Mitzenmacher[19] found the lower
bound of m. When the optimal value of k is set to
m

n
ln 2, the false positive rate of an SBF is given by

f =
�
1

2

�k
>

�
1

2

� m ln 2
n

=0:6185
m
n [17]. We can derive

that

m>
n� log.f /

log.0:6185/
(2)

In what follows, all communication overheads are
computed based on the minimal value of m. Recall that
the numbers of objects in SA and SB are denoted by nA

and nB. Since both nodes have to transmit their SBFs,
we derive that the communication overhead C.ES/ on
both sides of any node pair is

C.ES/ D mA CmB D
nA � log.fA/

log.0:6185/
C
nB � log.fB/

log.0:6185/
(3)

where fA and fB denote the false positive rates of SA

and SB.
As mentioned, every object in SA may be

undiscovered as being common to both nodes with
probability .1 � e�k�jSBj=m/k in node A. Similarly,
every object in SB may be undiscovered as common
to both nodes with probability .1 � e�k�jSAj=m/k in
node B. Let fBD.1 � e�k�jSBj=m/k and fAD.1 �

e�k�jSAj=m/k . Since the number of undiscovered

different objects should be less than or equal to 1% of
the set differences, there is a constraint:

0 6 nA � fB C nB � fA 6 d0:01 � de (4)

Based on the cardinality of each set, the false positive
probability of each SBF can be calculated. For example,
we assume that nA D nB D 10 000 and d D 1000, then
fA C fB 6 0:001. In this paper, fA and fB have the
same value. Hence, fA D fB D 0:0005 if the maximal
communication overhead is considered.

3.1.2 Communication overhead of delivering
different objects

As shown in Fig. 1a, unique objects are exchanged
in the second step of the SBF-based method. Node A
sends D.SA � SB/ (i.e., the unique set of SA � SB) to
node B, while node B sends D.SB � SA/ to A. In this
process, the communication overheads are determined
by the cardinalities of D.SA � SB/ and D.SB � SA/,
and the size of each object .M/ in these two sets, where
D.SA�SB/CD.SB�SA/ D d . Due to false positives,
the number of different objects that are not transferred
is nA�fB C nB�fA. The communication overhead of
exchanging different objects C.ED/ is
C.ED/ DM � d �M � nA � fB �M � nB � fA (5)

3.1.3 Total communication overheads
As a result, the communication overhead of the SBF-
based set reconciliation method C.SBF/ is

C.SBF/ D C.ES/C C.ED/ D
nA � log.fA/

log.0:6185/
C
nB � log.fB/

log.0:6185/
C

M � d �M � nA � fB �M � nB � fA (6)

It is clear that the communication overhead of the
SBF-based set reconciliation method is dominated by
six parameters, M , d , nA, nB, fA, and fB.

3.2 Communication overhead of IBF-based
method

The communication overhead of the IBF-based method
is determined in two phases. The first phase is the
estimator process, while the second phase involves
exchanging IBFs between two nodes.

3.2.1 Communication overhead of estimator
A precondition of IBF-based set reconciliation
is to estimate the number of necessary cells in
each IBF. When the number of allocated cells is
underestimated, the probability that the IBF cannot
be decoded to recover the different objects from the
two sets will significantly increase. In the case of
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overestimation, the set reconciliation incurs additional
communication overhead. Actually, the number of
employed cells heavily depends on the number of
different objects in each pair of sets. To ensure that all
different objects in the two sets can be decoded via
IBF with high probability, it is essential to estimate the
number of different objects in the two sets in advance.
Note that the number of required cells is determined by
the number of different objects in the two sets[11]. The
problem becomes estimating the number of different
objects.

Eppstein et al.[11] designed the Strata Estimator to
tackle this challenging issue. The universe set u is
separated into L D log2.u/ � 1 partitions, such that the
i -th partition covers a fraction that is 1=2iC1 of u. Then
each partition is packed into an array of fixed size T
(Eppstein et al.[11] chose an 80-cell array). This layered
structure of log2.u/ IBFs is called the strata estimator.
The estimator sends its output to the remote peer. The
peer then tries to do an IBF subtract on all the strata
starting from layer L. Each time recovering succeeds,
the number of recovered objects is added to a counter.
If different objects in level k are not successfully
recovered, then the estimator returns 2kC1 � count,
where count is the number of objects recovered. The
approximate value is treated as the number of different
objects.

A node (e.g., A) initiates the estimating process by
sending its own estimator to another node (e.g., B).
After B receives the IBFs from A, it estimates the
set difference and replies with an IBF. Therefore, the
estimating process results in one communications round
to compute the set difference. Let R denote the cell
number of each IBF in the Strata Estimator. Then the
communication overhead of estimator C.EP/ is

C.EP/ D L �R � i (7)

where i denotes the size of each cell.

3.2.2 Communication overhead of exchanging
IBFs

After the Strata Estimator returns the size of the set
difference, d , we allocate the IBFs for A and B, which
consist of tables with m D ˛d cells. We will describe
the setting of the parameter ˛ in Section 3.2.4. Each cell
of the table contains three fields (i.e., idSum, hashSum,
and count).

Let M denote the size of idSum. For the size of the
hashSum field, Eppstein and Goodrich[20] proved that it

should be at least .2� log.n/C log.d// bits. It can store
d integers in the range Œ0; n2�. Let C denote the size
of the count field. Generally, the expectation of count
field is 16 bits, which is sufficient to represent 65 536
objects for each cell. Thus, the size of each cell can be
calculated by the following equation:

i �M C 2 � log.n/C log.d/C C (8)

Consider that the exchange of IBFs between two
nodes is bidirectional. Its communication overhead can
be calculated as

C.EI/ D 2 � ˛ � d � i (9)

3.2.3 Total communication overhead
The total communication overhead of the IBF-based set
reconciliation method C.IBF/ can thus be calculated as

C.IBF/ D C.EP/C C.EI/ D

L �R � i C 2 � ˛ � d � i �

.L�RC2�˛�d/�.MC2�log.n/Clog.d/CC/ (10)

3.2.4 Listing failure probability
The IBF-based set reconciliation method will generally
return the object and a null value if queried for an
object not in the set. However, an IBF may yield a
listing failure, whereby it returns a “not found” value
for objects in the set and objects not in the set. The
cause is that any empty cell could not be found in the
IBF table. The listing failure probability depends on
the definition of the probabilistic model for objects and
hash functions.

The listing process is probabilistic and similar to
the problem of constructing the 2-core of a random
hypergraph[21–23]. Goodrich and Mitzenmacher[15]

presented a constant, ck>1, such that solution can be
found with high probability if m>.ck C �/ � d for any
�>0, where m denotes the number of cells in an IBF.
As shown in Ref. [15], these values are given by

c�1k DsupfˇW 06ˇ61I 8x 2 .0; 1/; 1 � e�kˇx
k�1

6xg
(11)

Numerical values for k > 3 are given in Table
2. Eppstein and Goodrich[20] proved the fail probability
of such a probabilistic process.

Table 2 Thresholds for the 2-core rounded.
k ck k ck

3 1:222 6 1:579

4 1:295 7 1:721

5 1:425
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Theorem 1[20] As long as m is chosen such
thatm > .ck C �/d for some � > 0, decoding different
objects fails with probability O.d�kC2/, whenever
d 6 n.

Due to the number of undiscovered different objects
should be less than or equal 1%, we need to meet the
constraint that d �O.d�k/ 6 d0:01 � de.

4 Performance Evaluation

In this section, we evaluate the performance of the
SBF-based and IBF-based set reconciliation methods
in terms of their communication overheads. We point
out which set reconciliation method will result in less
communication overhead under different application
scenarios.

4.1 Experimental methodologies

We implement the SBF and IBF methods and extend
them to support set reconciliation. The parameters
include the set cardinality, n, the storage requirement
of each object,M , the set differences between two sets,
d , and the false positive rate of SBF. For each setting
of the parameters, we report the average results for 200
rounds of experiments. An u of all 32-bit values is used
in our evaluation. We have two degrees of randomizing
in creating pairs of sets containing keys from u, SA,
and SB, each at one node: the set cardinality and the
number of set differences between the two sets. In
our experiments, the two sets have the same cardinality.

According to Eq. (4), we have fA D fB D
0:01 � d

2n
.

We use 4 hash functions, so we take ck D 1:295 and
use a table size of dck C �e cells[15]. The 4 hash
functions are chosen randomly by adopting the ones
used in Ref. [17].

hi .x/ D .g1.x/C i � g2.x// modm (12)
where g1.x/ and g2.x/ are two random and
independent integers in the universe with a range
f1; 2; :::; mg. The value of i ranges from 0 to k � 1.
In order to conduct a similar experiment to that of
Ref. [11], we take R D 80. We perform 200 rounds of
experiments to take L D blog2 dc, as shown in Table
3. For example, we report the number of successful
estimate of the difference in eighth strata is 176 of 200
experiments, i.e., blog2.500/c D 8, where n D 5000

and d D 500.

4.2 Impact of storage size of each object in sets

To efficiently use the two methods of set reconciliation,
we firstly examine how the storage size of each object

Table 3 The number of tried layers for Estimator.

n d
Layers

5 6 7 8 9 10

1000 100 11 177 12 � � �

5000 500 � � 5 176 19 �

10 000 1000 � � � 13 174 13

20 000 2000 � � � � 15 185

in a set affects the communication overhead due to the
different hash methods. The storage size of each object
varies under different hash methods, such as MD5 with
128 bit, SHA-1 with 160 bit, SHA-256 with 256 bit,
and SHA-512 with 512 bit. Therefore, we discuss the
parameter M in more general settings.

In this case, M changes from 1 bit to 512 bit. Figure
2 shows the communication overheads of SBF-based
and IBF-based methods for various sizes of M , where
d D 0:03n for different values of n. We can see that
the two lines of SBF- and IBF-based set reconciliation
methods, under different settings of M , follow similar
trends of linear increase, as M increases from 1 bit to
512 bit. The IBF-based method is sensitive to M . That
is because that IBF-based set reconciliation method has
two communication rounds for the idSum field in IBF
between two nodes, including the difference estimating
process and exchanging the IBFs. The SBF-based
set reconciliation method has only one communication
round for the objects in BF between two nodes, i.e.,
the process of exchanging unique objects. In addition,
we observe that neither of those two methods has
absolute advantages under different settings of M . For
example, as shown in Fig. 2c, the two lines of SBF-
and IBF-based set reconciliations intersect at M D
110 bit. The two set reconciliation methods achieve
equal communication overhead when M D 110 bit,
n D 10 000, and d D 0:03n. We also see that the IBF-
based method outperforms the IBF-based method when
M is less than 110 bit. Only when M is more than
110 bit, does the SBF-based method outperform the
IBF-based method.

4.3 Impact of set cardinality

We examine the influence of the set cardinality (n)
on the communication overheads of SBF- and IBF-
based set reconciliation methods. Let n vary from
100 to 20 000. We have d D 100 and M D 128 bit. In
Fig. 3a, we report experimental results. We see that the
two curves of SBF- and IBF-based set reconciliation
methods, under different settings of n, follow similar
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(a) nD1000

(b) nD5000

(c) nD10 000

(d) nD20 000

Fig. 2 Impact of the storage space size of each object in a set,
when nD1000, 5000, 10 000, 20 000, and dD 0.03n, where n is
the cardinality of a set and d denotes the number of different
objects between two sets.

(a) dD100

(b) nD10 000

Fig. 3 (a) The impact of the set cardinality when n ranges
from 100 to 20 000. (b) The impact of the number of
differences when d ranges from 1 to 20 000.

increasing trends, as n grows from 100 to 20 000. The
curve of the SBF-based method increases faster than
that of the IBF-based method. That is because the
number of the cells used by the SBF-based method is
sensitive to the set cardinality, according to Formula
(2), while the number of cells used by the IBF-based
method is sensitive to the set differences, according to
Ref. [11]. We again observe that neither of the methods
has absolute advantages under different settings of
n. In Fig. 3a, the two curves of SBF- and IBF-
based methods intersect at n D 4843, i.e., the two
methods achieve equal communication overhead when
n D 4843, d D 100, and M D 128 bit. The SBF-based
method outperforms the IBF-based method when n is
less than 4843. Only when n is more than 4843, does the
IBF-based method outperform the SBF-based method.

4.4 Impact of set differences

We examine the influence of the set differences (d )
on the communication overheads of SBF- and IBF-
based set reconciliation methods. Let n D 10 000 and
M D 128 bit. Because d equals 2n at most, let d vary
from 1 to 20 000. In Fig. 3b, we report the experimental
results. We see that the curves of the SBF- and the
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IBF-based set reconciliation methods, under different
settings of d , follow similar trends of increase, as d
increases from 1 to 20 000. The curve of the IBF-
based method increases faster than that of the SBF-
based method. That is because the number of the cells
used by the IBF-based method is sensitive to the set
differences according to Ref. [11], while the number of
the cells used by the SBF-based method is sensitive to
the set cardinality. In addition, we observe that the SBF-
based method outperforms the IBF-based method as d
increases from 1 to 20 000 in most cases. Only when the
set differences are few (e.g., 10 unique objects between
any pair of sets), the IBF-based method outperforms the
SBF-based method.

4.5 Synthetic impact of set cardinality and set
differences

We synthetically discuss the impact of n and d on
the communication overheads. In this case, we have
M D 128 bit. Let n change from 1 to 20 000. Since the
number of the difference between two sets is at most
2n, we have d 6 2n (d 6 n). In Fig. 4a, we see that
the ratio of C.IBF/ to C.SBF/ grows as the increase

(a) MD128

(b) MD16, 32, 64, 128, respectively

Fig. 4 The impact of the set cardinality and the number of
different objects in a set when n changes from 1 to 20 000 and
d changes from 1 to 2000 (d6n).

of n or d . The red plane presents
C.IBF/
C.SBF/

D 1. We

again observe that neither of two methods has absolute
advantages under different settings of the set cardinality
and set differences. The communication overhead of
SBF-based method is less than that of the IBF-based
method above the red plane. Also, the communication
cost of the IBF-based method is less than that of the
SBF-based method below the red plane. Let � denote
the ratio of d to n on the red plane. As a result,

only when
C.IBF/
C.SBF/

exceeds the threshold �, does the

SBF-based method outperform the IBF-based method
in communication overhead. In order to derive �, we
conduct an additional experiment as follows.

In our experiments, for any instance of n that
changes from 1 to 20 000 and d changes from 1 to
2n (d 6 n), we focus on four representative settings
of M , M D 16 bit, M D 32 bit, M D 64 bit, and
M D 128 bit. Note that we report the average results
from 200 rounds of experiments. We plot the lines that

represent
C.IBF/
C.SBF/

D 1 with varying n and d . From

Fig. 4b, we can compute the value of � in different
settings M , as shown in Table 4. For example, when
M D 16 bit and � 6 0:078, does the IBF-based method
outperform the SBF-based method.

4.6 Impact of the false positive probability

Given any pair of nodes (e.g., A and B), another
issue of the SBF-based set reconciliation method is
that each node may wrongly identify a common
object as a unique one, with a given probability
when querying SBF.SA/ � SBF.SB/ (i.e., false positive
probability[24, 25]). Since each cell contains three fields
(i.e., idSum, hashSum, and count) in the IBF-based
set reconciliation method, the IBF-based method avoids
the effects of the false positive probability. In this
subsection, we only examine how the false positive
probability affects the communication overhead for the
SBF-based set reconciliation method.

According to Formula (4), the false positive
probability is decided by the set cardinality and the

number of differences. We vary fA from
0:01�d

n
to

Table 4 The ratio of set size and different objects between
two sets with different M values when C(SBF)DC(IBF).

M (bit) � M (bit) �

16 0:078 64 0:047

32 0:064 128 0:031
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10�0:01�d

n
, and fB from

0:01�d

n
to
10�0:01�d

n
�fA.

In this case, the set cardinality is 10 000, the number of
different objects is 1000, and we fixMD128 bit. Figure
5 reports the experimental results. We can see that the
resulting communication overhead of the SBF-based
method decreases as the false positive probability
increases. That is because the higher the false positive
probability of the set, the fewer identified unique
objects are exchanged between the two nodes. In
practice, most approximate reconciliations could not
sustain non-trivial numbers of missed unique objects.
Therefore, the users should distribute a reasonable
number of cells in SBFs to obtain a small false positive
probability.

4.7 Discussion

For the SBF-based set reconciliation method, due to
false positives, some different objects unique to one
set or the other cannot be identified. We can decrease
the number of omitted unique objects by decreasing
the false positive probability, while causing more
communication overhead. For the IBF-based method,
due to the probability of decoding failure, this degrades
to a worst-case situation in which no unique object
can be decoded. We demonstrate that the IBF-based
set reconciliation method outperforms the SBF-based
method when the ratio of the number of different objects
to the set cardinality is smaller than a threshold, such as
10%, under different � values. Moreover, we find that
the communication overhead under the two methods
increases linearly as the storage size of each object
increases.

In summary, our study demonstrate that the IBF-
based set reconciliation method works better in
scenarios in which there exist fewer different objects

Fig. 5 The communication overhead decreases when f
changes from 0.0001 to 0.001.

between the two sets, while the SBF-based set
reconciliation method works better when there are
more different objects between the two sets. In
practice, users should comprehensively consider the
settings of parameters and choose the distinguished
set reconciliation method with the least communication
overhead.

5 Conclusion

Bloom filters and their variants have been widely used
to solve set synchronization problem in many network
applications. In this paper, we rethink the representative
set reconciliation methods, the SBF-based and IBF-
based set reconciliation methods, by evaluating their
communication overheads. We propose communication
overhead models for SBF-based and IBF-based set
reconciliation methods. Comprehensive experiments
demonstrate that neither of those two methods has
absolute advantages in general scenarios. The SBF-
based method outperforms the IBF-based method in
most cases. But when the number of different objects
between two sets is below a certain threshold, the IBF-
based method outperforms the SBF-based method.
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