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Abstract: With the advancement of electronic information technology and the growth of the intelligent industry,

the industrial sector has undergone a shift from simplex, linear, and vertical chains to complex, multi-level, and

multi-dimensional  networked  industrial  chains.  In  order  to  enhance  energy  efficiency  in  multiplex  networked

industrial  chains  under  time-of-use  price,  a  coarse  time  granularity  task  scheduling  approach  has  been

adopted.  This  approach  adjusts  the  distribution  of  electricity  supply  based  on  task  deadlines,  dividing  it  into

longer  periods  to  facilitate  batch  access  to  task  information.  However,  traditional  simplex-network  task

assignment  optimization  methods  are  unable  to  achieve  a  globally  optimal  solution  for  cross-layer  links  in

multiplex  networked  industrial  chains.  Existing  solutions  struggle  to  balance  execution  costs  and  completion

efficiency  in  time-of-use  price  scenarios.  Therefore,  this  paper  presents  a  mixed-integer  linear  programming

model for solving the problem scenario and two algorithms: an exact algorithm based on the branch-and-bound

method and a multi-objective heuristic algorithm based on cross-layer policy propagation. These algorithms are

designed  to  adapt  to  small-scale  and  large-scale  problem  scenarios  under  coarse  time  granularity.  Through

extensive  simulation  experiments  and  theoretical  analysis,  the  proposed  methods  effectively  optimize  the

energy and time costs associated with the task execution.
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1　Introduction

Multiplex  networked  industrial  chains  systems  have

incorporated  various  heterogeneous  intelligent
components to manage diverse production tasks. These
intelligent  agents  exhibit  dissimilar  collaborative
relationships,  thereby  introducing  new  characteristics
to  the  multi-network  environment.  However,  applying
traditional  simplex  network  scheduling  algorithms
directly to multiplex networked industrial production is
limited.  They  compute  locally  optimal  scheduling
schemes  for  each  network  layer  based  on  dynamic
factors  like  production  cost  only.  Consequently,  this
approach  fails  to  consider  task  constraints  across
multiplex  networked,  resulting  in  suboptimal
scheduling  outcomes  for  the  entire  system.
Simultaneously,  most  industrial  production  functions
consume substantial electricity in multiplex networked
industrial  systems.  Electricity  suppliers  have  recently
implemented  a  time-of-use  (TOU)  pricing  system,
leading  to  notable  fluctuations  in  electricity  prices
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during different periods. Consequently, optimizing task
deployment  tailored  to  multi-chain  industrial  systems
becomes  crucial  in  rationalizing  production  task
execution  at  varying  time  intervals  to  reduce
operational costs associated with production agents.

In  the  context  of  coarse  time  granularity  task
allocation,  the  allocation  calculation  for  specific  tasks
is divided into more extended periods. Multiplex tasks
can  be  included  and  allocated  simultaneously  or
sequentially within these periods, following a particular
strategy.  Coarse  time  granularity  task  allocation  is
generally suitable for scenarios with relatively low task
response  time  requirements.  In  these  scenarios,  the
optimal allocation plan for a given stage is determined
by  considering  all  relevant  information  collected  over
an extended period[2]. Offline task allocation represents
a  typical  scenario  for  coarse  time  granularity  task
allocation, where the global optimal task allocation can
be  achieved  by  batch  acquisition  of  task  information.
Therefore,  this  research  focuses  on  addressing  the
problem  of  optimizing  coarse  time  granularity  task
allocation  in  a  multi-chain  industrial  task  processing
system.  Building  upon  the  multiplex  networked
Industrial  chains  characteristics  in  the  task  processing
system,  a  task  allocation  optimization  mechanism  is
proposed  under  coarse  time  granularity.  This
mechanism  ensures  the  reasonable  arrangement  of
execution  product  agents  and  specifies  the  execution
time of tasks across different industrial chains based on
the  electricity  price  during  different  periods.  The
objective is to minimize the maximum completion time
and required electricity cost for task execution.

Coarse  time  granularity  task  allocation  optimization
in  a  multiplex  networked  industrial  chains  task
processing  system  encounters  two  main  challenges.
The first challenge is handling the impact of multiplex
networked  industrial  chains  on  task  allocation.
Specifically,  it  involves  modeling  the  correlation
between tasks in each industrial chain within multiplex
networked industrial chains. The second challenge is to
construct  a  suitable  task  allocation  scheme.  This
scheme  aims  to  optimize  the  execution  cost  and
execution  time  of  tasks  while  satisfying  various
constraint conditions.

In  the  past,  task  allocation  optimization  typically
only  considered  the  selection  of  product  agents  that
execute  tasks  within  a  simplex  industry  chain  and  the
allocation  of  specific  execution  times  for  each  task.

Optimization  allocation  problems  were  modeled  as
single-machine  scheduling,  workshop  scheduling,
flow-shop scheduling,  and other  issues,  and were then
optimized  and  solved  through  corresponding
algorithms[3, 4]. However, with the gradual convergence
of  industrial  chains  and  the  trend  towards  multiplex
industrial chains, previous methods have exposed some
limitations. In other words, traditional methods did not
consider  the  inherent  relationships  between  different
tasks  in  different  industrial  chains,  resulting  in  poor
performance  when  directly  applied  to  multiplex
networked industrial chains.

This  paper  investigates  the  relationship  between
tasks  and  multiplex  networked  industry  chains.
Specifically,  it  focuses  on  studying  the  impact  of
multiplex  networked  industry  chains  on  task
deployment  and  optimizing  task  allocation  for  each
industry  chain  at  the  system  level.  The  aim  is  to
achieve  a  rational  allocation  of  tasks  across  industry
chains, to optimize the energy cost and execution time
of  task  processing  at  the  overall  level.  This  will
improve the execution efficiency of the task processing
system.

The main contributions of this paper are summarized
as follows:

(1)  The  modeling  and  analysis  of  task  execution  in
the task processing system under  multiplex networked
industry chains is proposed, and a mathematical model
for  a  task  processing  system  adapted  to  multiplex
networked  industry  chains  is  presented.  This  model
focuses on expressing the relationship between tasks in
different  industry  chains  under  multiplex  networked
industry  chains  and  provides  a  foundation  for
subsequent task deployment arrangements.

(2)  For  the  case  of  small-scale  data  with  fewer
network  layers,  a  mixed  integer  linear  programming
algorithm  based  on  branch-and-bound  is  proposed.  A
fast-pruning strategy is designed for the characteristics
of  multiplex  network  industry  chains  to  prune  the
search  space  during  initialization  and  reduce  the
complexity  of  subsequent  searches.  For  the  case  of
large  data  volumes  and  complex  industry  chain
structures,  a  heuristic  cascading  adaptive  deployment
algorithm based on cross-chain strategy propagation is
proposed,  involving  multiple  rounds  of  iterative
deployment.

(3)  The  performance  of  the  algorithm  proposed  in
this  article  has  been verified  through many simulation

    304 Tsinghua Science and Technology, February 2025, 30(1): 303−317

 



experiments and compared with traditional deployment
optimization  algorithms  under  a  simplex  industry
chain.  Through  theoretical  analysis  and  experimental
validation,  it  is  shown  that  the  algorithm  proposed  in
this article has better results under multiplex networked
industry chains, and the energy cost and execution time
of tasks have been optimized to a certain extent.

The  structure  of  the  paper  is  organized  as  follows.
Section  2  provides  a  literature  review.  Section  3
describes  the  coarse  time  granularity  allocation
optimization  problem  and  its  mathematical  model  of
multiplex  networked  industrial  chain  task  processing
systems  in  detail.  Section  4  introduces  the  proposed
algorithm for small-scale problem scenarios. Section 5
presents the proposed solution algorithm for large-scale
problem  scenarios.  Section  6  presents  and  discusses
experimental results. Section 7 concludes and discusses
future work.

2　Related Work

This  paper  investigates  the  problem  of  energy  cost
optimization and task resource scheduling in a dynamic
cost  environment  for  multiplex  networked  industrial
chains task processing systems.

2.1　Energy cost optimization

Optimization  of  energy  costs  is  the  efficient  use  of
energy  to  reduce  energy  utilization  costs  and  improve
energy efficiency within a system[3]. This optimization
has numerous applications within the context of global
energy  shortage  and  rising  energy  costs.  As
optimization allocation has a broad application market,
the optimization of energy costs has gained recognition
as  one  of  the  active  research  areas[5–7],  particularly  in
small  energy  utilization  systems.  The  large-scale
energy  utilization  systems,  due  to  huge  energy
consumption,  also  present  significant  optimization
space, making it a hot field of current research[3, 4, 8, 9].

The  industrial  energy  system  is  a  major  component
of  large-scale  energy  systems.  In  the  cost-optimized
system  for  industrial  energy,  it  is  necessary  to  plan
industrial  task  allocation,  arrange  the  execution  time
and  order  of  various  industrial  tasks  reasonably,  and
improve  energy  utilization  while  reducing  the  energy
cost  of  task execution.  Zhou et  al.  studied energy cost
optimization  under  the  structure  of  multiplex
microgrids.  They  studied  and  summarized  energy
allocation  and  control  strategies  in  interactive  energy
trading, multi-task allocation, and flexible operation[3].

Schulze  et  al.[8] summarized  the  energy  cost
optimization of industrial systems and summarized the
key  factors  and  relevant  conceptual  framework  of
energy systems based on industrial subjects, indicating
that energy cost optimization in industrial systems can
effectively  reduce  energy  use  costs  and  improve
production  efficiency.  Finally,  Ullah  et  al.[4] proposed
energy cost optimization strategies based on the locust
optimization algorithm and cuckoo search optimization
algorithm  and  verified  the  effectiveness  of  the
algorithms.

Traditional task allocation and optimization methods
under  a  simplex  industrial  chain  make  it  difficult  to
solve  the  task  allocation  problem  of  multiplex
networked  industrial  chains[10–12].  Therefore,  it  is
necessary  to  develop  new  algorithms  to  process
multiplex  networked[13] industrial  chains,  which  are
complex  networked  shapes  composed  of  multiplex
different  industrial  chains  interlocking,  related,  or
overlapping  with  complex  relationships[14] and
interactions, including mutual impact characteristics of
data, energy, and other aspects. This article focuses on
the task processing system under  multiplex networked
industrial  chains  and  needs  to  consider  collaborative
energy  cost  optimization  in  multiplex  sub-systems.
Suppose  only  the  task  allocation  optimization
technology  in  a  simplex  industrial  chain  is  adopted  in
multiplex networked industrial chains. In that case, it is
impossible  to  complete  the  optimization  planning  of
cross-industry  chain  tasks,  resulting  in  only  achieving
the best in a simplex industrial chain and being unable
to  improve  energy  utilization  efficiency  and  reduce
task  execution  costs  in  the  overall  system.  It  is
recommended to  explore  new algorithms and consider
multiplex  networked  industrial  chains  to  solve  this
problem.

2.2　Task resource allocation

The  problem  of  task  resource  allocation  is  a  classic
problem  in  the  fields  of  computer  science  and
operations research. This problem has a wide range of
applications  in  real  life,  such  as  product  agent
production  deployment  planning[15, 16] and  project
schedule deployment arrangement[17–19].

The  allocation  of  production  workshop  task
resources is a classic problem that can be divided into
single-machine  scheduling  problems,  parallel  machine
scheduling  problems,  flow  shop  scheduling  problems,
and hybrid flow shop scheduling problems according to
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the properties of the task. In research in this area, Che
et  al.[20] considered  a  single-machine  scheduling
problem  with  a  power-off  mechanism.  They
established a mixed-integer linear programming model
to  find  the  optimal  job  processing  sequence,  thus
minimizing  the  total  energy  consumption  and
maximum delay.  Lei  and  Liu[21] proposed  an  artificial
bee  colony  algorithm  to  introduce  preventive
maintenance  constraints  in  the  parallel  machine
scheduling problem, making it more in line with actual
production  needs.  The  algorithm’s  performance  was
extensively verified to minimize task completion time.
In  the  flow  shop  scheduling  problem,  Zhao  et  al.[22]

considered  constraints  such  as  distributed  workshops
and  no  idle  time  and  proposed  a  self-learning  Jaya
algorithm  to  minimize  tasks’ total  delay  and  energy
consumption.  Shao  et  al.[16] studied  the  distributed
hybrid  flow  shop  problem,  combining  the
characteristics  of  distributed  and  parallel  machine
scheduling,  and  proposed  a  multi-neighborhood
iterative greedy algorithm to solve the problem.

Resource-based  deployment  optimization  considers
the structure, scale, and usage restrictions of resources
in  the  system  and  takes  resource  allocation  as  one  of
the main research objectives. The resource-constrained
project  scheduling  problem  is  one  of  the  classic
problems in this field and has received much attention
from  scholars.  Pellerin  and  others  summarized  and
categorized  heuristic  algorithms  in  the  resource-
constrained project scheduling problem, indicating that
current  problem-solving  algorithms  are  gradually
transitioning  from  common  to  mixed  heuristic
algorithms.  In  addition,  they  compared  the
performance of different mixed heuristic algorithms on
the  project  scheduling  problem  library  (PSPLIB)
dataset[23].  Rahman  and  others  proposed  a  cultural
genetic  algorithm  to  solve  the  resource-constrained
project scheduling problem and designed an automatic
restart  scheme  to  eliminate  local  optimal  solutions[24].
Tirkolaee  and  others  studied  the  multi-objective  and
multi-mode  problems  in  resource-constrained  project
scheduling  problems.  They  considered  reusable
resources,  including  labor,  machines,  equipment,  and
non-reusable  resources,  such as  consumables,  to  make
the model more realistic[25].

In  summary,  research  in  the  traditional  field  of
resource  allocation  for  tasks  has  mainly  focused  on
optimizing  task  execution  time  under  various
constraints. However, there has been less consideration

of  task  allocation  across  systems  and  industry  chains.
These research results  cannot  fully apply to the multi-
industry-chain  environment  with  dynamic  cost  and
time-of-use electricity pricing studied in this paper and
cannot  reflect  the  impact  of  multiplex  networked
industrial chains on task allocation.

3　Problem Formulation and Analyse

To clearly illustrate the research problem of this paper,
we first  introduce the relevant definitions of multiplex
networked  industrial  chains  in  Section  3.1.  We  then
introduce the description of the coarse time granularity
allocation  optimization  problem  of  the  multiplex
industrial  chain task processing system in Section 3.2.
Finally, we give a formal formulation of the problem in
Section 3.3.

3.1　Multiplex networked industrial chains

The  task  processing  system  of  multiplex  networked
industrial chains is defined as Eq. (1):
 

G = {m,wP,wS ,mQ} (1)

m

Chaini i ∈ {1, 2, . . . , m} wP

wP jk

j ∈ {1, 2, . . . , n} k ∈ {1, 2, . . . , N}

J jk

j k
J wS

wS jk j ∈ {1,2, . . . ,n}
k ∈ {1,2, . . . ,N}

J jk mQ

mQi i ∈ {1,2, . . . ,m}

i

The  parameter  represents  the  composition  of  the
system in terms of industrial chains, and the industrial
Chains is denoted by , ;  is the
power  matrix  of  product  agents  machines  in  each
industrial  chain  when  performing  tasks, ,

,  represents  the  power  of
the  product  agents  machine  in  the  industrial  chain
where  task  is  located  when  executing  the  task,
where  is the task index number and  is the sub-task
index number of task .  is the power matrix of the
product  agents  machine in each industrial  chain in the
system when it is idle in standby, , ,

 denotes the power of the machine in the
industrial  chain  where  task  is  idling;  denotes
the  matrix  of  the  number  of  product  agents  in  each
industrial  chain  of  the  system, , 
denotes the number of product agents in industry chain
.
The definition of tasks in multiplex industrial chains

is as Eq. (2):
 

T = {n,N, χ, tmax, pT } (2)

n n
J j J j N
J jk j ∈ {1,2, . . . ,n} k ∈ {1,2, . . . ,N}

χ

tmax

where  means  that  this  task  set  consists  of 
independent  tasks ,  and  task  consists  of 
subtasks, denoted as , , ,

 represents  the  sequence  of  the  industrial  chain
through  which  the  subtasks  are  executed, 
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pT
pT jk

J jk

represents the deadline completion time of the batch of
tasks,  and  all  task  allocation  needs  to  be  completed
before  the  deadline,  is  the  task  execution  time
matrix,  represents the execution time required for
task .

3.2　Coarse  time  granularity  allocation
optimization problem

T
G e(t)

Π < j,k, l, sT jk,eT jk >

Coarse  time  granularity  allocation  optimization
problem  of  multiplex  industrial  chain  task  processing
system (CTGAO) is defined as follows: Given task set

,  multiplex  networked  industrial  chains  task
processing system , time-of-use electricity price ,
design  an  allocation  strategy  to
optimize  the  time  cost  and  energy  cost  of  completing
the batch of tasks.

In  order  to  give  a  formal  modeling  of  this  problem,
the  following  two  decision  variables  are  introduced
first:

J jk ∈ J
ri jkl J jk

i

(1)  For  each  subtask ,  the  binary  decision
variable  indicates whether task  is  executed on
the l-th product agent in industry chain ;

y jkt

J jk ∈ J t ∈ [0, tmax]
y jkt J jk

t t

(2)  In  the  case  of  time  of  use,  electricity  costs  are
calculated based on the amount of electricity consumed
during task execution, considering the specific situation
of  tasks  that  span  multiplex  periods  and  their
corresponding  electricity  consumption.  As  the  number
of  tasks  increases,  the  complexity  of  computing  the
cost  of  executing  the  task  set  increases  drastically.  In
order  to  avoid  the  above  problems,  this  paper
introduces  the  binary  decision  variable :  For  each
subtask ,  at  any  time ,  the  binary
decision  variable  indicates  whether  task  is
executing at  time .  At the same time,  is  assumed to
be an indivisible minimum time unit, and the start and
end  of  task  execution  and  the  change  of  electricity
price must occur at the boundary of the time unit.

3.3　Problem formulation

J j(k+1)

J jk

J jk

Z jk j′k′ J jk

Through the above definition of decision variables, the
CTGAO  can  be  modeled  as  a  mixed  integer  linear
programming  model  with  the  following  form  of
Formulas  (3)−(11).  Among  them,  Formula  (3)  states
that  for  subtasks  of  the  same  task,  needs  to  be
completed  after  before  execution  can  start.
Equation  (4)  states  that  for  any  subtask ,  there  can
be  only  one  product  agent  for  execution.  Formulas
(5)−(7) ensure that any component can execute at most
one task at a time, where  means that task  is

J j′k′ Mexecuted before , and  is an integer large enough
to  ensure  the  correctness  of  the  constraint.  Equations
(8) and (9) ensure that the end time and execution time
of the task meet the requirements. Formula (10) defines
the maximum completion time. Equation (11) describes
the power cost calculation method for task execution.
 

min(energyCost,Cmax) (CTGAO)
s.t. sT jk + pT jk ⩽ T j(k+1)

(3)

 

mQi∑
l=1

ri jkl = 1, i ∈ {1,2, . . . ,m} (4)

 

M
(
2− ri jkl− ri j′k′l

)
+M
(
1−Z jk j′ k′

)
+

sT j′k′ − sT jk ⩾ pT jk,

j < j′, j, j′ ∈ {1,2, . . . ,n},
k ∈ {1,2, . . . ,N}, l ∈ {1,2, . . . ,mQi} (5)

 

M
(
2− ri jkl− ri j′k′l

)
+M×Z jk j′k′+

sT jk − sT j′k′ ⩾ pT j′k′ (6)
 

Z jk jk = 0 (7)
 

eT jk = sT jk + pT jk −1 (8)
 

pT jk =

tmax∑
t=1

y jkt (9)

 

eT jk ⩽Cmax (10)
 

energyCost =
n∑

j=1

N∑
k=1

tmax∑
t=1(

y jkt ∗ e(t)∗wP jk +
(
1− y jkt

)
∗wS jk

) (11)

4　Branch and Bound Method in Small-Scale
Scenario

The  CTGAO  problem  is  modeled  as  a  bi-objective
optimization  problem  under  mixed  integer  linear
programming  (MILP).  In  the  optimization  problem
with more than one objective, it is generally impossible
to  obtain  an  optimal  solution  such  that  all  objective
function  values  are  superior  to  any  other  solution.  In
order  to  solve  this  problem,  this  paper  uses  the  linear
weighted  sum  method[26],  transforms  the  optimization
objective into a single objective, and then proposes an
exact algorithm based on the branch and bound method
to solve the problem. By using the linear weighted sum
method,  the optimization objective is  transformed into
Eq. (12):
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min f = αCmax+ (1−α)energyCost (12)

4.1　Algorithm idea

Based  on  the  branch  and  bound  strategy,  this  section
proposes  an  exact  algorithm  for  solving  the  CTGAO
problem in small-scale scenarios. The basic idea of the
branch  and  bound  method  is  to  repeatedly  divide  the
feasible solution space into smaller and smaller subsets
and  compute  the  objective  bounds  for  each  subset.
After  each  branch,  the  nodes  that  exceed  the  known
objective  bounds  of  the  feasible  solution  space  are
pruned.  By  optimizing  the  search  space  through
pruning, the size of the solution space is reduced until
the  entire  search  space  is  thoroughly  explored[27].
Based on this  concept,  this  paper  proposes  an  optimal
algorithm  called  BranchBoundOPT  for  small-scale
scenarios.

Firstly,  the  solution  space  of  the  problem  is
constructed. For the CTGAO problem, all 0-1 decision
variables  are  first  constructed  as  a  node  in  the  tree,
each  level  represents  a  0-1  variable,  and  the  tree
formed  by  all  nodes  is  the  solution  space.  In  the
solution  set  tree,  a  path  from  the  root  node  to  a  leaf
node is  a solution,  and the solution space construction
is shown in Fig. 1.

This  paper  implements  a  fast  pruning  operation  on
the  solution  space  during  the  initialization  phase  in
order to increase the solving speed and reduce the size
of  the  solution  space.  This  operation  is  based  on  the
characteristics  of  the  task  processing  system  in
multiplexed networked industrial chains. Its purpose is
to  reduce  the  solution  space  size  of  the  subsequent
search. The specific procedure is as follows:

ri jkl

ri′ jkl′ i , i′ j , j′
(1)  Chain-level  fast  pruning:  if  is  1,  then  all

nodes whose  is 1 are pruned, where , ;
y jkt

y jkt′

(2)  Task-execution-level  fast  pruning:  if  is  1,
then  all  nodes  whose  is  1  are  pruned,  where

t′ > t+ pT jk t′ < t− pT jk or .

4.2　Algorithm description

According  to  the  algorithm  idea  in  Section  4.1,  the
detailed description of the BranchBoundOPT algorithm
based on the depth-first branch and bound method[27] is
given below:

J
G

e(t)

As  shown  in  Algorithm  1,  the  Initialized  Solution
algorithm  generates  the  first  solution  space  tree,  and
the original  problem is  relaxed into a  linear  relaxation
problem  (LRP)  problem.  The  solution  of  the  LRP
problem is calculated to obtain the lower bound of the
original problem solution, and then the upper bound is
initialized to a sufficiently large integer. The solute on
space  is  then  searched  recursively  using  the
BranchSearch  algorithm,  which  keeps  pruning,
updating  the  upper  bound,  and  updating  the  lower
bound until  the solution space tree traversal  ends.  The
task  set ,  the  multiplex  networked  industrial  chains
task  processing  system ,  and  the  time-sharing
electricity price  contain all the information needed
to calculate the allocation task, lower-bound and upper-
bound  are  global  variables,  and  the  current  lower
bound and upper  bound of  the  optimal  solution  of  the
task are recorded respectively.

The initialize solution algorithm generates a solution
space tree according to the number of tasks in the task
set  and  the  composition  of  the  system’s  components
and  calculates  and  updates  the  initial  lower  bound.
Where num is the number of 0-1 decision variables, the
queue is a first in, first out (FIFO) queue container, and
quick-cut  is  a  fast-pruning  strategy.  According  to  the
characteristics  of  the  task  processing  system  of
multiplex networked industrial chains, infeasible nodes
are deleted when constructing the initial solution space,
which  can  greatly  reduce  the  solution  space.  The
specific algorithm is given in Algorithm 2.

 

 
Fig. 1    Example  of  solution  space  initialization  of  branch
and bound method.

 

Algorithm 1    Overall flow of the optimal algorithm
BranchBoundOPT

J
G e(t)

Input: Task set , multiplex networked industrial chain task
processing system , time-of-use electricity price ;

bestSolutionOutput: Task set optimal allocation plan ;
lowerBound← 0 upperBound←maxInteger1 Initialize: , ;

soultionTree← initializeSolution(J,G)2 ;
3 Call the LP solver to find the LRP solution of root;

updatelowerBound4 ;
bestSolution← BrandSearch(solutionTree, lowerBound,

upperBound)
5 

;
bestSolution6 return ;
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BranchSearch  searches  the  solution  space
recursively,  starts  from  the  root  node  of  the  solution
space  tree,  and  updates  the  upper  and  lower  bounds
continuously during the search process. It optimizes the
search  space  by  pruning  to  improve  the  search
efficiency.  stack  is  a  first-in,  last-out  stack  container,
which  can  ensure  that  the  solution  space  is  searched
according  to  depth-first.  The  specific  algorithm  is
shown in Algorithm 3.

5　Metaheuristic  Cascade  Adaptive
Algorithm in Large-Scale Scenarios

The algorithm proposed in the previous section of this
paper  results  in  exponential  growth  of  solution  time
when there are increases in either  the number of  tasks
or the number of industrial chains in the problem. This
makes  it  difficult  to  meet  the  needs  of  large-scale
problem  scenarios.  To  address  this  issue,  this  section
proposes a meta-heuristic cascading adaptive algorithm
suitable  for  large-scale  scenarios  that  can  obtain
approximate  optimal  solutions  within  an  acceptable
time frame.

5.1　Algorithm idea

Previous  studies  have  proven  that  the  production
workshop  scheduling  problem  is  an  NP-hard
problem[16, 28].  In  this  paper,  we  study  the  production
workshop scheduling problem under the background of
multiplex  networked  industrial  chains,  which  further
increases the complexity of the problem. In large-scale

problems, the cost  of  obtaining the optimal solution is
high.  Based  on  previous  heuristic  evolutionary
algorithm research[29], we propose a cascaded adaptive
algorithm  (CAA)  based  on  fitness  rank  sorting.  The
algorithm  proposed  in  this  paper  adopts  the  meta-
heuristic  algorithm process  and  designs  corresponding
adaptive strategy modification mechanisms in response
to the characteristics of multiplex networked industrial
chains, as follows:

Previous  metaheuristic  algorithms  usually  require
variations  of  the  solution  set  to  increase  diversity.
However, in this paper, direct variations and crossovers
of  the  solution  set  may  cause  the  loss  or  repetition  of
subtasks  in  new  solutions  or  may  not  satisfy  the
constraint  conditions.  Therefore,  this  paper  modifies
and  evolves  the  solution  set  through  neighborhood
insertion  and  exchange.  The  characteristics  of  the
multiplex  networked  industrial  chain  make  it  so  that
when  using  neighborhood  insertion  and  exchange,
subtasks  with  later  industrial  chain  sequences  will  be
moved  to  the  front,  resulting  in  invalid  solutions.
Therefore,  this  paper  designs  a  cascading  adaptive
strategy  to  adaptively  adjust  the  order  of  subtasks  of
the same task to avoid generating invalid solutions.

 

Algorithm 2    Initialize Solution
J

G e(t)
Input: Task set , multiplex networked industrial chains task
processing system , time-of-use electricity price ;

soultionTreeOutput: Task set solution space ;
num← 0, root.val← 0,queue← null  1 Initialize: ;

  2 Calculate num according to Formulas (3)–(12);

queue.add(root)  3 ;
i←  4 for  to num do
size← queue.size()  5　　 ;

j size  6　　for  in 1 to  do
node.poll()  7　　　 ;
node.left.val← 0 node.right.val← 1  8　　　 ; ;

quickCut(node.left)  9　　　if  then
queue.add(node.left)10　　　　 ;
quickCut(node.right)11　　　if  then
queue.add(node.right)12　　　　 ;

soultionTree← root13　 ;
soultionTree14 return ;

 

Algorithm 3    Initialize Solution
solutionTree lowerBound upperBoundInput: Solution space , , ;

bestSolutionOutput: Optimal allocation scheme of task set ;
stack← null  1 Initialize: ;

stack.add(soultionTree)  2 ;
  3 while stack is not empty do

node← stack.pollLast()  4　　 ;
  5　　res←Calculate the optimal solution of LRP problem
  6　　if res is not null then
  7　　　if node is leaf then
  8　　　　if res¡upperBound then

upperBound← res  9　　　　　

10　　　　else
11　　　　　continue
12　　　else
13　　　　if resupperBound then

lowerBound← res14　　　　　 ;
stack.add(node.left)15　　　　　 ;
stack.add(node.right)16　　　　　 ;

17　　　　else
18　　　　　continue

bestSolution← upperBound19 ;
bestSolution20 return ;
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5.2　Algorithm description

The detailed design of each step of the CAA algorithm
is given below:

Step 1: Generate an initial set of solutions.
Randomly initialize the execution order of tasks and

the selection of product agents. Then, according to the
execution order of the tasks, initialize the start and end
times of each task one by one. The start time of a task
is  the later  of  the earliest  available  time of  its  product
agents and the earliest start time of the task, as follows:
 

sTi j =max
(
availableTimeil,eT j(k−1)

)
(13)

At  the  same  time,  update  the  earliest  available  time
of the corresponding product agents and set the earliest
available  time  of  the  task’s  next  subtask  to  be  the
current  subtask’s  end  time.  Initialize  all  tasks  to
generate a feasible solution.  Repeat  the above steps to
generate the initial solution set.

Step  2: Neighborhood  insertion  and  cascading
adaptive transmission.

Job jk

Job jk

Job21− Job11− Job22−
Job12− Job23 Job21

Job11− Job22− Job12−
Job21− Job23 Job21

Job22

Job11− Job21− Job12− Job22− Job23

Aiming  at  the  feasible  solution  A,  a  task  is
randomly  selected  from  the  solution,  and  is
inserted  into  the  gap  of  other  tasks  in  turn  to  obtain  a
new  solution.  Since  tasks  have  inter-chain  cascading
relationships,  the  insertion  of  this  task  into  the  gap  of
other  tasks  may  bring  infeasible  solutions.  Therefore,
this  paper  refers  to  the  previous  literature[29] and
designs  a  cascade  adaptive  conduction  mechanism:
When  a  subtask  is  inserted  after  the  successor  task  of
the  task,  the  subtask  execution  order  of  the  task  is
automatically  updated.  For  example,  suppose  the
original  task  execution  order  is 

. inserting  into other gaps yields new
solutions,  one  of  which  is 

.  In this case, since task  is executed
after  task  and  the  constraint  condition  is  not
satisfied,  the  cascade  adaptive  transmission  is
executed,  and  the  solution  is  readjusted  as

.
Step  3: Random  neighborhood  exchange  and

cascaded adaptive conduction.
The  random  neighborhood  exchange  and  cascading

adaptive  propagation  based  on  the  multiplex  networks
industrial  chain  aims  to  improve  the  quality  of  the
solution.  The  method  randomly  selects  two  feasible
solutions, A and B, exchange part of the task sequence
fragments  between  A  and  B,  and  then  cascade  and
adaptively  propagate  the  modified  solution  after  the
exchange,  resulting  in  a  new  feasible  solution.

However,  it  should  be  noted  that  neighborhood
exchange  may  cause  inconsistencies  between  the
exchanged task segments, resulting in lost or redundant
tasks in the solution. To solve this problem, we convert
the  redundant  tasks  into  the  missing  tasks  in  the
sequence from front to back. We repeat the above steps
until all solutions in the set have completed the random
neighborhood exchange.

Step 4: Merge the  above solutions  with  the  original
solution  set,  and  evaluate  the  generated  intermediate
solution set.

Calculate  the  objective  function  values  of  all
solutions  in  the  intermediate  solution  set.  Suppose
solution  A’s  objective  function  values  are  superior  to
solution B’s. In that case, it indicates that Solution B is
dominated  by  Solution  A.  Calculating  the  number  of
times each solution is overlooked and sort the solution
set  by the  degree  of  dominance.  If  two solutions  have
the same degree of dominance, sort these two solutions
by their crowding distance. The formula for calculating
the crowding distance is as follows:
 

CrowdingDistancei=

M∑
m=1

fm(i+1)− fm(i−1)
( f max

m − f min
m )

(14)

M
M = 2 fm(i+1) fm(i−1)

i
f max
m f min

m

m
S

S

where  represents the number of objective functions,
 in  this  paper,  and  are  the

objective function values of the two solutions closest to
the objective function value of solution  in the solution
set,  and  are  the  maximum  value  and
minimum  value  of  the -th  objective  function,
respectively.  The  best  solutions  after  sorting  are
screened  out  as  the  feasible  solution  set  of  the  next
iteration, where  is the solution set size.

Step  5: Repeat  the  above  process  until  the
predetermined  number  of  iterations  is  reached,  and
then output the current solution set. The pseudocode of
the overall algorithm is shown in Algorithm 4.

6　Experiment

In  this  section,  a  series  of  experiments  are  carried  out
to  test  the  proposed  algorithms.  The  effectiveness  and
efficiency  of  our  proposed  algorithms  are  verified  by
comparison with the classical benchmark.

6.1　Experimental settings

The  experiments  were  run  on  a  PC  with  a  3.6  GHz
central processing unit, Windows 10 operating system,
and  8  GB  of  working  memory.  The  test  code  was
coded  using  Matlab  R2019b,  the  LRP  problem  was
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solved  by  calling  CPLEX  software,  and  each  set  of
experiments was repeated 20 times for the average.

In the simulation experiment, the task allocation and
task allocation optimization scenarios  of  the  multiplex
industrial  chain  task  processing  system  are  simulated.
When  the  garbage  disposal  task  arrives,  the  task
execution  sequence  and  the  execution  product  agent
need  to  be  calculated,  and  the  allocation  scheme  is
formed.

m
n

pT i j

machineQtyi

wPi

wS i

The  number  of  network  layers  in  the  model  is
represented  by ;  The  number  of  tasks  is  represented
by ;  the  execution  time  required  for  each  subtask  is
denoted  by ;  the  number  of  components  in  each
network  layer  is  represented  by ;  the
execution unit time power of members in each network
layer is expressed in ; the part idle unit time power

 in  each  network  layer.  The  time-of-use  price  is
shown in Eq. (15):
 

e(t) =


0.3551, 0 ⩽ t ⩽ 8;
1.2757, 8 ⩽ t ⩽ 12,17 ⩽ t ⩽ 21;
0.7653, 12 ⩽ t ⩽ 17,21 ⩽ t ⩽ 24

(15)

6.2　Benchmark algorithms

In order to verify the feasibility of the algorithm in this
paper  and  the  limitations  of  the  previous  task
deployment  optimization  methods  under  a  simplex
chain in multiplex chains, the following algorithm was
selected as a comparison algorithm for analysis.

Simplex network Heuristic iterative greedy allocation
algorithm  (SNHA):  The  heuristic  iterative  greedy
algorithm  is  widely  used  in  the  shop  allocation
problem.  Therefore,  this  paper  considers  the  iterative

greedy  strategy  under  the  structure  of  a  simplex
industrial  chain  proposed  in  previous  studies  to  be
hierarchically  applied  to  the  scene  of  multiplex
industrial chains for allocation calculation[30].

Improved  fast  non-dominated  sorting  genetic
algorithm-II  (NSGA-II)  algorithm  is  widely  used  in
multi-objective  optimization  solutions.  In  this  paper,
referring to previous cloud computing deployment, the
algorithm  is  improved  and  applied  to  multiplex
industrial chain scenarios, the solution set size is set to
50, and the number of iterations is set to 200[31].

Parallel scheduling optimization algorithm (PSO): In
this  paper,  the  previous  parallel  batch  processing
optimization  algorithm  is  applied  in  the  scenario  of
multiplex industrial chains, and parallel optimization is
carried out under the structure of multiplex networked
industrial chains[32].

6.3　Experiments  with  exact  algorithms  in  small-
scale scenarios

The  experimental  verification  will  be  in  small-scale
scenarios  for  the  proposal  of  an  exact  algorithm.  This
section considers  six indicators  [0.0,  0.2,  0.4,  0.6,  0.8,
1.0] for the bi-objective weight to obtain more accurate
results.  First,  the  task  size  was  kept  constant,  and  the
maximum  completion  time  of  the  task  execution  and
the energy cost of the task execution were tested under
different  weights.  Then  the  running  time  of  the
algorithm,  the  maximum  completion  time  and  the
energy cost of the algorithm are given.
6.3.1　Influence of different weights

Cmax

energyCost energyCost

Parameter settings: The exact algorithm for the small-
scale scenario proposed in this paper in Section 4 needs
to convert the double objectives into a single objective
by the linear weighted sum method, so this section tests
the  algorithm  running  results  with  different  weights.
The  fixed  problem  size  is  3  ×  4  ×  3  problems  with  3
industrial  chains  and  4  tasks,  and  each  task  has  3
processes.  Due  to  the  large  difference  between  the
value  of  the  makespan  and  the  value  of  the
electricity cost ,  is magnified 10
times to be processed when calculating the result.  The
experimental results are shown in Fig. 2.

&
α

Phenomenon  reason: As can be seen from Fig. 2,
as  the  value  of  increases,  the  maximum completion
time of tasks decreases, but the energy cost required to
complete  the  task  increases.  These  two  indicators  are
negatively correlated. Striving for fast task completion
will  increase  energy  cost,  while  striving  for  lower

 

Algorithm 4    Overall process of CAA algorithm
IterationsInput: Solution set size S, number of iterations ;

Output: Pareto optimal solution set;

T,G,e(t),objective
Initialize the task information
  1 Initialize:  //

;
solutions← initializeSolution()  2 ;

Generate the initial set of solutions// 
i = 1 Iterations  3 for  to  do

  4　　for solution in solutions do
midSolution1← Neighborhood insertion and adaptive  5　　　

midSolution2← Neighborhood insertion and adaptive  6　　　

midSolution←merge(solutions, midSolution1,
midSolution2)

  7　　
　　　

sort(midSolution)  8　　

solutions← replace(midSolution)  9　　

bestSolution10 return ;
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α

α

energy  cost  will  delay  task  completion  time.  In  real
task  environments,  product  agents  need  to  choose  the
appropriate  value based on specific circumstances. In
other  experiments  in  this  paper,  we  chose  =  0.5  for
ease of computation.
6.3.2　Influence of task quantity variation, average

subtask  quantity  variation,  and  network
layers

Parameter settings: The specific  experimental  results
are shown in Figs. 3a and 3b for a fixed network layer
number of 3 and an average number of sub-tasks of 4.
Figs.  3c  and  3d  illustrates  the  impact  of  subtask
quantity variation on algorithmic operation results with
a fixed task quantity of 4 and network layer quantity of
3.  The  task  number  is  set  at  4,  with  an  average  of  4
subtasks per task. The properties of each network layer
are randomly generated within their  respective ranges,
and  the  averaged  experimental  results  are  shown  in
Figs. 3e and 3f.

&Phenomenon  reason: The operation results of the
algorithm  in  the  small-scale  scenario  are  shown  in
Fig.  3. Figure  3a  shows  the  variation  of  max
completion  time  for  different  algorithms  when  the
problem  size  changes,  while Fig.  3b  shows  the
variation  of  electricity  cost  when  the  problem  size
changes.  The  proposed  BranchBoundOPT  algorithm
outperforms  other  comparative  algorithms  in  terms  of
maximum  task  completion  time  and  power
consumption  at  different  problem  scales. Figure  3c
shows the impact of the average number of subtasks on
the  longest  completion  time  of  a  task.  As  the  average
number  of  subtasks  increases,  the  maximum
completion  time  of  each  algorithm’s  calculated  task
also increases. Figure 3d shows the impact  of  average
subtask  size  on  power  consumption  during  task

execution.  As  the  average  number  of  subtasks
increases,  the  power  consumption  required  to  execute
tasks in each algorithm also increases. Figure 3e shows
the  impact  of  network  layers  on  the  longest  task
completion  time.  In  all  cases,  the  longest  completion
time of the BranchBoundOPT algorithm is smaller than
the  shortest  completion  time  of  the  comparison
algorithm. Figure  3f  shows  the  impact  of  the  network
layer  on  the  power  cost  of  task  execution.  As  the
number  of  network  layers  increases,  the  power
consumption cost of tasks solved by various algorithms
will  decrease,  but  the  speed  of  reduction  is  relatively
slow.  The  PSO  algorithm  has  the  most  obvious
downward  trend,  while  the  BranchBoundOPT
algorithm has the smoothest downward trend.
6.3.3　Influence of task size variations on algorithm

running time
Phenomenon & reason: Figure 4 shows the number of
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Fig. 2    Experimental results for different values of α.

 

M
ax

im
um

 c
om

pl
et

io
n 

tim
e

M
ax

im
um

 c
om

pl
et

io
n 

tim
e

M
ax

im
um

 c
om

pl
et

io
n 

tim
e

Number of tasks Number of tasks

Number of subtasks

Number of networks Number of networks

Number of subtasks

10 000

 
Fig. 3    Results of the algorithm in a small-scale scenario.
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tasks  and  the  average  number  of  tasks  increase,  the
problem  scale  also  grows.  Therefore,  in  the
BranchBoundOPT algorithm, the solution space of the
precise  method  exponentially  increases  with  the
problem  scale,  resulting  in  an  exponential  increase  in
solution  time.  On  the  other  hand,  the  different
compared  algorithms  use  heuristic  solutions,  so  their
runtime  increases  linearly  with  the  problem  scale,
although  they  are  slower  than  the  precise  algorithm.
When  the  problem  scale  remains  unchanged,  the
change  in  the  number  of  network  layers  does  not
directly lead to an increase in algorithm computational
complexity,  thus  keeping  the  algorithm’s  runtime
stable. Therefore, the experimental results suggest that
the  precise  algorithm  is  unsuitable  for  larger  problem
scenarios.

6.4　Metaheuristic  cascade  adaptive  algorithms  in
large-scale scenarios

This subsection presents the experimental validation of
the  proposed  heuristic  cascade  adaptive  algorithm  in
large-scale  scenarios.  Since  the  algorithm  is  a  multi-
objective  optimization  algorithm,  various  basic
indicators  are  tested  in  addition  to  the  algorithm’s
running time.  These include the maximum completion
time  of  task  execution,  power  cost  for  task  execution,
and other metrics. The Pareto solution set generated by
the  algorithm  is  also  compared  with  the  SNHA,
NSGAII, and PSO algorithms used in Section 2.6.2 as
the benchmark comparison algorithms. The large-scale
problem  scenario  is  based  on  the  test  problem
described in reference[33], which is further improved for
this  example.  The  specific  evaluation  index  is  as
follows:

Non-dominant  indicator  (NI)[31]:  It  represents  the
proportion  of  non-dominant  solutions  in  the  solution
set  obtained  by  the  algorithm  among  all  solutions

obtained by the algorithm. As shown in Eq. (16):
 

NI =
|πa|πa ∈ D∪πa ∈ D∗ |

|D∗| (16)

Distribution  indicator  (DI)[34]:  Used  to  evaluate  the
distribution  of  the  Pareto  solution  set  obtained  by  the
algorithm. As shown in Eq. (17):
 

DI =
d f +dl+

N−1∑
i=1

∣∣∣di− d̄
∣∣∣

d f +dl+ (F −1)d̄
(17)

Inverted  generational  distance  (IGD)[35]:  The
convergence of  an algorithm and the diversity of  non-
inferior solutions are evaluated by calculating the sum
of  the  nearest  distances  between  the  points  on  the
optimal  Pareto  front  and  the  Pareto  front  obtained  by
the algorithm. As shown in Eq. (18):
 

DIGD =

∑
x∈N∗ d(x,N)
|N∗| (18)

6.4.1　Influence of task size variations on algorithm
running time

&Phenomenon  reason: The influence of variations in
task  size  on  the  algorithm  performance  in  large-scale
scenarios  is  shown  in Fig.  5.  First,  in  the  case  of  5
layers  of  networked,  we  fixed  the  average  number  of
subtasks  per  task  at  7  and  showed  the  effect  of
changing  the  number  of  tasks  on  the  maximum
completion  time  and  minimum  energy  cost,  as  shown
in Figs. 5a and 5b. Then we fixed the number of tasks
at  60  and showed the  effect  of  the  average  number  of
subtasks  on  the  maximum  completion  time  and
minimum power  cost,  as  shown in Figures  5c  and 5d.
As  the  size  of  the  problem  increases,  the  maximum
completion time and energy cost of the task continue to
increase.  The  quality  of  the  solutions  proposed  by  the
CAA algorithm of this paper is better than that of other
comparative algorithms.

Although the CAA algorithm proposed in this paper
is  slower  in  running  time  compared  to  the  SNHA
algorithm,  the  quality  of  the  solution  is  significantly
better.  As  the  scale  of  the  problem  increases,  the
difference between the algorithm results becomes even
greater, indicating that the CAA algorithm proposed in
this  paper  can  optimize  the  task  execution  time  and
cost in large-scale problems.
6.4.2　Comparison  of  Pareto  solution  sets  of

algorithms
&Phenomenon  reason: We take the 5 × 50 × 5 task

scale  as  an  example,  and  solve  the  Pareto  solution  set
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Fig. 4    Influence  of  task  size  variations  on  algorithm
execution time.
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and analyze the results of the comparison. The specific
experimental results are shown in Fig. 6. It is apparent
that  the  heuristic  cascade  adaptive  algorithm designed
in  this  paper  can  achieve  relatively  excellent
comprehensive  solutions  when  the  test  examples  are
the  same.  Moreover,  it  outperforms  other  comparative
algorithms  in  most  cases.  First,  in  terms  of  maximum
completion  time  of  tasks,  the  Pareto  optimal  solution
obtained  by  the  algorithm  proposed  in  this  paper  is

obviously  better  than  that  of  the  comparative
algorithm.  Secondly,  the  proposed  algorithm  achieves
lower  energy  cost  in  most  cases,  indicating  that  the
CAA  algorithm  can  obtain  relatively  excellent
solutions in the context of large-scale problems.
6.4.3　Evaluation  of  the  solution  set  of  the

algorithm
Parameter settings: We selected 5 industry chains and
maintained  an  average  of  7  subtasks  while
investigating  the  effect  of  the  number  of  tasks  on  the
solution set. In addition, the number of tasks was set to
60 to assess the influence of the number of subtasks on
the solution set.

&Phenomenon  reason: The  results  are  shown  in
Fig. 7. The figure clearly shows that the metrics NI, DI,
and  IGD  achieved  by  the  proposed  CAA  algorithm
exceed  those  of  other  algorithms  in  most  cases.  This
indicates  that  the  CAA  algorithm  can  obtain  higher
quality solutions when addressing the challenges posed
by  large-scale,  multiplex  industrial  chain  task
processing  system problems.  In  addition,  the  resulting
solution  set  exhibits  improved  distribution  and
convergence characteristics.

The  proposed  BranchBoundOPT  algorithm  can
effectively  optimize  resource  scheduling  problems  in
the  context  of  multiple  networked  industrial  chains,
reducing  completion  time  and  power  consumption.
However,  the  required  computational  time  of  the
algorithm  increases  rapidly  with  the  size  of  the
problem.  To  address  problem  solving  in  large-scale
scenarios,  we  propose  the  CAA  algorithm,  which
results  in  a  better  distribution  and  convergence  of  the
solution  set.  The  experiment  shows  that  both
algorithms are superior to the comparison algorithm for
scenarios of different scales.

7　Conclusion

This paper focuses on time-of-use price through coarse
time granularity task schedules in multiplex networked
industrial  chains.  It  addresses  the  limitations  of
traditional  task  allocation  optimization  methods
designed  for  simplex  industrial  chains  and  presents  a
specialized  task  allocation  optimization  model  for
multiplex  networked  industrial  chains.  For  small-scale
problems,  an  efficient  exact  algorithm  based  on  the
branch-and-bound method with a fast-pruning strategy
is proposed. This algorithm provides optimal allocation
results  promptly.  Experimental  results  demonstrate  its
success in small-scale scenarios. However, considering
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Fig. 5    Influence  of  task  size  variations  on  algorithm
execution time.

 

 
Fig. 6    Comparison  of  Pareto  solution  sets  for  5  ×  50  ×  5
problems.
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the  computational  complexity,  the  exact  algorithm  is
unsuitable for large-scale problems. Hence,  a heuristic
cascading  adaptive  algorithm  is  introduced  to  obtain
approximate optimal solutions within a reasonable time
frame  for  large-scale  problems.  The  experimental
results  indicate  that  the  proposed  method  effectively
optimizes  task  execution  time  and  energy  cost  in  the
task  processing  system  of  the  multi-networked
industrial  chain  with  coarse  time  granularity.

Comparisons  with  the  direct  application  of  traditional
algorithms demonstrate the superiority of the proposed
method.  The  resource  allocation  optimization  problem
of  the  multiplex  networked  industrial  chains  system
studied in this article mainly considers scenarios where
online  tasks  with  different  priorities  dynamically
arrive.  In  actual  industrial  chain  power  allocation
systems,  there  may  also  be  scenarios  such  as  system
task  execution  component  failures  and  task  execution
failures,  which  will  have  a  significant  impact  on  the
current allocation. Therefore, it is necessary to analyze
this  scenario,  and  design  corresponding  algorithms  to
handle  the  dynamics  of  the  system  based  on  the
corresponding characteristics.
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