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Abstract: Recently,  with  the  increasing  complexity  of  multiplex  Unmanned  Aerial  Vehicles  (multi-UAVs)

collaboration  in  dynamic  task  environments,  multi-UAVs  systems  have  shown  new  characteristics  of  inter-

coupling  among  multiplex  groups  and  intra-correlation  within  groups.  However,  previous  studies  often

overlooked the structural  impact  of  dynamic risks on agents  among multiplex UAV groups,  which is  a  critical

issue for modern multi-UAVs communication to address. To address this problem, we integrate the influence of

dynamic risks on agents among multiplex UAV group structures into a multi-UAVs task migration problem and

formulate  it  as  a  partially  observable  Markov  game.  We  then  propose  a  Hybrid  Attention  Multi-agent

Reinforcement  Learning  (HAMRL)  algorithm,  which  uses  attention  structures  to  learn  the  dynamic

characteristics  of  the  task  environment,  and  it  integrates  hybrid  attention  mechanisms  to  establish  efficient

intra- and  inter-group  communication  aggregation  for  information  extraction  and  group  collaboration.

Experimental  results  show  that  in  this  comprehensive  and  challenging  model,  our  algorithm  significantly

outperforms state-of-the-art  algorithms in terms of  convergence speed and algorithm performance due to the

rational design of communication mechanisms.

Key words:  Unmanned  Aerial  Vehicle  (UAV); multiplex  UAV  group  structures; task  migration; multi-agent

reinforcement learning

1　Introduction

With  the  application  of  artificial  intelligence
technology  in  the  field  of  multi-agent  systems[1–4],
Unmanned  Aerial  Vehicles  (UAVs)  have  found
widespread  application  in  both  civilian  and  military

domains.  The  number  and  complexity  of  tasks
performed  by  UAVs  continue  to  increase[5].  For
example, in the maritime domain, UAVs have taken on
multiple  tasks  such  as  waterway  patrol,  law
enforcement  inspection,  accident  investigation,  and 
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emergency rescue[6–9]. Meanwhile, due to the dynamics
of practical task environments, the completion of these
complex  tasks  places  higher  demands  on  the
collaborative  capabilities  of  UAVs[10],  UAVs  need  to
learn  to  dynamically  reallocate  tasks  through  task
migration  in  dynamic  environments.  In  this  context,
UAV  systems  are  beginning  to  show  new  trends  of
inter-coupling  among  multiple  groups  and  intra-
correlation  within  groups[11].  Compared  with  previous
researches  on  UAV  task  migration  problem,  these
multiplex  UAV  group  task  migration  problems  in
dynamic environments face greater challenges.

However,  previous  studies  mainly  focus  on  the
impact  of  task  environment  risks  on  individual
UAV[11, 12],  without  fully  considering  the  structural
impact  of  task  environment  risks  on  UAVs  under  the
multiplex  UAV  group  structure.  This  can  lead  to
algorithms  falling  into  local  optima.  Therefore,  there
are  two  main  challenges  in  designing  algorithms  for
multiplex  UAV  group  task  migration  under  the
dynamic environmental risks:

●  The  action  space  of  agents  is  influenced  by
dynamic  risks  in  the  task  environment,  requiring
dynamic  adjustments  of  task  strategies  based  on  the
risk.  This  leads  to  a  significant  increase  in  problem
complexity.

● The task migration strategy of agents is influenced
by  structural  constraints  inter- and  intra-groups,  thus
expanding the solution space of the problem.

To  address  these  challenges,  this  paper  propose  the
Hybrid  Attention  Multi-agent  Reinforcement  Learning
(HAMRL)  algorithm.  First,  unlike  conventional
approaches  that  rely  on  building  accurate  models,  this
framework  exploits  the  powerful  generalization
capabilities  of  reinforcement  learning  in  dynamic
environments[13] to  dynamically  modify  strategies  and
adapt  to  new  environmental  states.  Second,  it  uses
attention  mechanisms  to  process  time  series  data  and
learn  about  the  dynamic  nature  of  the  task
environment.  Final,  this algorithm relies on the hybrid
attention  communication  mechanism  to  learn  the
structural  influence  of  this  group  structure.
Specifically,  the  leader  agent  within  each  group  first
learns  the  influence  relationship  among  agents  within
the  group  through  the  intra-group  attention  network,
analyzes  their  strategy  association  under  the  dynamic
risk,  and  obtains  the  dynamic  communication
information  of  each  group.  Then,  each  agent
synthesizes the communication information of multiple

groups  through  the  inter-group  attention  mechanism,
learns the dynamic interaction among groups to obtain
the  task  migration  strategy,  and  guides  the  agent  to
realize efficient task migration and collaboration.

Overall,  the  main  contributions  of  this  work  can  be
summarized as follows:

● To the best of our knowledge, this is the first study
that  integrates  the  structural  impact  of  task
environment risks on UAVs under the multiplex UAV
group  structure.  This  research  constructs  a  risk-aware
task  migration  model  in  multiplex  UAV  groups,
extending previous research on UAV task migration in
dynamic environments.

● We describe the problem as a Partially Observable
Markov  Game  (POMG)  and  present  a  HAMRL
algorithm.  This  algorithm  effectively  addresses  the
structural  effects  of  multi-group  structures  in  dynamic
environmental risk settings.

●  We  empirically  evaluate  our  algorithm  in  a
simulated  environment,  and  the  experimental  results
demonstrate  that  our  algorithm  significantly
outperforms  state-of-the-art  algorithms  in  terms  of
convergence speed and algorithm performance.

The remaining sections of this paper are organized as
follows:  Section  2  discusses  related  work,  Section  3
outlines  the  risk-aware  task  migration  model  in
multiplex UAV groups, Section 4 introduces the multi-
agent reinforcement learning framework with a hybrid
attention  communication  mechanism,  Section  5
presents experimental results and analysis, and Section
6 concludes the paper and provides insights into future
research directions.

2　Related Work

In  recent  years,  task  migration  research  has  been
widely studied in the field of UAVs. For example, Hua
et  al.[14] proposed  a  two-layer  iterative  algorithm
utilizing  convex  optimization  techniques.  This
approach alternately optimizes task migration and path
planning for UAV swarms, with the primary objective
of  tackling  the  issue  of  an  excessive  number  of  UAV
tasks.  Wang et  al.[15] proposed  an  online  UAV swarm
task  migration  method,  this  method  combines  tasks
according  to  location  and  then  migrates  tasks  to
improve task utilization.

These  researches  usually  ignored  the  effect  of
environment dynamics on task migration. However, in
real  environments,  task  environments  are  often
dynamic,  and  some  studies  have  proposed  a  many  of
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works considering these dynamics. For example, Sacco
et al.[16] proposed a distributed adaptive task migration
algorithm  to  dynamically  predict  the  length  of  the
UAV’s  future  tasks  and  perform  task  migration  to
avoid overloading the UAV due to risk fluctuations in
dynamic environments.  Liu et  al.[17] proposed Markov
approximation algorithms to construct the near-optimal
solution  of  the  mathematical  model,  and  then  use
Lyapunov algorithms to deal with the dynamics of the
environment to optimize the long-term benefits, which
reduces  the  migration  cost  between  UAV swarms  and
end-device groups in dynamic environments.

These  studies  are  usually  model-based  traditional
optimization algorithms, which require a large amount
of  a  priori  knowledge  to  construct  an  accurate
mathematical  model,  a  situation  that  leads  to  poor
generalization  ability  of  the  model  and  makes  it
difficult  to  adapt  to  the  new  states  that  appear  in
dynamic  environments[18].  To  cope  with  the  UAV
group  task  migration  problem  in  this  dynamic  task
environment,  some  researches  have  proposed  task
migration methods based on multi-agent reinforcement
learning,  which  uses  deep  neural  networks  to  end-to-
end  the  interaction  relationship  of  multi-agent  within
the  UAV  group,  and  adaptively  learn  to  update  the
strategy  by  interacting  with  the  environment  to
improve  the  generalization  ability  of  the  model.  For
example,  in  order  to  cope  with  the  effect  of
environmental dynamics on the stability of multi-UAV
group,  a  clustering  method  based  on  reinforcement
learning is proposed[11], which improves the stability of
multi-UAV  swarm  formation  by  reorganizing  the
members  of  the  swarms  by  adaptively  adjusting  the
clustering  parameters  according  to  the  external
environment. Gao et al.[19] proposed a method to solve
the computational problem caused by the large number
of  UAV groups  in  dynamic environments  by using an
attention mechanism.

However,  all  these  reinforcement  learning-based
studies are usually under a single group or consider the
structure  of  multiple  group,  but  do  not  take  into
account  the  structural  impact  of  the  risk  of  the  task
environment  on  UAVs  under  a  multiplex  UAV  group
structures,  thus  leading  these  algorithms  to  fall  into
localized solutions. To solve this problem, we propose
a multi-agent  reinforcement  learning method based on
the  hybrid  attention  communication  mechanism  to
learn this structural influence.

3　Model and Problem Definition

B

K =
{k1, k2, . . . , kW } D =
{d1, d2, . . . , dN}

vt

Without sacrificing generality, we consider area  that
is  continuously  destroyed  by  natural  disasters,  and
some  corresponding  number  of  rescue  tasks 

.  The  UAVs  are  denoted  by 
,  and  the  UAVs  are  divided  into

multiple  groups  according  to  their  types,  the  task
migration  costs  of  UAVs  are  different  in  and  out  of
groups.  Therefore,  UAVs  can  only  obtain  observation
data from the same group of UAVs, but not from other
groups. These UAVs must be attentive to the evolving
risk  cost  which  may  vary  over  time  (for  example,
persistent aftershocks following an earthquake).

WAt  the  beginning,  tasks  will  be  allocated  to
multiple UAV groups. Some UAVs may be overloaded
because  they  are  assigned  multiple  tasks.  At  the  same
time,  if  UAV  perform  a  task  without  considering  the
risk  cost,  the  risk  cost  may  also  rise.  Excessive  task
workload and high risk costs can lead to an increase in
the overall cost of task completion. As a result, UAVs
must learn to dynamically migrate tasks to other agents
within  or  outside  the  group  and  determine  the
appropriate  time  to  execute  tasks  in  order  to  decrease
the  probability  of  UAV  damage  and  task  completion
cost.

In  the  following  sections,  we  will  detail  the  risk-
aware  task  migration  problem  for  multiple  UAV
groups.

3.1　Preliminaries

Risk-aware  task  migration  problem in  multiplex  UAV
groups has two constraints. First, UAV agents can only
observe the information of the current UAV group, and
the  information  of  other  UAV  groups  is  unobserved.
Second,  in  order  to  minimize  the  cost  of  all  UAVs,
agents  are  required  to  adaptively  migrate  task  within
and among multiple UAV groups while considering the
risk cost.
3.1.1　Multiplex UAV groups
For the first constraint, we describe the multiplex UAV
groups structure.

n m

G = {g1, g2, . . . , gm}
m

Multiplex UAV groups structure. The structure  of
multiplex UAV groups involves a configuration where

 agents  are  connected  by  different  types  of  edges.
Agents  connected  by  the  same  type  of  edge  together
form  a  group.  Multiple  groups  are  represented  by  the
vector ,  whose  elements  are  the
UAV  subscript  set  of  the -th  group.  For  example
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{i, j} ∈ gm cm
i j = 1 i

j gm m
{1, 2, . . . , j} gm

 indicates that when , agent  and agent
 are  connected  in  by  type .  The  observational

limits for each agent  in  can be defined
as follows:
 

om = {o j|∀ j ∈ gm} (1)

om

gm o j j
where  denotes  view  information  of  any  agent  in

,  and  denotes local view information of agent .
3.1.2　Task migration in multiplex UAV groups
For the second constraint, this paper builds a risky task
migration model in multiplex UAV groups:

iTask. Generally,  in  a  UAV system,  each  task  has
two pieces of important information: task workload and
task allocation.

hk
t k t

hk
t di

Et
i

Ht
i

●  Task  workload  is  the  size  of  task  at  time ,
and  is  variable.  Each  agent  has  a  current  task
workload  queue ,  where  the  elements  represent  the
subscripts of the tasks in the queue. The workload size
of the task queue  can be formalized as
 

Ht
i =
∑
k∈Et

i

hk
t (2)

Pk j

k d j

di

si

●  Task  assignment  variable  denotes  the
assignment  of  tasks  to  agent .  In  cases  where  an
agent is assigned multiple tasks, the task with the lower
workload  is  given  priority  for  execution  or  migration.
The task  execution speed of  UAV agent  is  denoted
by .

Risk. There  are  two  kinds  of  risk  in  this  paper,
environment and task workload.

B

vt

● For the UAV data collection environment, the risk
cost  of  collecting  data  in  area  is  dynamic  due  to
damage  from  natural  disasters.  The  UAV  must  pay
attention to the risk cost  (the risk cost is variable, the
value is a non-monotonic function ranging from 0 to 1)
in order to reduce the task cost. In other words, UAVs
must  stop  collecting  data  at  higher  risk  cost  and  start
collecting data at lower risk cost.

di

B

● For task workload, if a significant number of tasks
are  assigned  to  agent ,  the  resulting  workload
becomes excessive. In such a case, the UAV may have
to spend additional time exploring the area , resulting
in an escalation of the overall task cost.

Task  migration  in  multiplex  groups. Due  to  the
existence  of  risk,  tasks  with  overloaded  agents  may
need to be migrated to less overloaded agents to reduce
the  task  cost.  However,  due  to  this  multiplex  group
structure, agents may need to perform task migration in
multiplex  group,  this  migration  cost  is  also  different.

lm gm lm

di

d j gm li j

li j

di

d j

For  migration  cost  in  group ,  cost  value  is
correlated  with  distance  cost  between  agent  and
agent  in  group .  For  migration  costs  in
different  groups,  the  cost  value  is  related  to  the
distance  cost  between  the  group  of  agent  and  the
group of agent .

3.2　Problem formulation

The core objective of this paper is how to maximize the
reward of all UAVs in the multiplex UAV group. This
reward  is  mainly  related  to  task  completion  cost  and
task completion reward.

{1, 2, . . . , T }

● Task completion cost is the cost of completing all
data  collection  tasks,  all  UAVs  are  required  to
complete data collection tasks as far as possible in time
steps  at the lowest cost.

T
●  Task  completion  reward  is  gained  by  completing

all  tasks  within  time  steps,  the  higher  reward  mean
higher task completion rate.

T t
i j k

di d j Et
i

Task completion cost  of a task  migrating from
agent  to agent  and the task execution cost  can
be formalized as
 

T t
i j = li j · xt

i j ·ut (3)
 

Et
i = yt

i · si · vt ·ut (4)
 

xt
i j+ yt

i ⩽ 1 (5)
 

xt
i j ∈ {0,1}, yt

i ∈ {0,1}, ∀i, j ∈ D, t ∈ T (6)

ut

t xt
i j = 1 k i

j yt
i = 1

k i t
T

T

where  denotes whether the task was executed at time
,  denotes  the migration of  task  from agent 

to  agent ,  and  otherwise  0.  denotes  the
execution  of  task  by  agent  at  time ,  otherwise  0.
Task completion cost  of completing all tasks within

 time steps can be formalized as
 

T =
∑
t∈T
Tt =

∑
t∈T

∑
i∈D

∑
j∈D

T t
i j+Et

i

 (7)

n R

Task completion reward is related to all agents’ task
completion reward. A failed task migration can lead to
a decrease in the task completion reward, and the agent
either chooses to migrate the task or chooses to execute
the  task,  therefore  UAVs task  completion  reward 
can be formalized as
 

R = η ·
∑
t∈T
Rt = η ·

∑
t∈T

∑
i∈D

(yt
i · si)

 (8)

ηwhere  is reward weight.

  Yuanshuang Jiang et al.:  Optimizing Risk-Aware Task Migration Algorithm Among Multiplex UAV Groups... 321

 



η

This  form  of  reward  enables  to  meet  different
demands  by  adjusting  the  weights,  for  example,  for
time-sensitive  systems  such  as  rapid  disaster  response
set-up,  a  larger  is  recommended  to  meet  the  strict
requirements.

L

In  this  section,  the  optimization  objective  can  be
formalized. To minimize UAV costs by migrating tasks
in multiplex UAV groups. The objective function  is
defined as
 

L =max (−T +R) (9)

T
G

Based  on  the  above  description,  we  propose  the
definition of the multiplex UAV groups risk-aware task
migration  problem:  Within  time  steps,  given  the
multiplex UAV groups  containing agents and tasks,
the goal  of  the multiplex UAV groups risk-aware task
migration problem is to find an optimal task migration
and execution strategy with minimum cost.

4　Multi-Agent  Reinforcement  Learning
Methodology

In  the  previous  section,  the  multiplex  UAV  groups
risk-aware  task  migration  problem  is  reduced  to  a
maximization  optimization  problem.  The  task
migration and task assignment problem in Eq. (10) can
be  shown  to  be  NP-hard[20].  To  address  this  problem,
this  section  proposes  a  multi-group  risk-aware  task
migration approach based on multi-agent reinforcement
learning.

4.1　Reinforcement learning settings

S A R
di

S
R Rt

i

t

S A R

To  solve  this  multiple  UAV  group  risk-aware  task
migration  problem  using  multi-agent  reinforcement
learning,  we  describe  it  as  a  POMG  problem.  The
POMG model can be defined as a tuple ( , , ). We
assume that  each  UAV  as  an  agent  must  decide  on
its task migration object and task execution time based
on  the  state  in  order  to  maximize  the  discounted
expected  reward .  The  immediate  reward  of  the
reinforcement learning system is calculated by the task
execution cost and the task execution reward at time .
This  section  provides  the  formal  definitions  of  each
agent ( , , ).

S

t
8

State  space .  The  reinforcement  learning  system
consists of UAVs and tasks. Therefore, the system state
is a description of all task and UAV states that includes
task information, agent information, and risk cost with
time variation. An agent state at time  consists of these

 dimensions.

(1) Et
i Task workload queue  (Task information);

(2) Ht
i Task workload queue size  (Task information);

(3) si Task execution speed  (Task information);
(4) gm Migration      cost      in      the      group  (Agent

information);
(5) Migration    cost    in    different    group    (Agent

information);
(6) gm Agent group information  (Agent information);
(7) gm

gm

 State information of other agent in the group .
To  satisfy  first  constraint,  only  the  information  in  the

 group is known, the information in the other groups
is unknown (Agent information);

(8) vt Risks cost  (Time-varying information).

di

Action A. All  agents  have  the  same  amount  of
available action space. The action space of agent  can
be represented as follows:
 

ai =


Agent standby, if ai = 0;
Task execution, if ai = di;
Task migration to d j, otherwise

(10)

ai ∈ [0,N] ai 0 di

ai i di

ai d j di d j

where  and  if  the  value  of  is ,  agent 
remains  on  standby.  If  the  value  of  is ,  agent 
executes the task.  In all  other  cases,  specifically when

 equals , agent  migrates the task to agent .

t

Reward R. Each  UAVs  in  the  multiplex  UAV
groups  migration  problem  has  the  same  objective,
which  is  to  maximize  the  cumulative  reward.
According to Eq. (9), the rewards for all UAVs at time
 are as follows:

 

Rt = −Tt +Rt (11)

4.2　Hybrid  attention  multi-agent  reinforcement
learning

m

M̂i

M̌i

Qi

In order to solve above POMG problems, we propose a
multi-agent reinforcement learning algorithm based on
the  hybrid  attention  communication  mechanism,  as
shown in Fig. 1. It is a method based on the actor-critic
architecture,  which  learns  the  structural  influences  of
dynamic  features  mainly  through  the  critic.  First,
during the critic training process, each agent must first
listen to message, while  agents are elected as leader
agent  in  leader  election  period.  Second,  each  leader
agent then use intra-group hybrid attention mechanism
to  encode  intra-group  information  as  broadcast
information  to  send  to  all  agents  during
convergence  of  intra-group  communication
information period. Agents then use inter-group hybrid
attention mechanism to decode all  to help generate

 value in convergence of inter-group communication
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information  period.  Final,  the  algorithm  updates  the
actor  and  critic  networks  by  a  certain  batch,  which  is
the  fourth  stage  of  model  training.  The  detailed
procedure of each step is given below.

gm ∈ G
N

wm

si

Leader election. During the initialization period, the
algorithm  first  needs  to  determine  the  leader  agent  of
each group . Specifically, the agent group is first
divided  into  groups  according  to  the  prior
knowledge, and then the leader agent  of each group
is determined according to the task processing ability 
of  the  agent  in  each  group.  This  can  be  formalized  as
follows:
 

wm = arg max
i∈gm

si (12)

gm ∈ G
wm wm om

gm

Convergence  of  intra-group  communication
information. After  each  group  elects  a  leader

,  the  leader  must  collect  information  about
all  agents  in .  However,  due  to  the  limited
communication  bandwidth  and  computational
problems  caused  by  the  large  number  of  UAVs,  the
communication  information  needs  to  be  further

o j

d j

e j

processed  and  encoded.  Here,  we  first  encode  the
multi-dimensional  communication  information  of
each  agent  in  the  group  into  a  lower-dimensional
feature embedding ,
 

e j = f j(o j) (13)

f jwhere  is a single-layer MLP embedding function.

e j

M̂m

After  completing  the  feature  embedding  encoding,
we aggregate the feature embedding  of each agent in
the  group  into  the  inter-group  communication
information  through  the  hybrid  attention
mechanism,
 

M̂m =
∑
i∈gm

αwm j Vme j (14)

Vm

gm αwm j

wm d j αwm j

e j

ewm softmax
αwm j

where  is  the weight matrix shared by all  agents in
group , and  is the attention weight from leader

 to agent .  The attention weight  is  obtained
by  computing  the  similarity  score  between  the  agent
feature embedding  and the leader feature embedding

 and  subjecting  the  score  to  a  operation.
 can be described formally as follows:

 

 
Fig. 1    System architecture diagram.
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αwm j ∝ exp(ewm ,e j) (15)

In this way, we effectively aggregated the data within
each  group  and  were  able  to  reduce  the  frequency  of
information  transfer  and  increase  the  efficiency  of
information use through graphical attention.
4.2.1　Convergence  of  inter-group  communication

information

di gm

wm

di

wm Mm

After  the  inter-group  communication  information  of
each  group  has  been  broadcast  and  sent  to  other
groups.  The  agent  in  group  will  eventually
receive  a  broadcast  communication  information
message  from  the  leader .  When  the  algorithm
evaluates  the  strategy  of  agent ,  the  set  of
communication  information  received  by , ,  can
be represented as
 

Mm =
{
o j,M̂k |∀ j ∈ gm,∀k ∈ {1, 2, . . . , M}∧ k , m

}
(16)

d j

d j

M̂k

gm

cm
i

For  agent ,  this  algorithm  uses  the  inter-group
hybrid  attention  network  to  model  the  relationship
between  and  the  communication  information
message. Since the message contains not only the inter-
group  communication  information ,  but  also  the
observation information of other agents in , in order
to  avoid  the  confusion  of  information  in  different
dimensions, which affects the final decision effect, the
algorithm  first  uses  the  hybrid  attention  network  to
extract  the  communication  information  of  this
group, which can be described as follows:
 

cm
i =
∑
j∈gm

αi jVme j (17)

ei = fi (oi) Vm

gk j , i αi j

i j gm αi j

where ,  is the weight matrix shared by all
agents in group , and ,  is the attention weight
of  agent  to  other  agent  in  group .  can  be
obtained in the same way as in Formula (15).

MmTo compute  the  inter-group  communication  of ,
the  algorithm  again  uses  hybrid  attention  nets.  The
computation process is as follows:
 

M̌i = αimVm′cm
i +

∑
k∈[1,M]

αikVkM̂k (18)

Vk Vm′ αik

di

αim di

gk

where  and  represent  the  weight  matrix,  is
the  attention  weight  of  agent  to  the  other  group
message, and  is the attention weight of agent  to
the current group .

di

di M̌i

wm Oi = {oi,ai,M̌i}

After  the  above  processing,  the  final  information
collected by the agent  is the observation-action pair
of  with  the  communication  information  from

, which can be formalized as .

Model  training. In  the  final  step,  the  actor-critic
structure  is  used  to  train  each  agent’s  actor  and  critic
networks  separately.  For  the  critic  network,  this  loss
function  trains  the  critic  network  by  minimizing  the
difference between the critic network’s estimate of the
action value and the target value. This loss function can
be calculated using the following formula:
 

L(ψi) =
1
S

∑
j

(Qµ
i (o j

i ,a
j
i ,M̌

j
i )|ai=µi(oi)− y j)2 (19)

S j
µi

di

y j = r j
i +γQµ′

i (o j′
i ,a
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i ,M̌

j′
i )|a′i=µi′(oi)

Q r j
i

di

j γ

o′i di a′i
di o′i M̌

j′
i

Qµ′

i

(
o′i ,a

′
i ,M̌

j′
i

)
s

di

where  is the number of samples,  is the index of a
sample within a batch,  is the policy network, which
refers to the way the agent  chooses actions based on
its  current  state.  is
the target, computed by the target function ,  is the
immediate reward received by the agent  in response
to the action taken in sample ,  is the discount factor,

 is the next state observed by agent ,  is the next
action  taken  by  agent  in  the  next  state , 
represents  the  next  external  information,  and

 represents  the maximum action value
expected by agent , respectively.

The  actor  network  is  updated  using  the  policy
gradient  method.  Its  policy  gradient  formula  is  as
follows:
 

∆

θi J ≈
1
S

∑
j

∆

θiµi(o
j
i )

∆

ai Q
µ
i (o j

i ,a
j
i ,M̌

j
i ) (20)

θi S
j

µi

di

∆

θiµi
(
o j

i

)
µi θi,

∆

ai Q
µ
i

Q Qµ
i

ai

µi

where  is  a  parameter  of  the actor  network,  is  the
number of samples,  is the index of a sample within a
batch,  is  the  policy,  which  refers  to  the  way  the
agent  chooses  actions  based  on  its  current  state,

 represents the gradient of the policy function
 with respect to the parameter  represents the

gradient of the  function  with respect to the action
.  The  formula  updates  the  actor  network  by

calculating the probability gradient of the action chosen
by  the  strategy  in  the  sample  data.  Finally,  Hybrid
Attention  Multi-agent  Reinforcement  Learning
(HAMRL) algorithm can be derived in Algorithm 1.

5　Experiment

5.1　Experimental settings

Experiments  were  conducted  on  a  personal  computer
equipped  with  an  NVIDIA  RTX  GeForce  RTX  3090
GPU,  Ubuntu  20.04  LTS  operating  system,  2.10  GHz
Xeon(R)  Silver  4216  CPU,  64  GB  RAM.  Each
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experiment was iterated 10 000 times to obtain average
reward  results.  The  experimental  algorithms  were
developed  using  Python  3.7  with  PyTorch  2.0  as  the
deep  learning  framework.  The  experiments  were
conducted  in  a  dynamic  risk  environment  constructed
based  on  the  MPE  architecture[21].  To  emulate  the
uncertain  dynamic  risk  environment,  the  wave  height
dataset[22] from  Kaggle  was  used.  The  initial
environment  consisted  of  50  agents  organized  into  10
groups. The skill of each agent was randomly assigned,
with values ranging from 1 to 9, with an average of 5.
The  size  of  each  task  was  also  randomly  assigned,
ranging  from  5  to  20,  with  an  average  of  12.5[23].  In
each  experiment,  the  initial  number  of  items  is  set  to
400.

Our proposed algorithm uses a hybrid attention actor-
critic network architecture, as shown in Fig. 1 (system
architecture  diagram),  which  consists  of  attention
modules.  The  learning  rate  of  the  network  is  set  to
0.001,  and  the  hidden  layer  dimension  is  128.  The
reward discount  factor  is  set  to 0.99,  the replay buffer

length  for  training  is 1 000 000,  the  data  size  for  each
training  batch  is  1024,  the  number  of  environments
running in parallel is 20, and the maximum number of
training steps is set to 10 000.

5.2　Experimental  metrics  and  comparative
algorithms

The  following  performance  metrics  are  used  in  the
experimental evaluation:

(1) Task completion rate: This metric quantifies the
total  reward  the  system  receives  when  it  executes  the
task  migration  strategy  provided  by  the  algorithm and
successfully completes the tasks.

(2)  Task  completion  cost: Task  completion  cost
consists of task migration cost and task execution cost:
(a)  Task  migration  cost  is  further  divided  into  intra-
group migration (within the same group of agents) and
inter-group  migration  (across  different  groups  of
agents),  with  inter-group  migration  incurring  a  higher
cost. (b) Task execution cost is influenced by task size
and real-time risk factors.

This  experiment  provides  three  other  algorithms  for
comparison:

(1)  Nearest  Neighbour  Task Migration  algorithm
(NNTM)[24]:  The  NNTM  algorithm  strategically
selects  the  nearest  available  neighbor  for  task
migration,  ensuring  that  tasks  are  efficiently  assigned
to the closest resources in the system.

(2)  Multi-Actor-Attention-Critic  (MAAC)[25]:
MAAC  is  a  variant  of  the  classical  actor-critic
algorithm  designed  for  applications  in  multi-agent
reinforcement  learning.  Its  main  innovation  lies  in  the
incorporation  of  an  attention  mechanism  within  the
critic,  which  allows  the  dynamic  selection  of  relevant
information  for  each  intelligent  agent.  This  approach
mitigates  the  potential  problem  of  dimensionality
explosion that can occur with an increasing number of
agents,  thereby  increasing  the  effectiveness  of  the
algorithm.

(3)  Hierarchical  graph  Attention  based  Multi-
agent  Actor-critic  (HAMA)  approach[26]:  HAMA
extends  the  traditional  multi-agent  actor-critic  model
by  incorporating  hierarchical  graph  attention
mechanisms. This strategic allows agents to selectively
focus  on  critical  information  within  their  groups,
facilitating more informed decision making.

5.3　Experimental evaluation

This section first compares the HAMRL approach with

 

Algorithm 1　Hybrid Attention Multi-Agent Reinforcement
Learning

D  1 Initialize replay buffer 
m  2 Initialize the UAV into  groups according to Eq. (12)

episode = 1 to max− iters  3 for  do
oi i  4　Reset environments, and get initial  for each agent 

N  5　Initialize a random process  for action exploration
x = {o1,o2, ...,oN }  6　Receive initial state 

t = 1 to max− episode− length  7　for   do
i ai = µθi (oi)+Nt  8　　for each agent , select action  w.r.t. the

　   　 current policy and exploration
a = (a1,a2, ...,aN )

r x′ = {o1,o2, ...,oN }
  9　　Execute task migration actions  and
　   　 observe reward  and new state 

(x,a,r, x′) D10　　Store  in replay buffer 
x← x′11　　set 

j (oi,r,o′i )
D

12　　Each agent sample -th minibatch sample  from
　   　 

each leader agent i = 1 M13　　for    to  do

M̂i14　　　Compute intra-group information  by Eq. (14)
and send to other agent

agent i = 1 N15　　for    to  do

M̌i16　　　Compute inter-group communication information 
　　   　 by Eq. (18)
17　　　Update critic by minimizing the loss by Eq. (19)
18　　　Update actor using the sampled policy gradient by Eq.
　　   　 (20)

i
θ′i ← τθi + (1−τ)θ′i

19　　Update target network parameters for each agent :　　
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other  algorithms  to  analyze  its  convergence  in  the
simulated  environment.  The  performance  of  HAMRL
is then evaluated by performing ablation tests, varying
the number of tasks and groups of agents.
5.3.1　System average reward
Parameter  settings: In  the  experiment,  the
environment was set up with 50 agents divided into 10
groups,  and  a  total  of  400  tasks  are  assigned.  To
evaluate  the  convergence  of  the  HAMRL  model  in
terms of average reward, we performed 10 000 training
iterations  and  simultaneously  compared  it  with
heuristic, MAAC, and HAMA methods.

Experimental  phenomena: Figure  2 shows  the
average  system  reward  achieved  by  HAMRL  in  the
simulation  environment.  The  results  show  that  the
average  rewards  of  all  task  migration  approaches,
except  the  heuristic-based  approach,  increase  with  the
number  of  training  iterations  until  they  reach
convergence.  In  particular,  HAMRL shows  the  fastest
convergence  and  achieves  the  highest  average  system
reward.

Results  analysis: The  HAMRL  approach
demonstrates  rapid  convergence  and  excels  in
optimizing  system  average  reward  metrics.  This
performance  is  due  to  the  hybrid  attention  network
model  used  in  the  approach,  which  is  specifically
designed to facilitate multi-agent group communication
in  dynamic  risk  environments.  This  approach  allows
the  model  to  acquire  global  information  through  a
limited  number  of  inter-group  communications,
enabling  adaptive  task  migration  to  mitigate  high  risk
costs.  The  increased  communication  efficiency
accelerates  training  convergence,  while  precise  global
feature  extraction  optimizes  the  task  migration

strategy, ultimately leading to superior system average
rewards.

In  comparison,  the  HAMA-based  approach  neglects
the  impact  of  dynamic  risk  environments  on  agent
communication  and  collaboration.  The  MAAC-based
approach  performs  even  worse  because  it  ignores  the
group  composition  of  multiple  agents,  leading  to
suboptimal results. While the heuristic-based approach
may produce a  quick result  in  a  single  run,  its  lack of
adaptability  due  to  predetermined  rules  and  prior
knowledge  makes  it  unsuitable  for  achieving  optimal
results in ever-changing risk scenarios.
5.3.2　Influence  of  the  number  of  groups  on  the

optimization effect
Parameter settings: In the experiments conducted, the
system was tasked with managing a total of 400 tasks,
with each group consisting of 5 agents. The number of
groups varied between 8 and 16.

Experimental phenomena: Figure 3 shows the task
completion  rates  achieved  by  different  task  migration
algorithms,  including  MAAC,  HAMA,  and  heuristic
algorithms,  in  the  context  of  8  groups  and  40  agents.
The  completion  rates  are  comparable,  but  HAMRL
significantly  outperforms  the  other  algorithms  in
achieving  an  optimal  task  completion  rate.  As  the
number of groups and the size of the problem increase,
the  task  completion  rate  of  the  heuristic  algorithm-
based  task  migration  approach  gradually  improves.
However, the performance gap widens when compared
to the optimization effects of the other approaches.

Overall,  the  task  completion  rate  of  the  HAMA-
based migration approach exceeds that  of  the MAAC-
based  approach.  Furthermore,  the  optimization  gap

 

 
Fig. 2    Cumulative rewards during the learning process.

 

 
Fig. 3    Task completion rate comparison in UAV multiplex
group.
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between  these  two  approaches  consistently  widens  as
the number of groups increases. Although the HAMRL
approach consistently outperforms the other methods in
terms  of  task  completion  rates,  the  completion  rate
continues  to  improve  as  the  number  of  groups
increases.

Figure  4 shows  a  marginal  difference  in  total  task
completion  cost  for  each  approach  with  8  groups.  As
the  number  of  groups  increases,  the  total  task
completion  cost  of  the  heuristic-based  approach
gradually  increases,  in  line  with  the  experimental  data
on  task  completion  rates.  In  contrast,  the  remaining
methods  show  a  steeper  increase  in  total  task
completion  cost,  but  the  differences  between  them
remain relatively small.

Results  analysis: HAMRL  maintains  a  total  task
completion cost that is comparable to other algorithms,
yet  it  also  achieves  the  highest  task  completion  rate.
This  achievement  is  attributed  to  our  proposed  hybrid
attention  network  model,  which  has  effective
communication  capabilities  in  dynamic  high-risk
environments.  The  model  adopts  a  task  migration
strategy  and  directs  task  collaboration  among  agents,
thereby optimizing task migration costs and improving
task completion rates. The small differences in the total
task  migration  costs  using  the  HAMA-based  and
MAAC-based  migration  methods  suggest  that  the
former  is  more  efficient  in  terms  of  task  completion
rates.  It  can  be  concluded  that  the  HAMA-based
approach  focuses  more  on  optimizing  task  migration
costs  than  the  MAAC-based  approach,  while  still
achieving a comparatively high task completion rate.

5.4　Influence  of  the  number  of  tasks  on  the
optimization effect

Parameter  settings: In  the  experiment,  a  total  of  10
groups  are  utilized,  each  consisting  of  5  agents.  The
number of tasks ranged from 200 to 500. Figures 5 and
6 show  the  effect  of  the  number  of  tasks  on  the  task
completion  rate  and  the  total  cost  of  task  completion.
When  there  are  200  tasks,  the  HAMRL,  the  HAMA-
based  approach,  and  the  MAAC-based  approach  get  a
task  completion  rate  of  1.0.  In  contrast,  the  heuristic-
based  approach  resulted  in  a  significantly  lower  task
completion rate, which ultimately led to a reduction in
the total cost of completing these tasks. As the number
of tasks increased, the task completion rates of all four
approaches  decreases.  However,  HAMRL consistently
maintained  the  highest  task  completion  rate  despite

 

 
Fig. 4    Task completion cost  comparison in UAV multiplex
group.

 

 
Fig. 5    Task completion rate comparison for the number of
tasks.

 

 
Fig. 6    Task completion cost comparison for the number of
tasks.
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having  the  highest  task  completion  cost.  The  HAMA
approach  is  superior  to  the  MAAC  approach  in  terms
of  task  completion  rate.  However,  the  two approaches
have  similar  total  task  completion  costs,  and  the
difference in optimization effect between the heuristic-
based  approach  and  the  other  approaches  gradually
decreases.

Results analysis: When there are 200 tasks, although
the  total  task  completion  cost  using  HAMRL,  the
HAMA-based  approach,  and  the  MAAC-based
approach are quite similar, HAMRL still has the lowest
total  task  completion  cost.  This  suggests  that  our
proposed  hybrid  attention  network  model  accurately
learns  the  network  topology  across  groups  and
effectively reduces the cost of task migration. Although
HAMRL achieves the highest task completion rate and
completes the most tasks, it incurs the highest total task
completion  cost  in Fig.  6.  However,  HAMRL reduces
the  total  task  completion  cost  at  high  task  completion
rates  because  the  method  optimizes  task  migration
costs. The HAMA-based method takes into account the
group  structure  among  agents  and  emphasizes  the
optimization  of  task  migration  costs,  resulting  in
superior  performance  compared  to  the  MAAC-based
approach.  Although  the  heuristic-based  approach
shows  significant  differences  compared  to  other
methods, it  can still  be used as a reliable and fast task
migration strategy.

6　Conclusion

In  this  paper,  we  integrate  the  structural  effects  of
dynamic  risk  on  multiplex  group  agents  into  a  task
migration  framework  based  on  multi-agent
reinforcement  learning.  We propose a  hybrid attention
multi-agent  reinforcement  learning  algorithm.  The
experimental  results  show  that  our  algorithm
significantly  outperforms  state-of-the-art  algorithms in
terms  of  convergence  speed  and  algorithm
performance.  For  future  research,  an  interesting
direction involves extending the dynamic environment
risk multiplex group task migration model  to  complex
adversarial  environments,  aiming  to  enhance  the
robustness of the model.
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